[1]
|
赵昕. 海洋经济发展现状、挑战及趋势[J]. 人民论坛, 2022(18): 80-83.
|
[2]
|
张金鹏, 万荣胜, 朱本铎. 中国近海砂矿资源开发与利用及相关战略建议[J]. 矿床地质, 2014, 33(S1): 879-880.
|
[3]
|
侯卫星, 秦磊, 郭盼盼, 等. 海水-海砂混凝土研究进展[J]. 济南大学学报(自然科学版), 2024, 38(2): 184-193.
|
[4]
|
中国科协发布2022重大科学问题、工程技术难题和产业技术问题[J]. 中国机械工程, 2022, 33(14): 1716.
|
[5]
|
李师财. 海水海砂混凝土中氯离子迁移与结合研究[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2021.
|
[6]
|
崔明. 海砂海水混凝土力学性能及其与FRP筋组合梁受弯性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.
|
[7]
|
黄亮, 谢建和, 陆中宇. 海水海砂混凝土研究现状与应用前景[J]. 混凝土, 2020(9): 155-160.
|
[8]
|
Di, W., Yan, Q., Wang, Y., Gan, X., Dong, Z., Wang, J., et al. (2019) Micro-Analysis of Marine Sand from Zhoushan Seas. IOP Conference Series: Earth and Environmental Science, 304, Article ID: 032101. https://doi.org/10.1088/1755-1315/304/3/032101
|
[9]
|
Yang, S., Sun, Z., Jiang, Z., Yang, Z. and Liu, S. (2021) Effect of Chloride Ion Content and Replacement Ratio of Manufactured Sand on Performance of Sea Sand Masonry Mortar. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45, 147-158. https://doi.org/10.1007/s40996-020-00539-x
|
[10]
|
蒲智琦. 绿色建筑材料在建筑工程施工技术中的应用研究[J]. 佛山陶瓷, 2024, 34(1): 110-112.
|
[11]
|
王云鹏. 绿色建筑材料在土木工程施工中的应用分析[J]. 居舍, 2024(5): 47-49.
|
[12]
|
韩刚, 王学志, 孔祥清, 等. 海水、海砂、粉煤灰混凝土早期立方体抗压强度研究[J]. 混凝土, 2022(8): 25-28.
|
[13]
|
朱德举, 赵雪薇, 郭帅成. 海水与矿物掺合料对水泥基材料微结构和力学性能的影响[J].硅酸盐学报, 2024, 52(5): 1477-1485.
|
[14]
|
Jiang, Y., Liu, J.Z., Sun, W., Zheng, C.Y. and Wu, S.Y. (2014) Study on the Properties of Sea Sand Concrete with Fly Ash. Advanced Materials Research, 1065, 1854-1857. https://doi.org/10.4028/www.scientific.net/amr.1065-1069.1854
|
[15]
|
Iqbal, M., Zhang, D., Khan, K., Amin, M.N., Ibrahim, M. and Salami, B.A. (2023) Evaluating Mechanical, Microstructural and Durability Performance of Seawater Sea Sand Concrete Modified with Silica Fume. Journal of Building Engineering, 72, Article ID: 106583. https://doi.org/10.1016/j.jobe.2023.106583
|
[16]
|
刘华杰, 朱海威, 范从军, 等. 海洋环境下现浇混凝土结构耐久性提升技术研究[J]. 建筑结构, 2023, 53(S2): 1329-1335.
|
[17]
|
Zhang, X., Luo, Y. and Yao, W. (2022) An Innovative Material with Strong Frost Resistance—Concrete Containing Dolomite Powder. Materials, 15, Article 1721. https://doi.org/10.3390/ma15051721
|
[18]
|
崔钊玮, 杨靖韬, 刘荣桂. 白云石粉掺量对水泥混凝土力学性能影响研究[J]. 非金属矿, 2022, 45(4): 39-41.
|
[19]
|
Geng, J., Easterbrook, D., Li, L. and Mo, L. (2015) The Stability of Bound Chlorides in Cement Paste with Sulfate Attack. Cement and Concrete Research, 68, 211-222. https://doi.org/10.1016/j.cemconres.2014.11.010
|
[20]
|
Yan, Y. and Geng, G. (2024) Does Nano Basic Building-Block of C-S-H Exist?—A Review of Direct Morphological Observations. Materials & Design, 238, Article ID: 112699. https://doi.org/10.1016/j.matdes.2024.112699
|
[21]
|
Harris, A.W., Manning, M.C., Tearle, W.M. and Tweed, C.J. (2002) Testing of Models of the Dissolution of Cements—Leaching of Synthetic CSH Gels. Cement and Concrete Research, 32, 731-746. https://doi.org/10.1016/s0008-8846(01)00748-7
|
[22]
|
Morandeau, A., Thiéry, M. and Dangla, P. (2014) Investigation of the Carbonation Mechanism of CH and C-S-H in Terms of Kinetics, Microstructure Changes and Moisture Properties. Cement and Concrete Research, 56, 153-170. https://doi.org/10.1016/j.cemconres.2013.11.015
|
[23]
|
Craipeau, T., Perrot, A., Toussaint, F., Huet, B. and Lecompte, T. (2021) Mortar Pore Pressure Prediction during the First Hours of Cement Hydration. Cement and Concrete Composites, 119, Article ID: 103998. https://doi.org/10.1016/j.cemconcomp.2021.103998
|
[24]
|
Gou, M., Zhao, M., Zhou, L., Zhao, J., Hou, W., Ma, W., et al. (2023) Hydration and Mechanical Properties of FGD Gypsum-Cement-Mineral Powder Composites. Journal of Building Engineering, 69, Article ID: 106288. https://doi.org/10.1016/j.jobe.2023.106288
|
[25]
|
Zhao, Y., Hu, X., Shi, C., Zhang, Z. and Zhu, D. (2021) A Review on Seawater Sea-Sand Concrete: Mixture Proportion, Hydration, Microstructure and Properties. Construction and Building Materials, 295, Article ID: 123602. https://doi.org/10.1016/j.conbuildmat.2021.123602
|
[26]
|
黄杨, 罗坤杰, 覃丽菲. 海洋环境下氯离子对混凝土结构耐久性的影响与防护[J]. 中国科技信息, 2022(19): 114-116.
|
[27]
|
Bérodier, E.M.J., Muller, A.C.A. and Scrivener, K.L. (2020) Effect of Sulfate on C-S-H at Early Age. Cement and Concrete Research, 138, Article ID: 106248. https://doi.org/10.1016/j.cemconres.2020.106248
|
[28]
|
Ju, Y., Zhang, H., Wang, D., Kong, X., Ma, Y., Zhang, X., et al. (2024) Effect of Mineral Admixtures on the Resistance to Sulfate Attack of Reactive Powder Concrete. Journal of Cleaner Production, 440, Article ID: 140769. https://doi.org/10.1016/j.jclepro.2024.140769
|
[29]
|
Liu, X., Feng, P., Li, W., Geng, G., Huang, J., Gao, Y., et al. (2021) Effects of Ph on the Nano/Micro Structure of Calcium Silicate Hydrate (C-S-H) under Sulfate Attack. Cement and Concrete Research, 140, Article ID: 106306. https://doi.org/10.1016/j.cemconres.2020.106306
|
[30]
|
Sun, X., Li, T., Shi, F., Liu, X., Zong, Y., Hou, B., et al. (2022) Sulphate Corrosion Mechanism of Ultra-High-Performance Concrete (UHPC) Prepared with Seawater and Sea Sand. Polymers, 14, Article 971. https://doi.org/10.3390/polym14050971
|
[31]
|
Sun, C., Sun, M., Tao, T., Qu, F., Wang, G., Zhang, P., et al. (2021) Chloride Binding Capacity and Its Effect on the Microstructure of Mortar Made with Marine Sand. Sustainability, 13, Article 4169. https://doi.org/10.3390/su13084169
|
[32]
|
Li, P., Li, W., Yu, T., Qu, F. and Tam, V.W.Y. (2020) Investigation on Early-Age Hydration, Mechanical Properties and Microstructure of Seawater Sea Sand Cement Mortar. Construction and Building Materials, 249, Article ID: 118776. https://doi.org/10.1016/j.conbuildmat.2020.118776
|
[33]
|
Ben-Yair, M. (1974) The Effect of Chlorides on Concrete in Hot and Arid Regions. Cement and Concrete Research, 4, 405-416. https://doi.org/10.1016/0008-8846(74)90106-9
|
[34]
|
Wu, Q., Li, X., Xu, J., Wang, G., Shi, W. and Wang, S. (2019) Size Distribution Model and Development Characteristics of Corrosion Pits in Concrete under Two Curing Methods. Materials, 12, Article 1846. https://doi.org/10.3390/ma12111846
|
[35]
|
Chen, J., Jia, J. and Zhu, M. (2024) Development of Admixtures on Seawater Sea Sand Concrete: A Critical Review on Concrete Hardening, Chloride Ion Penetration and Steel Corrosion. Construction and Building Materials, 411, Article ID: 134219. https://doi.org/10.1016/j.conbuildmat.2023.134219
|
[36]
|
Li, S., Jin, Z. and Yu, Y. (2021) Chloride Binding by Calcined Layered Double Hydroxides and Alumina-Rich Cementitious Materials in Mortar Mixed with Seawater and Sea Sand. Construction and Building Materials, 293, Article ID: 123493. https://doi.org/10.1016/j.conbuildmat.2021.123493
|
[37]
|
Yang, S., Xu, J., Zang, C., Li, R., Yang, Q. and Sun, S. (2019) Mechanical Properties of Alkali-Activated Slag Concrete Mixed by Seawater and Sea Sand. Construction and Building Materials, 196, 395-410. https://doi.org/10.1016/j.conbuildmat.2018.11.113
|
[38]
|
Huang, W., He, L., Chen, Z., Yin, J., Huang, Q., Chen, R., et al. (2024) Effect of Endogenous Chloride Ion on the Corrosion Behavior of Reinforcement Embedded in Sea-Sand UHPC Matrix in Different Immersion Environments. Journal of Building Engineering, 90, Article ID: 109376. https://doi.org/10.1016/j.jobe.2024.109376
|
[39]
|
Li, Y., Liu, W., Mi, T., Ding, X., Tang, L. and Xing, F. (2024) Durability Study of Seawater and Sea-Sand Concrete under the Combined Effects of Carbonation and Chloride Redistribution. Journal of Building Engineering, 89, Article ID: 109294. https://doi.org/10.1016/j.jobe.2024.109294
|
[40]
|
Liu, W., Li, Y., Tang, L. and Xing, F. (2021) Modelling Analysis of Chloride Redistribution in Sea-Sand Concrete Exposed to Atmospheric Environment. Construction and Building Materials, 274, Article ID: 121962. https://doi.org/10.1016/j.conbuildmat.2020.121962
|
[41]
|
Duan, A., Jin, W. and Qian, J. (2010) Effect of Freeze-Thaw Cycles on the Stress-Strain Curves of Unconfined and Confined Concrete. Materials and Structures, 44, 1309-1324. https://doi.org/10.1617/s11527-010-9702-9
|
[42]
|
杨文武, 杜蓬娟, 范伟, 等. 海工磨细矿渣混凝土的冻渗性与孔结构研究[J]. 硅酸盐通报, 2020, 39(7): 2134-2138, 2153.
|
[43]
|
孔靖勋. 冻融和海水侵蚀耦合作用下大掺量粉煤灰混凝土的性能研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2015.
|
[44]
|
Liu, Y., Chen, Y.F., Wang, W. and Li, Z. (2016) Bond Performance of Thermal Insulation Concrete under Freeze-Thaw Cycles. Construction and Building Materials, 104, 116-125. https://doi.org/10.1016/j.conbuildmat.2015.12.040
|
[45]
|
高恒, 杨天琪. 海水海砂再生粗骨料混凝土强度影响因素的试验研究[J]. 建材与装饰, 2019(1): 33-35.
|
[46]
|
王昂. PVA纤维增强海水海砂水泥基复合材料力学性能研究[D]: [硕士学位论文]. 温州: 温州大学, 2021.
|
[47]
|
夏建云. 碳纤维掺料下混凝土力学性能与抗冻性能研究[J]. 江苏建材, 2024(4): 36-38.
|
[48]
|
李钢粮, 简嘉宇, 宋钰莹, 等. 冻融环境下SFCB与玻璃纤维膨胀剂增强海水海砂混凝土力学和粘结性能研究[J]. 建筑结构, 2025, 55(5): 62-70.
|
[49]
|
张腾腾, 王传林, 张宇轩, 等. 粉煤灰掺量对海水海砂高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1677-1688.
|
[50]
|
关国浩, 王学志, 贺晶晶, 等. 耐碱玻纤增强海水海砂混凝土力学性能研究[J]. 混凝土与水泥制品, 2023(6): 48-53, 59.
|
[51]
|
Liu, J., An, R., Jiang, Z., Jin, H., Zhu, J., Liu, W., et al. (2022) Effects of W/b Ratio, Fly Ash, Limestone Calcined Clay, Seawater and Sea-Sand on Workability, Mechanical Properties, Drying Shrinkage Behavior and Micro-Structural Characteristics of Concrete. Construction and Building Materials, 321, Article ID: 126333. https://doi.org/10.1016/j.conbuildmat.2022.126333
|
[52]
|
Tong, L., Zhao, J. and Cheng, Z. (2021) Chloride Ion Binding Effect and Corrosion Resistance of Geopolymer Materials Prepared with Seawater and Coral Sand. Construction and Building Materials, 309, Article ID: 125126. https://doi.org/10.1016/j.conbuildmat.2021.125126
|
[53]
|
Yang, B., Xie, T., Yu, Y., Zheng, Y. and Xu, J. (2022) Mechanical Properties and Environmental Performance of Seawater Sea-Sand Self-Compacting Concrete. Advances in Structural Engineering, 25, 3114-3136. https://doi.org/10.1177/13694332221119863
|
[54]
|
Kryzhanovskyi, V., Avramidou, A., Orlowsky, J. and Spyridis, P. (2023) Self-Compacting High-Strength Textile-Reinforced Concrete Using Sea Sand and Sea Water. Materials, 16, Article 4934. https://doi.org/10.3390/ma16144934
|
[55]
|
Tjaronge, M.W., Irmawaty, R., Adisasmita, S.A., Amiruddin, A. and Hartini, (2014) Compressive Strength and Hydration Process of Self Compacting Concrete (SCC) Mixed with Sea Water, Marine Sand and Portland Composite Cement. Advanced Materials Research, 935, 242-246. https://doi.org/10.4028/www.scientific.net/amr.935.242
|
[56]
|
Ge, L., Feng, Z., Sayed, U. and Li, H. (2023) Research on the Performance of Seawater Sea-Sand Concrete: A Review. Construction and Building Materials, 409, Article ID: 133921. https://doi.org/10.1016/j.conbuildmat.2023.133921
|
[57]
|
邢丽, 薛瑞丰, 曹喜. 海砂海水混凝土性能研究[J]. 混凝土, 2015(11): 137-141.
|
[58]
|
卞立波, 宋少民, 李飞. 海砂混凝土耐久性能研究[J]. 混凝土与水泥制品, 2012(2): 11-14.
|
[59]
|
Limeira, J., Agullo, L. and Etxeberria, M. (2010) Dredged Marine Sand in Concrete: An Experimental Section of a Harbor Pavement. Construction and Building Materials, 24, 863-870. https://doi.org/10.1016/j.conbuildmat.2009.12.011
|
[60]
|
Liu, W., Cui, H., Dong, Z., Xing, F., Zhang, H. and Lo, T.Y. (2016) Carbonation of Concrete Made with Dredged Marine Sand and Its Effect on Chloride Binding. Construction and Building Materials, 120, 1-9. https://doi.org/10.1016/j.conbuildmat.2016.05.011
|
[61]
|
林敏, 吴海英, 张湘伟, 等. 基于深度学习的纳米纤维海水海砂混凝土粘结机理分析[J]. 建筑结构, 2022, 52(S2): 1147-1151.
|