1型神经纤维瘤病合并脊柱畸形的诊疗及研究进展
Diagnosis, Treatment, and Research Advances in Neurofibromatosis Type 1 Associated with Spinal Deformities
DOI: 10.12677/acm.2025.1541225, PDF, HTML, XML,   
作者: 马志云, 王迎松*:昆明医科大学第二附属医院骨科,云南 昆明
关键词: 1型神经纤维瘤病脊柱畸形发病机制诊断治疗Neurofibromatosis Type 1 Spinal Deformity Pathogenesis Diagnosis Treatment
摘要: 神经纤维瘤病是一种以神经系统肿瘤发展为特征的神经皮肤综合征,主要分为两个临床亚型:1型神经纤维瘤病和2型神经纤维瘤病。其中,NF-1是最常见的类型,病理特征主要表现为神经嵴来源细胞的异常增殖与分化障碍。脊柱畸形是其最常见的骨骼系统表现。在本研究中,针对NF-1相关脊柱畸形的诊治情况及研究动态,从发病机理、影像学表现以及治疗手段等层面进行综合阐述与探讨。
Abstract: Neurofibromatosis is a neurocutaneous syndrome characterized by the development of nervous system tumors, mainly divided into two clinical subtypes: Neurofibromatosis type 1 and Neurofibromatosis type 2. NF1, the more prevalent subtype, is pathologically characterized by aberrant proliferation and differentiation of neural crest-derived cells. Spinal deformities constitute the most frequent skeletal manifestation in this condition. This study provides a comprehensive review of the current diagnostic and therapeutic landscape of NF1-associated spinal deformities, with a focus on elucidating the underlying pathogenic mechanisms, imaging characteristics, and evolving treatment modalities.
文章引用:马志云, 王迎松. 1型神经纤维瘤病合并脊柱畸形的诊疗及研究进展[J]. 临床医学进展, 2025, 15(4): 2658-2668. https://doi.org/10.12677/acm.2025.1541225

1. 引言

神经纤维瘤病(Neurofibromatosis, NF)是一种以中枢神经系统或周围神经系统(包括脑、脊髓、器官、皮肤和骨骼)肿瘤发展为特征的神经皮肤综合征[1]。根据美国国立卫生研究院(NIH)分类标准,NF主要分为两个临床亚型[1]:1型(Neurofibromatosis type 1,NF-1,即Von Recklinghausen病;特征性表现为周围神经鞘瘤及咖啡牛奶斑)和2型(Neurofibromatosis type 2,NF-2,又称双侧听神经瘤病;典型征象为前庭神经鞘瘤和脑膜瘤)。其中,NF-1是一种以神经嵴细胞增殖为特点的常染色体显性遗传病,其发病机制与位于17号染色体上的神经纤维瘤蛋白基因突变密切相关[2] [3]。NF-1是最常见的类型,全球平均患病率约为1/3000 [4] [5]。脊柱侧凸是NF-1最常见的骨骼表现,平均患病率在9.8%~46.9%之间[5]。然而,NF-1仅占所有脊柱侧凸病例的3%左右[6]。临床上根据自然发展史及有无骨性结构异常改变将NF-1相关性脊柱畸形分为两种基本类型:非营养不良型脊柱侧凸(Nondystrophic Scoliosis Secondary to Neurofibromatosis Type 1, NDS-NF1)和营养不良型脊柱侧凸(Dystrophic Scoliosis in Neurofibromatosis Type 1, DS-NF1) [7] [8]。目前关于NF-1继发脊柱侧凸的发病机制尚不明确,可能与椎管内硬脊膜扩张[9]、神经纤维瘤的直接侵蚀与压迫[10] [11]和骨量减少及骨质疏松[12]-[14]等有关。NF-1继发脊柱侧凸因其复杂的病理机制和诊疗难度,成为临床骨科实践的重要挑战。本研究基于循证医学证据,系统阐述其病理分型、影像学特征与手术适应证,旨在建立规范诊疗路径,为改善患者预后提供科学依据。

2. 发病机制

NF-1是一种由位于17号染色体上的神经纤维瘤蛋白基因突变而引起的常染色体显性遗传病[2] [3],具有较高的外显率,约50%为新生突变,余50%为家族遗传性[15] [16]。自1987年NF-1基因被定位于染色体17q11.2 [17] [18],并于1990年被成功克隆以来[19],其分子机制逐渐被揭示。NF-1基因[2] [3] [18]全长370 kb,含60个外显子(其中55个组成型外显子以及5个选择性剪接的外显子),其cDNA长12.4 kb。该基因编码的神经纤维瘤蛋白是一种分子量为220 kDa、由2818个氨基酸组成的胞浆蛋白[3] [9] [20],作为一种多功能蛋白,神经纤维瘤蛋白至少包含6个功能域,广泛分布于神经元、神经胶质细胞、免疫细胞、内皮细胞和肾上腺髓质细胞,并在不同的细胞类型中发挥多种功能。神经纤维瘤蛋白的一个重要功能域是由第21~27a外显子编码的GRD (GTP酶激活蛋白相关区域),其结构与GTP酶激活蛋白家族(GTPase-activting proteins, GAPs)具有同源性,该结构域通过加速Ras-GTP向Ras-GDP的转化,抑制Ras及其下游信号通路的激活,从而对Ras信号转导起负调控作用[3] [21]。Ras信号通路的激活可启动多种下游信号传导途径,如磷脂酰肌醇-3-激酶(PI3K)和丝裂素活化蛋白酶(MAPK),进而影响细胞增殖和分化[12]。因此,NF-1的发病机制主要源于基因突变引起的神经纤维瘤蛋白功能缺陷,这种缺陷通过激活RAS/MAPK和PI3K/AKT两条关键信号通路,导致细胞增殖与分化调控失常,从而诱发肿瘤形成。

此外,神经纤维瘤蛋白还参与调节腺苷酸环化酶(AC)活性,可能通过干扰环磷酸腺苷(cAMP)/蛋白激酶A信号通路影响细胞周期进程、学习与记忆功能,并调控脑细胞的生长和分化[22]。同时,神经纤维瘤蛋白可与多种其他蛋白相互作用,如微管蛋白、驱动蛋白(参与细胞内运输)、LIMK2、Rho和Rac (参与肌动蛋白细胞骨架重排)以及多配体蛋白聚糖和CRMP蛋白(参与神经细胞形态发生),从而影响细胞的正常功能,导致机体发育紊乱,引发NF-1的特异性临床症状[21] [23]

关于NF-1伴脊柱侧凸的具体机制,目前尚未完全阐明,但最近研究表明可能涉及以下方面:(1) 神经纤维瘤直接侵蚀,椎旁或椎体内病灶组织的侵袭性生长可引发骨质破坏,通过机械压迫及局部微环境改变导致椎体结构失稳,进而形成脊柱畸形[10]。(2) 骨量减少和骨质疏松,可能与成骨细胞减少,破骨细胞功能和数量增加有关[12]-[14]。(3) 内分泌的异常,有研究发现褪黑素的缺乏与NF-1患者脊柱畸形的进展有关,但具体机制尚需进一步探索[24]。(4) 椎管内硬脊膜扩张通过持续应力作用于椎管壁,引发椎弓根侵蚀及椎体形态改变,进而形成渐进性脊柱序列异常,最终导致脊柱失稳和严重的脊柱畸形[25] [26]。(5) 青少年性早熟和中胚层发育不良[27],中胚层发育不良可能导致硬脊膜和骨发育不良,造成硬脊膜扩张和椎体扇形变,最终导致脊柱畸形[28]

3. 临床表现

3.1. 皮肤改变

色素沉着是大多数NF-1患者的首发临床表现,具有年龄依赖性[29]。其中,牛奶咖啡斑(Café-au-lait macules, CALMs)是NF-1患者典型的皮肤表现,DeBella等[30]发现99%的患者在1岁时有6个或更多直径大于5毫米的斑点。腋窝或腹股沟部雀斑是第二个皮肤病学特征,约90%的患者在7岁左右出现此表现[30]

3.2. 骨骼异常

NF-1的骨骼系统表现多样,除诊断标准外,还包括脊柱侧凸[7] [8]、颈椎畸形[31]、骨量减少和骨质疏松[13] [14]及肢体过度生长[32]等。其中脊柱侧凸是最常见的骨骼异常表现,常分为NDS-NF1和DS-NF1,前者影像学特征与青少年特发性脊柱侧凸(Adolescent idiopathic scoliosis, AIS)相似;后者则以短锐曲线、僵硬侧弯及肋骨铅笔征为特征,且进展迅速、预后较差。

3.3. 血管表现

NF-1患者易发生多系统血管病变,包括肾动脉狭窄继发高血压、动脉瘤、血管狭窄/闭塞、心肌梗死及脑/内脏梗死等[33]。研究表明,NF-1患者卒中风险显著高于普通人群,以出血性卒中尤为突出[34]。即使无传统心血管危险因素,患者仍普遍存在外周血管功能/结构异常及心脏收缩功能障碍[35]

3.4. 神经系统表现

包括外周神经鞘膜瘤(如皮肤/脊神经根/丛状神经纤维瘤)及中枢神经系统肿瘤(视神经胶质瘤、脑干胶质瘤等) [3]。神经纤维瘤临床分型包括:① 皮内型;② 皮下结节型;③ 弥漫性丛状型,常伴瘙痒、触痛等局部症状及神经功能损害[36]。中枢肿瘤多发生于视路(15%~20%患儿受累[37]),典型表现为急性视力减退伴突眼、视神经萎缩或无症状性眼科异常,部分伴性早熟[38]

3.5. 精神异常及认知障碍等

NF-1患儿多伴认知功能障碍,表现为学习障碍及注意力缺陷等核心特征[39]。其认知损害谱系包括:执行功能受损(工作记忆减退、视觉空间障碍);持续性/分散性注意力下降伴反应抑制缺陷[40]。早期识别认知行为异常对制定干预策略具有临床价值。

3.6. 其它表现

NF-1患儿常伴发幼年黄色肉芽肿(特征性表现为头颈部直径 < 1 cm的黄色丘疹) [41],且具有较高的慢性髓性白血病及骨髓单核细胞白血病发病风险[42]。此外,NF-1患者常伴口腔面部神经纤维瘤及腹部肿瘤。

4. 诊断

NF-1的诊断体系已从传统的临床评估(家族史、体征及影像学)拓展至分子诊断层面。鉴于其多系统受累特征(骨骼、皮肤、血管、眼及神经系统等),系统全面的体格检查对确诊具有重要价值。

4.1. NF-1的诊断标准

根据2021年国际神经纤维瘤病诊断标准共识组(I-NF-DC)的最新修订版,NF-1诊断标准如下[43]:A:在没有父母诊断为NF-1的个体中,如果存在以下两种或两种以上的情况,则符合NF-1的诊断标准;① 皮肤存在6个或6个以上牛奶咖啡斑,在青春期前直径不小于5毫米,在青春期后直径不小于15毫米;② 2个或以上任何类型的神经纤维瘤,或至少存在1个丛状神经纤维瘤;③ 腋窝或腹股沟部雀斑;④ 视神经胶质瘤;⑤ 裂隙灯检查发现2个或2个以上Lisch结节(虹膜错构瘤),或光学相干层分析(OCT)/近红外(NIR)影像检查到2个或以上的脉络膜异常;⑥ 特征性骨病变:如蝶骨发育不良、胫骨前外侧弯曲,或长骨假关节形成;⑦ 在正常组织(如白细胞)中具有等位基因变体分数达50%的致病杂合子NFI变异体;B:符合A中规定的诊断标准的父母的子女,如果存在A中规定的一个或多个标准,则应诊断为NF-1。

4.2. 基因诊断

NF-1的诊断标准存在年龄特异性差异:NIH共识标准在成人中诊断效能显著(较高敏感度和特异度),但1岁内无家族史患儿仅半数达标。基于此,美国儿科学会(AAP)提出儿童基因检测三大核心指征:(1) 辅助早期诊断(首个临床特征出现即可检测);(2) 鉴别Legius综合征(SPRED1基因相关疾病);(3) 筛查非典型表型(孤立性周围神经瘤/视神经胶质瘤/胫骨发育不良)。针对≥6处CALMs且无家族史患儿,Evans等[44]队列研究(n = 71)显示66.2%检出NF-1基因变异,提示该群体致病概率达62%~66%,凸显基因检测对此类患儿的诊断必要性。

4.3. 嵌合型NF-1诊断标准

I-NF-DC专家们也对嵌合型NF-1提出了独立的诊断标准,满足下面任何1条可诊断为嵌合型NF-1 [43]:(1) 在正常组织如白细胞中具有等位基因变体分数<50%的致病杂合子NF1变异体,及1个NF-1诊断标准(父母患病史除外);(2) 在2个解剖学上独立的受影响组织中具有相同致病杂合子NF-1变异体(非受影响组织中不具有致病NF-1变异体);(3) 边界清晰和阶段性分布的CALMs或皮肤型神经纤维瘤,及符合其他任意1条NF-1诊断标准(父母患病史除外)或患病女儿符合NF-1诊断标准;(4) 只有以下1个NF-1诊断标准:腋窝或腹股沟雀斑、视神经胶质瘤、2个或以上Lisch结节或脉络膜异常、NF-1特征性骨病变、2个或以上任何类型的神经纤维瘤或1个丛状神经纤维瘤、及患者女儿符合NF-1诊断标准。

5. 影像学特征

NF-1的骨骼系统表现多样,包括脊柱侧凸[7] [8]、颈椎畸形[31]、骨量减少和骨质疏松[13] [14]及肢体过度生长[32]等。其中脊柱侧凸是最常见的骨骼异常表现,常分为NDS-NF1和DS-NF1,由于这两种类型在病理机制、自然病程、治疗方案及预后方面存在显著差异,因此对其进行准确区分具有重要意义[5] [8]

在X线和/或MRI影像中必须至少发现2个或以上营养不良性改变才能定义DS-NF1 [5] [45] [46] [48]:(1) 椎体扇贝样改变(当扇贝化深度在胸椎 > 3 mm或腰椎 > 4 mm时出现);(2) 肋骨铅笔征(肋骨宽度小于第二肋骨最窄部分);(3) 横突的纺锤形(在椎体侧缘与横突尖之间的中点测量横突高度的丢失50%,并与对侧正常侧或未受累椎体的上方或下方进行比较);(4) 局灶性、短节段曲线(累及6个或6个以下椎体);(5) 硬脊膜扩张;(6) 靠近脊柱侧弯的椎旁肿瘤或丛状神经纤维瘤;(7) 椎体楔形变;(8) 椎间孔扩大;(9) 椎弓根间距增宽;(10) 椎弓根发育不良。DS-NF1影像学特征主要包括以下5个方面[7] [47]:(1) 脊柱侧凸最常见于胸椎,其次为胸腰段和颈椎,腰椎侧凸少见;典型的脊柱侧凸为胸椎中涉及4到6个椎体的短而急剧弯曲的曲线,且曲线侧凸方向无显著差异[16] [48];(2) 营养不良性曲线是僵硬的,Bending位影像学检查显示矫正率通常小于30% [48];(3) 营养不良性改变[7] [46],包括椎体扇贝样改变、椎体楔形变、椎弓根发育不良等;(4) 脊柱旁肿瘤的存在[10];(5) 硬脊膜扩张[25] [26]。Shahcheraghi等[49]和Wang等[7]对DS-NF1的影像学特征进行分析,发现椎体扇贝样改变、肋骨铅笔征及椎体旋转特征是最常见的影像学特征。研究发现[50],≥3个营养不良性特征的患者脊柱侧凸进展风险显著升高(85%),其中肋骨铅笔征为独立预测因子。在Larson等[51]的研究中,对营养不良性改变的特征与临床诊断的敏感性和特异性之间的关系进行分析,发现椎体旋转、椎体楔形变和短而尖锐的角度曲线这三个X线表现对诊断DS-NF1具有较高的敏感性和特异性;此外,肋骨铅笔征、椎体旋转、椎体楔形变和侧弯位于非典型位置与诊断准确性呈正相关,具体而言:1个特征时诊断准确率为52%~58%,2个特征时为72%~80%,3个特征时达88%~91%,4个特征时可达96%。

NDS-NF1在X线影像学上呈现与AIS相似的长圆滑弧度[7] [8] [52]。然而,NDS-NF1具有发病早、预后差的特点。Yang等[53]通过CT定量分析(n =9 5,3230个椎弓根)首次揭示NDS-NF1患者椎弓根形态异常率显著高于AIS,这为解释其椎弓根螺钉误置率升高提供了影像学证据。

6. 治疗

尽管NF-1研究已深入分子机制层面,但基因治疗的临床应用仍存在重大技术壁垒。目前,1型神经纤维瘤病相关脊柱侧凸的诊疗策略仍以早期识别和干预为核心。值得注意的是,DS-NF1与NDS-NF1的准确分型直接影响治疗方案选择及预后评估,是临床决策的关键环节[5] [8]

6.1. NDS-NF1的治疗

研究表明[7] [8] [45] [47] [52] [54],NDS-NF1的治疗策略和矫形效果与AIS类似:(1) Cobb角 < 25˚者建议每6个月随访观察,进展期采用支具治疗;(2) 25˚~40˚侧弯伴生长潜力者推荐支具治疗,但需评估NF-1患者认知功能障碍及心理问题对依从性的影响[39] [40] [55] [56];(3) >40˚侧弯建议行后路脊柱融合术。既往研究认为[45] [57] [58],55˚~60˚侧弯患者需前后路联合手术以重建脊柱平衡及达到融合稳定。近年来,随着第三代椎弓根螺钉矫形系统以及截骨矫形技术的发展,单纯后路固定融合术亦可对严重侧弯取得满意疗效,同时避免前后路联合手术带来的并发症和风险[54] [59]。Lyu等[54]的研究显示,NDS-NF1和AIS患者经一期后路椎弓根螺钉矫形固定融合手术,临床疗效无明显差异。

值得注意的是,NDS-NF1可能随生长发育转变为DS-NF1 [50]。因此,对NDS-NF1患者需进行密切的临床观察及随访。此外,由于此类患者术后假关节发生率较高且更容易进展,术后长期随访也至关重要[60]

6.2. DS-NF1的治疗

由于营养不良的椎体畸形、发育不良的椎弓根、骨质疏松和侧弯快速进展的特点,DS-NF1的治疗策略仍然存在争议和挑战[61]。临床实践和研究均证实,支具治疗对其无效,多主张早期手术干预[6] [62]-[64]。综合多篇文献分析,个体化治疗方案的设计应当基于多维度临床评估参数,包括患者的年龄特征、畸形分类及其严重程度、营养不良的具体表现类型、融合范围及植骨情况等因素进行制定。

年龄为治疗方式选择的关键参考因素。国际脊柱侧凸研究协会将10岁以下的脊柱侧凸界定为早发性脊柱侧凸(Early-onset scoliosis, EOS) [31]。据报道,NF-1患者中EOS的发生率为10%~60% [31] [65]。对于早发性DS-NF1患者,是否采用固定融合或生长棒技术(Growing Rods, GRs)仍存在争议。多项研究为早发性DS-NF1患者的手术决策提供了循证依据:Greggi团队[66] (n = 23,平均年龄9.1岁)证实后路/前后路固定融合术可有效控制快速进展型侧弯。Tauchi等[67] (n=11,平均年龄8.4岁)14年随访数据显示,尽管前后路联合手术可维持脊柱稳定性及肺功能,但患者最终身高较正常人群显著降低。在生长友好型技术时代,Tauchi后续研究[68] (n = 26)对比早期确定性融合(前后路/单纯后路)与生长棒技术,发现早期融合在NF-1合并营养不良性EOS中仍具临床应用价值。然而,Cai等[69]对10例接受单纯后路固定融合术的患者进行中长期随访发现,尽管病变节段较短,单纯后路融合手术对EOS的矫形效果维持不理想,并非良好选择。此外,过早实施脊柱固定融合术可能对患者生长发育产生多系统不良影响,主要表现为躯干及胸廓发育受限,继发肺发育障碍,最终导致肺功能损害及生活质量下降[69]。作为非融合技术,生长棒技术在维持躯干生长、促进胸廓发育及控制侧弯进展等方面表现优异,现已成为EOS标准治疗手段[70]。近年来,关于生长棒技术在EOS合并DS-NF1患者中的应用逐渐增多。Yao等[71]在2019年通过对比GRs (n = 27,5.8岁)与早期融合术(n = 32,10.4岁),证实GRs可维持脊柱生长速率但存在高并发症风险及矫正率劣势。Li等[72]在2022年进一步研究表明,GRs (n = 10,5.7岁)与后路融合术(n = 4,11.3岁)对脊柱畸形矫正和控制具有等效性。Gao等[73]在2023年的研究中证实,传统生长棒技术是治疗早发性DS-NF1伴椎管内肋骨头脱位的有效方法。综上,对于年龄 < 10岁且支具治疗无效的进展性畸形,推荐GRs作为首选方案;而对于>10岁的短节段锐角侧弯或长节段畸形,以及GRs术后内固定相关并发症频发者,脊柱固定融合术则作为终末治疗方案。

畸形的类型与严重程度是选择治疗方式的重要参考因素。对DS-NF1的分型及治疗尚未形成统一意见。Crawford等[62]建议对Cobb角 < 20˚的DS-NF1患者可以密切观察并每6个月定期随访;对Cobb角在20˚~40˚之间的患者,建议行单纯的后路固定融合手术。值得注意的是,DS-NF1患者常伴矢状面后凸畸形,侧弯进展风险高,手术治疗时应充分考虑此情况。Parisini等[74]依据冠状面与矢状面形态,将DS-NF1划分为两型:TypeⅠ为冠状面侧弯且矢状面后凸角度 < 50˚,此类患者可进行单纯后路固定融合手术;TypeⅡ为冠状面侧弯且矢状面后凸角度 > 50˚,该型患者建议采用前后路联合手术。前后路联合术式存在显著的临床局限性,包括手术创伤负荷大、围手术期失血风险高以及术后并发症谱系广泛等关键问题[7]。随着第三代椎弓根螺钉矫形系统、截骨矫形技术及生长棒技术的发展,以及术前牵引技术(如颅股骨牵引、Halo重力牵引)的应用,DS-NF1的治疗方式也在不断优化。Wang等[7]对16例平均Cobb角为83.2˚、后凸角为58.5˚的患者进行回顾性研究,认为一期后路椎弓根螺钉技术治疗DS-NF1有效,并建议融合节段超过上下端椎1~2个椎体;若脊柱柔韧性 < 35%,则推荐行后路全脊椎切除术(Posterior Vertebral Column Resection, PVCR)。Xu等[48]在2019年对11例Cobb角度 > 60˚且脊柱柔韧性 < 30%的患者进行研究,证实Halo重力牵引结合双生长棒技术安全有效。在2025年,Liang等[75]对15例平均Cobb角为99.10˚、后凸角为79.33˚且脊柱柔韧性 < 40%的患者进行研究,发现Halo重力牵引联合传统生长棒技术是治疗重度DS-NF1合并EOS的耐受性好、疗效显著的方法,可显著矫正Cobb角和后凸角,恢复躯干平衡,增加脊柱高度,且并发症较少。因此,对于重度僵硬性DS-NF1患者,推荐采用阶梯式术前牵引方案(如Halo重力牵引),其核心机制在于通过渐进性应力加载促进脊髓可塑性重塑,从而优化术中矫形安全边界,有效规避急性神经牵拉损伤。

营养不良性改变也是手术干预的重要考量因素之一。Lykissas等[46]探讨了NF-1患者中营养不良性特征与手术干预需求的关联,研究发现,具有3种及以上营养不良特征的NF-1患者,其手术需求几率是少于3种特征患者的14.34倍;在各项特征中,椎体扇形变是手术干预的关键预测因素,此类患者手术几率为无该特征者的13.19倍;其次为硬膜囊扩张,对应患者手术几率为无此症者的6.38倍;X线显示短而锐侧弯曲线的患者,手术几率是非此类曲线患者的6.29倍;伴有椎旁肿瘤的患者,手术几率是无椎旁神经纤维瘤患者的4.36倍。

在DS-NF1患者矫形术中,融合范围、植骨与种植体密度对脊柱稳定性意义重大。鉴于此类患者骨骼系统的异常,恰当选择融合节段极为关键,而相关研究很少。Wang等[7]对16例行一期后路椎弓根螺钉技术的此类患者研究中,认为远端融合节段应达到稳定椎(stable vertebrae, SV)而非端椎(end vertebra, EV);虽然椎弓根螺钉固定提供了最大的可控性、可靠性和刚性,但对于营养不良性脊柱侧凸患者需要考虑其他固定技术。此外,自体骨作为植骨的优选材料,在骨移植中具有重要地位;然而,该类患者多伴有骨质疏松和骨量减少,这使得自体骨的可获取量常常难以满足需求;在此情形下,异种骨或人工骨可作为适当的替代选择用于植骨。Li等[76]研究指出,对于DS-NF1患者,较高的植骨和种植体密度,不仅能提高冠状面矫正率,减少术后矫正角度的丢失,还能显著降低术后假关节的发生率。

综上所述,对于DS-NF1患者,个体化治疗方案需依据年龄特征、畸形分类及其严重程度、营养不良的具体表现类型等制定。

7. 并发症

Wang等[5]研究表明,NF-1合并侧弯术后报告的并发症发生率从0 [76]到75% [65]不等,总体发生率为32.7%;GRs的并发症发生率似乎高于脊柱融合术(分别为58.2%和23.3%);与植入物相关的并发症最为常见,如钩脱位、棒断裂、螺钉松动、螺钉位置不当和近端交界性后凸(Proximal junction kyphosis, PJK),其中大多数不需要额外干预或可通过有限的翻修手术妥善处理。曲轴现象(Crankshaft Phenomenon)是脊柱融合治疗的一个主要理论问题,在两个研究中报道了6例[65] [68]。而生长棒术后附加现象(Adding-on phenomenon)发生率较高[77]。严重的神经系统并发症鲜有报道。

NOTES

*通讯作者。

参考文献

[1] Blakeley, J.O. and Plotkin, S.R. (2016) Therapeutic Advances for the Tumors Associated with Neurofibromatosis Type 1, Type 2, and Schwannomatosis. Neuro-Oncology, 18, 624-638.
https://doi.org/10.1093/neuonc/nov200
[2] Farschtschi, S., Mautner, V., Lawson McLean, A.C., Schulz, A., Friedrich, R.E. and Rosahl, S.K. (2020) The Neurofibromatoses. Deutsches Ärzteblatt International, 117, 354-360.
https://doi.org/10.3238/arztebl.2020.0354
[3] Gutmann, D.H., Ferner, R.E., Listernick, R.H., Korf, B.R., Wolters, P.L. and Johnson, K.J. (2017) Neurofibromatosis Type 1. Nature Reviews Disease Primers, 3, Article 17004.
https://doi.org/10.1038/nrdp.2017.4
[4] Uusitalo, E., Leppävirta, J., Koffert, A., Suominen, S., Vahtera, J., Vahlberg, T., et al. (2015) Incidence and Mortality of Neurofibromatosis: A Total Population Study in Finland. Journal of Investigative Dermatology, 135, 904-906.
https://doi.org/10.1038/jid.2014.465
[5] Wang, D., Zhang, B., Wen, X., Chen, K., Xiao, H., Xu, X., et al. (2024) Clinical Features and Surgical Treatments of Scoliosis in Neurofibromatosis Type 1: A Systemic Review and Meta-Analysis. European Spine Journal, 33, 2646-2665.
https://doi.org/10.1007/s00586-024-08194-w
[6] Rezaian, S.M. (1976) The Incidence of Scoliosis Due to Neurofibromatosis. Acta Orthopaedica Scandinavica, 47, 534-539.
https://doi.org/10.3109/17453677608988733
[7] Wang, Z., Fu, C., Leng, J., Qu, Z., Xu, F. and Liu, Y. (2015) Treatment of Dystrophic Scoliosis in Neurofibromatosis Type 1 with One-Stage Posterior Pedicle Screw Technique. The Spine Journal, 15, 587-595.
https://doi.org/10.1016/j.spinee.2014.10.014
[8] Halmai, V., Domán, I., de Jonge, T. and Illés, T. (2002) Surgical Treatment of Spinal Deformities Associated with Neurofibromatosis Type 1. Journal of Neurosurgery: Spine, 97, 310-316.
https://doi.org/10.3171/spi.2002.97.3.0310
[9] Polster, S.P., Dougherty, M.C., Zeineddine, H.A., Lyne, S.B., Smith, H.L., MacKenzie, C., et al. (2019) Dural Ectasia in Neurofibromatosis 1: Case Series, Management, and Review. Neurosurgery, 86, 646-655.
https://doi.org/10.1093/neuros/nyz244
[10] Hu, Z., Liu, Z., Qiu, Y., Xu, L., Yan, H. and Zhu, Z. (2016) Morphological Differences in the Vertebrae of Scoliosis Secondary to Neurofibromatosis Type 1 with and without Paraspinal Neurofibromas. Spine, 41, 598-602.
https://doi.org/10.1097/brs.0000000000001455
[11] Fares, Y., Haddad, G.F., Khazim, R., Ghanem, I. and Hosseiny, M. (2007) Vertebral Scalloping in Neurofibromatosis-1. Neurosciences (Riyadh), 12, 155-157.
[12] Sullivan, K., El-Hoss, J., Little, D.G. and Schindeler, A. (2011) JNK Inhibitors Increase Osteogenesis in Nf1-Deficient Cells. Bone, 49, 1311-1316.
https://doi.org/10.1016/j.bone.2011.09.043
[13] Kaspiris, A., Vasiliadis, E., Iliopoulos, I.D., Panagopoulos, F., Melissaridou, D., Lianou, I., et al. (2024) Bone Mineral Density, Vitamin D and Osseous Metabolism Indices in Neurofibromatosis Type 1: A Systematic Review and Meta-Analysis. Bone, 180, Article 116992.
https://doi.org/10.1016/j.bone.2023.116992
[14] Heervä, E., Koffert, A., Jokinen, E., Kuorilehto, T., Peltonen, S., Aro, H.T., et al. (2012) A Controlled Register-Based Study of 460 Neurofibromatosis 1 Patients: Increased Fracture Risk in Children and Adults over 41 Years of Age. Journal of Bone and Mineral Research, 27, 2333-2337.
https://doi.org/10.1002/jbmr.1685
[15] McKeever, K., Shepherd, C.W., Crawford, H. and Morrison, P.J. (2008) An Epidemiological, Clinical and Genetic Survey of Neurofibromatosis Type 1 In Children under Sixteen Years of Age. Ulster Medical Journal, 77, 160-163.
[16] Vitale, M.G., Guha, A. and Skaggs, D.L. (2002) Orthopaedic Manifestations of Neurofibromatosis in Children: An Update. Clinical Orthopaedics and Related Research, 401, 107-118.
https://doi.org/10.1097/00003086-200208000-00013
[17] Seizinger, B.R., Rouleau, G.A., Ozelius, L.J., Lane, A.H., Faryniarz, A.G., Chao, M.V., et al. (1987) Genetic Linkage of Von Recklinghausen Neurofibromatosis to the Nerve Growth Factor Receptor Gene. Cell, 49, 589-594.
https://doi.org/10.1016/0092-8674(87)90534-4
[18] Barker, D., Wright, E., Nguyen, K., Cannon, L., Fain, P., Goldgar, D., et al. (1987) Gene for Von Recklinghausen Neurofibromatosis Is in the Pericentromeric Region of Chromosome 17. Science, 236, 1100-1102.
https://doi.org/10.1126/science.3107130
[19] Yagle, M.K., Parruti, G., Xu, W., Ponder, B.A. and Solomon, E. (1990) Genetic and Physical Map of the Von Recklinghausen Neurofibromatosis (NF1) Region on Chromosome 17. Proceedings of the National Academy of Sciences, 87, 7255-7259.
https://doi.org/10.1073/pnas.87.18.7255
[20] Bergoug, M., Doudeau, M., Godin, F., Mosrin, C., Vallée, B. and Bénédetti, H. (2020) Neurofibromin Structure, Functions and Regulation. Cells, 9, Article 2365.
https://doi.org/10.3390/cells9112365
[21] Mellert, K., Lechner, S., Lüdeke, M., Lamla, M., Möller, P., Kemkemer, R., et al. (2018) Restoring Functional Neurofibromin by Protein Transduction. Scientific Reports, 8, Article No. 6171.
https://doi.org/10.1038/s41598-018-24310-5
[22] Lee, M. and Stephenson, D.A. (2007) Recent Developments in Neurofibromatosis Type 1. Current Opinion in Neurology, 20, 135-141.
https://doi.org/10.1097/wco.0b013e3280895da8
[23] Abramowicz, A. and Gos, M. (2015) Neurofibromin—Protein Structure and Cellular Functions in the Context of Neurofibromatosis Type I Pathogenesis. Postępy Higieny i Medycyny Doświadczalnej, 69, 1331-1348.
https://doi.org/10.5604/17322693.1185213
[24] Abdel-Wanis, M.E. and Kawahara, N. (2001) Aetiology of Spinal Deformities in Neurofibromatosis 1: New Hypotheses. Medical Hypotheses, 56, 400-404.
https://doi.org/10.1054/mehy.2000.1232
[25] Derdabi, I., El Jouadi, H. and Edderai, M. (2018) Dural Ectasia: A Manifestation of Type 1 Neurofibromatosis. Pan African Medical Journal, 31, Article 226.
https://doi.org/10.11604/pamj.2018.31.226.9797
[26] Shah, S. and George, K.J. (2019) The Association of Spinal Deformity with Dural Ectasia in Neurofibromatosis Type 1. British Journal of Neurosurgery, 33, 620-623.
https://doi.org/10.1080/02688697.2019.1673313
[27] Bartolini, E., Stagi, S., Scalini, P., Bianchi, A., Ciccarone, A. and Mascalchi, M. (2016) Central Precocious Puberty Due to Hypothalamic Hamartoma in Neurofibromatosis Type 1. Hormones, 15, 144-146.
https://doi.org/10.1007/bf03401416
[28] Khoo Bao, J.N., Ogunwale, B., Huson, S.M., Ealing, J. and Whitehouse, R.W. (2013) Spinal Bone Defects in Neurofibromatosis Type I with Dural Ectasia: Stress Fractures or Dysplastic? A Case Series. European Radiology, 23, 3418-3421.
https://doi.org/10.1007/s00330-013-2941-8
[29] García-Martínez, F.J. and Hernández-Martín, A. (2023) Cronología del diagnóstico de la neurofibromatosis tipo 1 en la infancia. Actas Dermo-Sifiliográficas, 114, 187-193.
https://doi.org/10.1016/j.ad.2022.10.036
[30] DeBella, K., Szudek, J. and Friedman, J.M. (2000) Use of the National Institutes of Health Criteria for Diagnosis of Neurofibromatosis 1 in Children. Pediatrics, 105, 608-614.
https://doi.org/10.1542/peds.105.3.608
[31] Marrache, M., Suresh, K.V., Miller, D.J., Hwang, S., Schorry, E.K., Rios, J.J., et al. (2021) Early-Onset Spinal Deformity in Neurofibromatosis Type 1. JBJS Reviews, 9, e20.00285.
https://doi.org/10.2106/jbjs.rvw.20.00285
[32] Tripolszki, K., Farkas, K., Sulák, A., Szolnoky, G., Duga, B., Melegh, B., et al. (2017) Atypical Neurofibromatosis Type 1 with Unilateral Limb Hypertrophy Mimicking Overgrowth Syndrome. Clinical and Experimental Dermatology, 42, 763-766.
https://doi.org/10.1111/ced.13154
[33] Cairns, A.G. and North, K.N. (2008) Cerebrovascular Dysplasia in Neurofibromatosis Type 1. Journal of Neurology, Neurosurgery & Psychiatry, 79, 1165-1170.
https://doi.org/10.1136/jnnp.2007.136457
[34] Terry, A.R., Jordan, J.T., Schwamm, L. and Plotkin, S.R. (2016) Increased Risk of Cerebrovascular Disease among Patients with Neurofibromatosis Type 1. Stroke, 47, 60-65.
https://doi.org/10.1161/strokeaha.115.011406
[35] Cutruzzolà, A., Irace, C., Frazzetto, M., Sabatino, J., Gullace, R., De Rosa, S., et al. (2020) Functional and Morphological Cardiovascular Alterations Associated with Neurofibromatosis 1. Scientific Reports, 10, Article No. 12070.
https://doi.org/10.1038/s41598-020-68908-0
[36] Thomas, P.K., King, R.H.M., Chiang, T.R., Scaravilli, F., Sharma, A.K. and Downie, A.W. (1990) Neurofibromatous Neuropathy. Muscle & Nerve, 13, 93-101.
https://doi.org/10.1002/mus.880130202
[37] Tonsgard, J.H. (2006) Clinical Manifestations and Management of Neurofibromatosis Type 1. Seminars in Pediatric Neurology, 13, 2-7.
https://doi.org/10.1016/j.spen.2006.01.005
[38] Listernick, R., Ferner, R.E., Liu, G.T. and Gutmann, D.H. (2007) Optic Pathway Gliomas in Neurofibromatosis-1: Controversies and Recommendations. Annals of Neurology, 61, 189-198.
https://doi.org/10.1002/ana.21107
[39] Hyman, S.L., Arthur Shores, E. and North, K.N. (2006) Learning Disabilities in Children with Neurofibromatosis Type 1: Subtypes, Cognitive Profile, and Attention-Deficit-Hyperactivity Disorder. Developmental Medicine & Child Neurology, 48, Article 973.
[40] Isenberg, J.C., Templer, A., Gao, F., Titus, J.B. and Gutmann, D.H. (2012) Attention Skills in Children with Neurofibromatosis Type 1. Journal of Child Neurology, 28, 45-49.
https://doi.org/10.1177/0883073812439435
[41] Cambiaghi, S., Restano, L. and Caputo, R. (2004) Juvenile Xanthogranuloma Associated with Neurofibromatosis 1: 14 Patients without Evidence of Hematologic Malignancies. Pediatric Dermatology, 21, 97-101.
https://doi.org/10.1111/j.0736-8046.2004.21201.x
[42] Meyer, S.N., Vaughn, A., Li, Y., Studer, A.C., Rauen, K.A. and Kiuru, M. (2023) The Association between Juvenile Xanthogranulomas in Neurofibromatosis Type 1 Patients and the Development of Leukaemia: A Systematic Review. Journal of the European Academy of Dermatology and Venereology, 37, e1380-e1383.
https://doi.org/10.1111/jdv.19321
[43] Legius, E., Messiaen, L., Wolkenstein, P., Pancza, P., Avery, R.A., Berman, Y., et al. (2021) Revised Diagnostic Criteria for Neurofibromatosis Type 1 and Legius Syndrome: An International Consensus Recommendation. Genetics in Medicine, 23, 1506-1513.
https://doi.org/10.1038/s41436-021-01170-5
[44] Evans, D.G., Bowers, N., Burkitt-Wright, E., Miles, E., Garg, S., Scott-Kitching, V., et al. (2016) Comprehensive RNA Analysis of the NF1 Gene in Classically Affected NF1 Affected Individuals Meeting NIH Criteria Has High Sensitivity and Mutation Negative Testing Is Reassuring in Isolated Cases with Pigmentary Features Only. E BioMedicine, 7, 212-220.
https://doi.org/10.1016/j.ebiom.2016.04.005
[45] Tsirikos, A.I., Saifuddin, A. and Noordeen, M.H. (2005) Spinal Deformity in Neurofibromatosis Type-1: Diagnosis and Treatment. European Spine Journal, 14, 427-439.
https://doi.org/10.1007/s00586-004-0829-7
[46] Lykissas, M.G., Schorry, E.K., Crawford, A.H., Gaines, S., Rieley, M. and Jain, V.V. (2013) Does the Presence of Dystrophic Features in Patients with Type 1 Neurofibromatosis and Spinal Deformities Increase the Risk of Surgery? Spine, 38, 1595-1601.
https://doi.org/10.1097/brs.0b013e31829a7779
[47] Wang, Z. and Liu, Y. (2010) Research Update and Recent Developments in the Management of Scoliosis in Neurofibromatosis Type 1. Orthopedics, 33, 335-341.
https://doi.org/10.3928/01477447-20100329-20
[48] Xu, E., Gao, R., Jiang, H., Lin, T., Shao, W. and Zhou, X. (2019) Combined Halo Gravity Traction and Dual Growing Rod Technique for the Treatment of Early Onset Dystrophic Scoliosis in Neurofibromatosis Type 1. World Neurosurgery, 126, e173-e180.
https://doi.org/10.1016/j.wneu.2019.01.290
[49] Shahcheraghi, G.H. and Tavakoli, A.R. (2010) Corpectomy and Circumferential Spinal Fusion in Dystrophic Neurofibromatous Curves. Journal of Children's Orthopaedics, 4, 203-210.
https://doi.org/10.1007/s11832-010-0253-y
[50] Durrani, A.A., Crawford, A.H., Chouhdry, S.N., Saifuddin, A. and Morley, T.R. (2000) Modulation of Spinal Deformities in Patients with Neurofibromatosis Type 1. Spine, 25, 69.
https://doi.org/10.1097/00007632-200001010-00013
[51] Larson, A.N., Ledonio, C.G.T., Brearley, A.M., Sucato, D.J., Carreon, L.Y., Crawford, A.H., et al. (2018) Predictive Value and Interrater Reliability of Radiographic Factors in Neurofibromatosis Patients with Dystrophic Scoliosis. Spine Deformity, 6, 560-567.
https://doi.org/10.1016/j.jspd.2018.02.011
[52] Crawford, A.H., Lykissas, M.G., Schorry, E.K., Gaines, S., Jain, V., Greggi, T., et al. (2012) Neurofibromatosis: Etiology, Commonly Encountered Spinal Deformities, Common Complications and Pitfalls of Surgical Treatment. Spine Deformity, 1, 85-94.
https://doi.org/10.1016/j.jspd.2012.04.004
[53] Yang, N., Luo, M., Zhao, S., Wang, W. and Xia, L. (2020) Morphological Differences between the Pedicles in Nondystrophic Scoliosis Secondary to Neurofibromatosis Type 1 and Those in Adolescent Idiopathic Scoliosis. World Neurosurgery, 144, e9-e14.
https://doi.org/10.1016/j.wneu.2020.06.036
[54] Lyu, Q., Zhou, C., Song, Y., Liu, L., Wang, L. and Zhou, Z. (2017) Does Spinal Deformity Correction of Non-Dystrophic Scoliosis in Neurofibromatosis Type I with One-Stage Posterior Pedicle Screw Technique Produce Outcomes Similar to Adolescent Idiopathic Scoliosis? The Spine Journal, 17, 1850-1858.
https://doi.org/10.1016/j.spinee.2017.06.011
[55] Hyman, S.L., Shores, A. and North, K.N. (2005) The Nature and Frequency of Cognitive Deficits in Children with Neurofibromatosis Type 1. Neurology, 65, 1037-1044.
https://doi.org/10.1212/01.wnl.0000179303.72345.ce
[56] Mautner, V., Granström, S. and Leark, R.A. (2012) Impact of ADHD in Adults with Neurofibromatosis Type 1. Journal of Attention Disorders, 19, 35-43.
https://doi.org/10.1177/1087054712450749
[57] Kim, H.W. and Weinstein, S.L. (1997) The Management of Scoliosis in Neurofibromatosis. Spine, 22, 2770-2776.
https://doi.org/10.1097/00007632-199712010-00014
[58] Crawford, A.H., Parikh, S., Schorry, E.K. and Von Stein, D. (2007) The Immature Spine in Type-1 Neurofibromatosis. The Journal of Bone and Joint Surgery-American Volume, 89, 123-142.
https://doi.org/10.2106/00004623-200701001-00014
[59] Li, M., Fang, X., Li, Y., Ni, J., Gu, S. and Zhu, X. (2008) Successful Use of Posterior Instrumented Spinal Fusion Alone for Scoliosis in 19 Patients with Neurofibromatosis Type-1 Followed up for at Least 25 Months. Archives of Orthopaedic and Trauma Surgery, 129, 915-921.
https://doi.org/10.1007/s00402-008-0696-5
[60] Shufflebarger, H.L. (1989) Cotrel-Dubousset Instrumentation in Neurofibromatosis Spinal Problems. Clinical Orthopaedics and Related Research, 245, 24-28.
https://doi.org/10.1097/00003086-198908000-00006
[61] Koptan, W. and ElMiligui, Y. (2010) Surgical Correction of Severe Dystrophic Neurofibromatosis Scoliosis: An Experience of 32 Cases. European Spine Journal, 19, 1569-1575.
https://doi.org/10.1007/s00586-010-1464-0
[62] Crawford, A.H. (1989) Pitfalls of Spinal Deformities Associated with Neurofibromatosis in Children. Clinical Orthopaedics and Related Research, 245, 29-42.
https://doi.org/10.1097/00003086-198908000-00007
[63] Betz, R.R., Iorio, R., Lombardi, A.V., Clancy, M. And Steel, H.H. (1989) Scoliosis Surgery in Neurofibromatosis. Clinical Orthopaedics and Related Research, 245, 53-56.
https://doi.org/10.1097/00003086-198908000-00010
[64] Winter, R.B., Moe, J.H., Bradford, D.S., Lonstein, J.E., Pedras, C.V. and Weber, A.H. (1979) Spine Deformity in Neurofibromatosis. A Review of One Hundred and Two Patients. The Journal of Bone & Joint Surgery, 61, 677-694.
https://doi.org/10.2106/00004623-197961050-00006
[65] Cai, S., Cui, L., Qiu, G., Shen, J. and Zhang, J. (2020) Comparison between Surgical Fusion and the Growing-Rod Technique for Early-Onset Neurofibromatosis Type-1 Dystrophic Scoliosis. BMC Musculoskeletal Disorders, 21, Article No. 455.
https://doi.org/10.1186/s12891-020-03460-6
[66] Greggi, T. and Martikos, K. (2012) Surgical Treatment of Early Onset Scoliosis in Neurofibromatosis. Studies in Health Technology and Informatics, 176, 330-333.
[67] Tauchi, R., Kawakami, N., Castro, M.A., Ohara, T., Saito, T., Morishita, K., et al. (2020) Long-Term Surgical Outcomes after Early Definitive Spinal Fusion for Early-Onset Scoliosis with Neurofibromatosis Type 1 at Mean Follow-Up of 14 Years. Journal of Pediatric Orthopaedics, 40, 42-47.
https://doi.org/10.1097/bpo.0000000000001090
[68] Tauchi, R., Kawakami, N., Suzuki, T., Uno, K., Yamaguchi, T., Yanagida, H., et al. (2020) Comparison of Early Definitive Fusion and Traditional Growing Rods in Early-Onset Dystrophic Scoliosis in Neurofibromatosis Type 1: A Preliminary Report. Journal of Pediatric Orthopaedics, 40, 569-574.
https://doi.org/10.1097/bpo.0000000000001579
[69] Cai, S., Li, Z., Qiu, G., Shen, J., Zhao, H., Zhao, Y., et al. (2020) Posterior Only Instrumented Fusion Provides Incomplete Curve Control for Early-Onset Scoliosis in Type 1 Neurofibromatosis. BMC Pediatrics, 20, Article No. 63.
https://doi.org/10.1186/s12887-020-1956-y
[70] Akbarnia, B.A., Marks, D.S., Boachie-Adjei, O., Thompson, A.G. and Asher, M.A. (2005) Dual Growing Rod Technique for the Treatment of Progressive Early-Onset Scoliosis. Spine, 30, S46-S57.
https://doi.org/10.1097/01.brs.0000175190.08134.73
[71] Yao, Z., Guo, D., Li, H., Bai, Y., Sun, B., Zhang, X., et al. (2019) Surgical Treatment of Dystrophic Scoliosis in Neurofibromatosis Type 1. Clinical Spine Surgery: A Spine Publication, 32, E50-E55.
https://doi.org/10.1097/bsd.0000000000000716
[72] Li, H., Zhang, W., Yao, Z., Guo, R., Hao, C. and Zhang, X. (2022) Genotypes and Clinical Intervention of Patients with Neurofibromatosis Type 1 Associated Dystrophic Scoliosis. Frontiers in Pediatrics, 10, Article 918136.
https://doi.org/10.3389/fped.2022.918136
[73] Gao, R., Bai, Y., Zhang, X., Cao, J., Guo, D., Yao, Z., et al. (2022) Outcomes and Safety of Traditional Growing Rod Technique in the Treatment of Early-Onset Dystrophic Scoliosis Secondary to Type 1 Neurofibromatosis with Intraspinal Rib Head Dislocation in Children. Journal of Pediatric Orthopaedics, 43, e223-e229.
https://doi.org/10.1097/bpo.0000000000002319
[74] Parisini, P., Di Silvestre, M., Greggi, T., Paderni, S., Cervellati, S. and Savini, R. (1999) Surgical Correction of Dystrophic Spinal Curves in Neurofibromatosis. Spine, 24, 2247.
https://doi.org/10.1097/00007632-199911010-00013
[75] Liang, M., Cao, J., Zhang, X., Guo, D., Yao, Z., Gao, R., et al. (2024) Safety and Effectiveness of Halo Gravity Traction Combined with Traditional Growing Rods in Severe Early-Onset Scoliosis with Neurofibromatosis Type 1. Journal of Pediatric Orthopaedics B, 34, 74-82.
https://doi.org/10.1097/bpb.0000000000001169
[76] Li, Y., Yuan, X., Sha, S., Liu, Z., Zhu, W., Qiu, Y., et al. (2017) Effect of Higher Implant Density on Curve Correction in Dystrophic Thoracic Scoliosis Secondary to Neurofibromatosis Type 1. Journal of Neurosurgery: Pediatrics, 20, 371-377.
https://doi.org/10.3171/2017.4.peds171
[77] Neifert, S.N., Khan, H.A., Kurland, D.B., Kim, N.C., Yohay, K., Segal, D., et al. (2022) Management and Surgical Outcomes of Dystrophic Scoliosis in Neurofibromatosis Type 1: A Systematic Review. Neurosurgical Focus, 52, E7.
https://doi.org/10.3171/2022.2.focus21790