[1]
|
Uprety, D. and Adjei, A.A. (2020) KRAS: From Undruggable to a Druggable Cancer Target. Cancer Treatment Reviews, 89, Article ID: 102070. https://doi.org/10.1016/j.ctrv.2020.102070
|
[2]
|
Liu, P., Wang, Y. and Li, X. (2019) Targeting the Untargetable KRAS in Cancer Therapy. Acta Pharmaceutica Sinica B, 9, 871-879. https://doi.org/10.1016/j.apsb.2019.03.002
|
[3]
|
Parikh, K., Banna, G., Liu, S.V., Friedlaender, A., Desai, A., Subbiah, V., et al. (2022) Drugging KRAS: Current Perspectives and State-of-Art Review. Journal of Hematology & Oncology, 15, Article No. 152. https://doi.org/10.1186/s13045-022-01375-4
|
[4]
|
Meng, M., Zhong, K., Jiang, T., Liu, Z., Kwan, H.Y. and Su, T. (2021) The Current Understanding on the Impact of KRAS on Colorectal Cancer. Biomedicine & Pharmacotherapy, 140, Article ID: 111717. https://doi.org/10.1016/j.biopha.2021.111717
|
[5]
|
Luo, J. (2021) KRAS Mutation in Pancreatic Cancer. Seminars in Oncology, 48, 10-18. https://doi.org/10.1053/j.seminoncol.2021.02.003
|
[6]
|
Huang, L., Guo, Z., Wang, F. and Fu, L. (2021) KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 386. https://doi.org/10.1038/s41392-021-00780-4
|
[7]
|
Stephen, A.G., Esposito, D., Bagni, R.K. and McCormick, F. (2014) Dragging Ras Back in the Ring. Cancer Cell, 25, 272-281. https://doi.org/10.1016/j.ccr.2014.02.017
|
[8]
|
Pantsar, T. (2020) The Current Understanding of KRAS Protein Structure and Dynamics. Computational and Structural Biotechnology Journal, 18, 189-198. https://doi.org/10.1016/j.csbj.2019.12.004
|
[9]
|
Hall, B.E., Bar-Sagi, D. and Nassar, N. (2002) The Structural Basis for the Transition from Ras-GTP to Ras-GDP. Proceedings of the National Academy of Sciences, 99, 12138-12142. https://doi.org/10.1073/pnas.192453199
|
[10]
|
Iversen, L., Tu, H., Lin, W., Christensen, S.M., Abel, S.M., Iwig, J., et al. (2014) Ras Activation by SOS: Allosteric Regulation by Altered Fluctuation Dynamics. Science, 345, 50-54. https://doi.org/10.1126/science.1250373
|
[11]
|
Bos, J.L., Rehmann, H. and Wittinghofer, A. (2007) GEFs and GAPs: Critical Elements in the Control of Small G Proteins. Cell, 129, 865-877. https://doi.org/10.1016/j.cell.2007.05.018
|
[12]
|
Moore, A.R., Rosenberg, S.C., McCormick, F. and Malek, S. (2020) RAS-Targeted Therapies: Is the Undruggable Drugged? Nature Reviews Drug Discovery, 19, 533-552. https://doi.org/10.1038/s41573-020-0068-6
|
[13]
|
Indini, A., Rijavec, E., Ghidini, M., Cortellini, A. and Grossi, F. (2021) Targeting KRAS in Solid Tumors: Current Challenges and Future Opportunities of Novel KRAS Inhibitors. Pharmaceutics, 13, Article 653. https://doi.org/10.3390/pharmaceutics13050653
|
[14]
|
Judd, J., Abdel Karim, N., Khan, H., Naqash, A.R., Baca, Y., Xiu, J., et al. (2021) Characterization of KRAS Mutation Subtypes in Non-Small Cell Lung Cancer. Molecular Cancer Therapeutics, 20, 2577-2584. https://doi.org/10.1158/1535-7163.mct-21-0201
|
[15]
|
Waters, A.M. and Der, C.J. (2018) KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harbor Perspectives in Medicine, 8, a031435. https://doi.org/10.1101/cshperspect.a031435
|
[16]
|
Simanshu, D.K., Nissley, D.V. and McCormick, F. (2017) RAS Proteins and Their Regulators in Human Disease. Cell, 170, 17-33. https://doi.org/10.1016/j.cell.2017.06.009
|
[17]
|
Sebastian, M., Eberhardt, W.E.E., Hoffknecht, P., Metzenmacher, M., Wehler, T., Kokowski, K., et al. (2021) KRAS G12C-Mutated Advanced Non-Small Cell Lung Cancer: A Real-World Cohort from the German Prospective, Observational, Nation-Wide CRISP Registry (AIO-TRK-0315). Lung Cancer, 154, 51-61. https://doi.org/10.1016/j.lungcan.2021.02.005
|
[18]
|
Gao, G., Liao, W., Ma, Q., Zhang, B., Chen, Y. and Wang, Y. (2020) KRAS G12D Mutation Predicts Lower TMB and Drives Immune Suppression in Lung Adenocarcinoma. Lung Cancer, 149, 41-45. https://doi.org/10.1016/j.lungcan.2020.09.004
|
[19]
|
Zdanov, S., Mandapathil, M., Abu Eid, R., Adamson-Fadeyi, S., Wilson, W., Qian, J., et al. (2016) Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells. Cancer Immunology Research, 4, 354-365. https://doi.org/10.1158/2326-6066.cir-15-0241
|
[20]
|
Adachi, Y., Ito, K., Hayashi, Y., Kimura, R., Tan, T.Z., Yamaguchi, R., et al. (2020) Epithelial-to-Mesenchymal Transition Is a Cause of Both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 5962-5973. https://doi.org/10.1158/1078-0432.ccr-20-2077
|
[21]
|
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. https://doi.org/10.1038/s41586-019-1694-1
|
[22]
|
Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras (G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature, 503, 548-551. https://doi.org/10.1038/nature12796
|
[23]
|
Blair, H.A. (2021) Sotorasib: First Approval. Drugs, 81, 1573-1579. https://doi.org/10.1007/s40265-021-01574-2
|
[24]
|
Fell, J.B., Fischer, J.P., Baer, B.R., Blake, J.F., Bouhana, K., Briere, D.M., et al. (2020) Identification of the Clinical Development Candidate MRTX849, a Covalent KRASG12C Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 63, 6679-6693. https://doi.org/10.1021/acs.jmedchem.9b02052
|
[25]
|
Dhillon, S. (2023) Adagrasib: First Approval. Drugs, 83, 275-285. https://doi.org/10.1007/s40265-023-01839-y
|
[26]
|
Yaeger, R., Uboha, N.V., Pelster, M.S., Bekaii-Saab, T.S., Barve, M., Saltzman, J., et al. (2024) Efficacy and Safety of Adagrasib Plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discovery, 14, 982-993. https://doi.org/10.1158/2159-8290.cd-24-0217
|
[27]
|
Briere, D.M., Li, S., Calinisan, A., Sudhakar, N., Aranda, R., Hargis, L., et al. (2021) The KRASG12C Inhibitor MRTX849 Reconditions the Tumor Immune Microenvironment and Sensitizes Tumors to Checkpoint Inhibitor Therapy. Molecular Cancer Therapeutics, 20, 975-985. https://doi.org/10.1158/1535-7163.mct-20-0462
|
[28]
|
Jänne, P.A., Smit, E.F., de Marinis, F., Laskin, J., Gomez, M.D., Gadgeel, S., et al. (2022) LBA4 Preliminary Safety and Efficacy of Adagrasib with Pembrolizumab in Treatment-Naïve Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) Harboring a KRASG12C Mutation. Immuno-Oncology and Technology, 16, Article ID: 100360. https://doi.org/10.1016/j.iotech.2022.100360
|
[29]
|
Mok, T.S.K., Lawler, W.E., Shum, M.K., Dakhil, S.R., Spira, A.I., Barlesi, F., et al. (2021) KRYSTAL-12: A Randomized Phase 3 Study of Adagrasib (MRTX849) versus Docetaxel in Patients (pts) with Previously Treated Non-Small-Cell Lung Cancer (NSCLC) with KRASG12C Mutation. Journal of Clinical Oncology, 39, TPS9129-TPS9129. https://doi.org/10.1200/jco.2021.39.15_suppl.tps9129
|
[30]
|
Zhou, Q., Meng, X., Sun, L., Huang, D., Yang, N., Yu, Y., et al. (2024) Efficacy and Safety of KRAS G12C Inhibitor IBI351 Monotherapy in Patients with Advanced NSCLC: Results from a Phase 2 Pivotal Study. Journal of Thoracic Oncology, 19, 1630-1639. https://doi.org/10.1016/j.jtho.2024.08.005
|
[31]
|
Shi, Z., Weng, J., Niu, H., Yang, H., Liu, R., Weng, Y., et al. (2023) D‐1553: A Novel KRASG12C Inhibitor with Potent and Selective Cellular and in Vivo Antitumor Activity. Cancer Science, 114, 2951-2960. https://doi.org/10.1111/cas.15829
|
[32]
|
Li, Z., Dang, X., Huang, D., Jin, S., Li, W., Shi, J., et al. (2024) Garsorasib in Patients with KRASG12C-Mutated Non-Small-Cell Lung Cancer in China: An Open-Label, Multicentre, Single-Arm, Phase 2 Trial. The Lancet Respiratory Medicine, 12, 589-598. https://doi.org/10.1016/s2213-2600(24)00110-3
|
[33]
|
Cassier, P.A., Dooms, C.A., Gazzah, A., Felip, E., Steeghs, N., Rohrberg, K.S., et al. (2023) KontRASt-01 Update: Safety and Efficacy of JDQ443 in KRAS G12C-Mutated Solid Tumors Including Non-Small Cell Lung Cancer (NSCLC). Journal of Clinical Oncology, 41, 9007-9007. https://doi.org/10.1200/jco.2023.41.16_suppl.9007
|
[34]
|
Shi, Y., Fang, J., Xing, L., Yao, Y., Zhang, J., Liu, L., et al. (2025) Glecirasib in KRASG12C-Mutated Nonsmall-Cell Lung Cancer: A Phase 2b Trial. Nature Medicine, 31, 894-900. https://doi.org/10.1038/s41591-024-03401-z
|
[35]
|
Purkey, H. (2022) Abstract ND11: Discovery of GDC-6036, a Clinical Stage Treatment for KRAS G12C-Positive Cancers. Cancer Research, 82, ND11. https://doi.org/10.1158/1538-7445.am2022-nd11
|
[36]
|
Peng, S., Si, C., Zhang, Y., Van Horn, R.D., Lin, X., Gong, X., et al. (2021) Abstract 1259: Preclinical Characterization of LY3537982, a Novel, Highly Selective and Potent KRAS-G12C Inhibitor. Cancer Research, 81, Article 1259. https://doi.org/10.1158/1538-7445.am2021-1259
|
[37]
|
Murciano-Goroff, Y.R., Heist, R.S., Kuboki, Y., Koyama, T., Ammakkanavar, N.R., Hollebecque, A., et al. (2023) Abstract CT028: A First-in-Human Phase 1 Study of LY3537982, a Highly Selective and Potent KRAS G12C Inhibitor in Patients with KRAS G12C-Mutant Advanced Solid Tumors. Cancer Research, 83, CT028. https://doi.org/10.1158/1538-7445.am2023-ct028
|
[38]
|
Yu, Z., He, X., Wang, R., Xu, X., Zhang, Z., Ding, K., et al. (2023) Simultaneous Covalent Modification of K-Ras(G12D) and K-Ras(G12C) with Tunable Oxirane Electrophiles. Journal of the American Chemical Society, 145, 20403-20411. https://doi.org/10.1021/jacs.3c05899
|
[39]
|
Wang, X., Allen, S., Blake, J.F., Bowcut, V., Briere, D.M., Calinisan, A., et al. (2021) Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASG12D Inhibitor. Journal of Medicinal Chemistry, 65, 3123-3133.
|
[40]
|
Wei, D., Wang, L., Zuo, X., Maitra, A. and Bresalier, R.S. (2024) A Small Molecule with Big Impact: MRTX1133 Targets the KRASG12D Mutation in Pancreatic Cancer. Clinical Cancer Research, 30, 655-662. https://doi.org/10.1158/1078-0432.ccr-23-2098
|
[41]
|
Titze-de-Almeida, R., David, C. and Titze-de-Almeida, S.S. (2017) The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharmaceutical Research, 34, 1339-1363. https://doi.org/10.1007/s11095-017-2134-2
|
[42]
|
Zorde Khvalevsky, E., Gabai, R., Rachmut, I.H., Horwitz, E., Brunschwig, Z., Orbach, A., et al. (2013) Mutant KRAS Is a Druggable Target for Pancreatic Cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20723-20728. https://doi.org/10.1073/pnas.1314307110
|
[43]
|
Zhou, C., Li, C., Luo, L., Li, X., Jia, K., He, N., et al. (2024) Anti-Tumor Efficacy of HRS-4642 and Its Potential Combination with Proteasome Inhibition in KRAS G12D-Mutant Cancer. Cancer Cell, 42, 1286-1300.e8. https://doi.org/10.1016/j.ccell.2024.06.001
|
[44]
|
Zhou, C., Li, W., Song, Z., Zhang, Y., Zhang, Y., Huang, D., et al. (2023) LBA33 a First-in-Human Phase I Study of a Novel KRAS G12D Inhibitor HRS-4642 in Patients with Advanced Solid Tumors Harboring KRAS G12D Mutation. Annals of Oncology, 34, S1273. https://doi.org/10.1016/j.annonc.2023.10.025
|
[45]
|
Jiang, L., Menard, M., Weller, C., Wang, Z., Burnett, L., Aronchik, I., et al. (2023) Abstract 526: RMC-9805, a First-in-Class, Mutant-Selective, Covalent and Oral KRASG12D(ON) Inhibitor That Induces Apoptosis and Drives Tumor Regression in Preclinical Models of KRASG12D Cancers. Cancer Research, 83, 526-526. https://doi.org/10.1158/1538-7445.am2023-526
|
[46]
|
Ai, Q., Li, F., Zou, S., Zhang, Z., Jin, Y., Jiang, L., et al. (2023) Targeting KRASG12V Mutations with HLA Class II-Restricted TCR for the Immunotherapy in Solid Tumors. Frontiers in Immunology, 14, Article 1161538. https://doi.org/10.3389/fimmu.2023.1161538
|
[47]
|
Koltun, E.S., Rice, M.A., Gustafson, W.C., Wilds, D., Jiang, J., Lee, B.J., et al. (2022) Abstract 3597: Direct Targeting of KRASG12X Mutant Cancers with RMC-6236, a First-in-Class, RAS-Selective, Orally Bioavailable, Tri-Complex RASMULTI(ON) Inhibitor. Cancer Research, 82, 3597-3597. https://doi.org/10.1158/1538-7445.am2022-3597
|
[48]
|
Filis, P., Salgkamis, D., Matikas, A. and Zerdes, I. (2025) Breakthrough in RAS Targeting with Pan-RAS(ON) Inhibitors RMC-7977 and RMC-6236. Drug Discovery Today, 30, Article ID: 104250. https://doi.org/10.1016/j.drudis.2024.104250
|
[49]
|
Kessler, D., Gerlach, D., Kraut, N. and McConnell, D.B. (2021) Targeting Son of Sevenless 1: The Pacemaker of KRAS. Current Opinion in Chemical Biology, 62, 109-118. https://doi.org/10.1016/j.cbpa.2021.02.014
|
[50]
|
Winter, J.J.G., Anderson, M., Blades, K., Brassington, C., Breeze, A.L., Chresta, C., et al. (2015) Small Molecule Binding Sites on the Ras: SOS Complex Can Be Exploited for Inhibition of Ras Activation. Journal of Medicinal Chemistry, 58, 2265-2274. https://doi.org/10.1021/jm501660t
|
[51]
|
Sudhakar, N., Yan, L., Qiryaqos, F., Engstrom, L.D., Laguer, J., Calinisan, A., et al. (2024) The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Molecular Cancer Therapeutics, 23, 1418-1430. https://doi.org/10.1158/1535-7163.mct-23-0870
|
[52]
|
Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., et al. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157. https://doi.org/10.1158/2159-8290.cd-20-0142
|
[53]
|
Daley, B.R., Sealover, N.E., Finniff, B.A., Hughes, J.M., Sheffels, E., Gerlach, D., et al. (2025) SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma. Cancer Research, 85, 118-133. https://doi.org/10.1158/0008-5472.can-23-3256
|
[54]
|
Thatikonda, V., Lyu, H., Jurado, S., Kostyrko, K., Bristow, C.A., Albrecht, C., et al. (2024) Co-Targeting SOS1 Enhances the Antitumor Effects of KRASG12C Inhibitors by Addressing Intrinsic and Acquired Resistance. Nature Cancer, 5, 1352-1370. https://doi.org/10.1038/s43018-024-00800-6
|
[55]
|
Lu, X., Yu, R., Li, Z., Yang, M., Dai, J. and Liu, M. (2024) JC-010a, a Novel Selective SHP2 Allosteric Inhibitor, Overcomes RTK/Non-RTK-Mediated Drug Resistance in Multiple Oncogene-Addicted Cancers. Cancer Letters, 582, Article ID: 216517. https://doi.org/10.1016/j.canlet.2023.216517
|
[56]
|
Fedele, C., Li, S., Teng, K.W., Foster, C.J.R., Peng, D., Ran, H., et al. (2021) SHP2 Inhibition Diminishes KRASG12C Cycling and Promotes Tumor Microenvironment Remodeling. Journal of Experimental Medicine, 218, e20201414. https://doi.org/10.1084/jem.20201414
|
[57]
|
Nichols, R.J., Haderk, F., Stahlhut, C., Schulze, C.J., Hemmati, G., Wildes, D., et al. (2018) RAS Nucleotide Cycling Underlies the SHP2 Phosphatase Dependence of Mutant BRAF-, NF1-and RAS-Driven Cancers. Nature Cell Biology, 20, 1064-1073. https://doi.org/10.1038/s41556-018-0169-1
|
[58]
|
Tanaka, N., Lin, J.J., Li, C., Ryan, M.B., Zhang, J., Kiedrowski, L.A., et al. (2021) Clinical Acquired Resistance to KRASG12C Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer Discovery, 11, 1913-1922. https://doi.org/10.1158/2159-8290.cd-21-0365
|
[59]
|
Miyashita, H., Kato, S. and Hong, D.S. (2024) KRAS G12C Inhibitor Combination Therapies: Current Evidence and Challenge. Frontiers in Oncology, 14, Article 1380584. https://doi.org/10.3389/fonc.2024.1380584
|