高甘油三酯血症的遗传学进展
Genetic Insights in Hypertriglyceridemia
DOI: 10.12677/acm.2025.1541228, PDF, HTML, XML,    科研立项经费支持
作者: 张 炜:内蒙古医科大学鄂尔多斯临床医学院,内蒙古 呼和浩特;朱 磊*:内蒙古医科大学鄂尔多斯临床医学院,内蒙古 呼和浩特;鄂尔多斯市中心医院妇产科,内蒙古 鄂尔多斯
关键词: 高甘油三酯血症遗传学基因Hypertriglyceridemia Genetics Gene
摘要: 高甘油三酯血症是一种异常复杂的代谢性疾病,其特征是血浆甘油三酯水平升高,与急性胰腺炎和心血管疾病的风险增加相关。其表型表达具有广泛的异质性,且受到肥胖、饮酒或代谢综合征等条件的强烈影响。本文综述聚焦于高甘油三酯血症的遗传基础,探讨了与甘油三酯调节基因(如LPL、APOA5、APOC2、GPIHBP1和LMF1)相关的遗传变异,这些基因与甘油三酯富脂蛋白代谢相关蛋白的异常转录和翻译有关。由这些遗传异常引起的高甘油三酯血症可分为单基因型或多基因型。单基因型高甘油三酯血症,也称为家族性乳糜微粒血症综合征,是由这五个典型基因的双等位基因(纯合或复合杂合)致病变异引起的。多基因型高甘油三酯血症,也称为多因素性乳糜微粒血症综合征(在极严重的高甘油三酯血症中),是由典型基因的杂合致病变异(具有可变的外显率)以及一组与甘油三酯水平升高有明确关联的常见非致病变异(多态性)引起的。
Abstract: Hypertriglyceridemia is an exceptionally complex metabolic disorder, characterized by elevated plasma triglyceride levels, which are associated with an increased risk of acute pancreatitis and cardiovascular diseases. The phenotypic expression of hypertriglyceridemia is highly heterogeneous and strongly influenced by conditions such as obesity, alcohol consumption, or metabolic syndrome. This review focuses on the genetic basis of hypertriglyceridemia, exploring genetic variants related to triglyceride-regulating genes (such as LPL, APOA5, APOC2, GPIHBP1, and LMF1), which are associated with abnormal transcription and translation of proteins involved in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia caused by these genetic abnormalities can be classified as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by biallelic (homozygous or compound heterozygous) pathogenic variants in these five typical genes. Polygenic hypertriglyceridemia, also referred to as multifactorial chylomicronemia syndrome (in severe hypertriglyceridemia), is caused by heterozygous pathogenic variants in typical genes (with variable penetrance) and a set of common non-pathogenic variants (polymorphisms) that have a clear association with elevated triglyceride levels.
文章引用:张炜, 朱磊. 高甘油三酯血症的遗传学进展[J]. 临床医学进展, 2025, 15(4): 2686-2692. https://doi.org/10.12677/acm.2025.1541228

1. 引言

高甘油三酯血症(Hypertriglyceridemia, HTG)是最常见的血脂代谢异常疾病,临床表型复杂,其定义为空腹甘油三酯水平大于1.7 mmol/L [1]。HTG是发生心血管疾病的独立危险因素,有研究表明血浆中甘油三酯的浓度越高,冠状动脉粥样硬化性心脏病、心肌梗死等主要心脏不良事件的患病率和发病率越高[2] [3]。全球成人中高甘油三酯血症的患病率约为10%,但存在显著的地区间差异,这可能与环境因素和遗传背景有关[4] [5]。血浆甘油三酯浓度由遗传因素和非遗传因素的复杂相互作用决定。血浆总甘油三酯浓度包括多种脂蛋白颗粒中的甘油三酯含量。传统的血脂检测主要测量所有脂蛋白中的血浆甘油三酯,其中主要来自富含甘油三酯的脂蛋白(Triglyceride-Rich Lipoproteins, TRLs),包括乳糜微粒(Chylomicrons, CMs)和极低密度脂蛋白(Very Low-Density Lipoproteins, VLDLs)。根据血浆中甘油三酯水平分为轻、中、重度和极重度HTG,范围分别为1.7~2.3 mmol/L,2.3~11.2 mmol/L,11.2~22.4 mmol/L,>22.4 mmol/L,也可以根据其基因型可分为单基因或多基因HTG [6]

近年来,经家系分析与全基因组关联分析(Genome Wide Association Study, GWAS)鉴定发现脂蛋白脂酶(Lipoprotein Lipase, LPL)、载脂蛋白C-II (Apolipoprotein C-II, apoC-II)、载脂蛋白A-V (Apolipoprotein A-V, apoA-V)、脂肪酶成熟因子1 (Lipase Maturation Factor 1, LMF1)和糖基磷脂酰肌醇锚定高密度脂蛋白结合蛋白1 (Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein-Binding Protein 1, GPIHBP1)等基因与高甘油三酯血症密切相关[7]。本文主要对HTG的遗传学进行了阐述。

2. 遗传性高甘油三酯血症

2.1. 家族性乳糜微粒血症(Familial Chylomicronemia Syndrome, FCS)

家族性乳糜微粒血症综合征(FCS)也称为单基因乳糜微粒血症、家族性高甘油三酯血症,传统上也称为高脂蛋白血症I型,是一种表现为严重高甘油三酯血症的代谢性疾病,是常染色体隐性遗传疾病[6] [8]-[11]。该综合征的总体人群患病率罕见,据估计约为每1000万人中有1~10例[9] [12]。FCS患者通常在儿童期或青少年期发病[10]。FCS的单基因表型是由调节富含甘油三酯脂蛋白(Triglyceride-Rich Lipoproteins, TRL)分解的基因中的双等位基因致病变异引起的单基因遗传病[11] [13] [14]。甘油三酯的水解主要依赖于LPL的活性,超过90%的FCS病例是由LPL基因的双等位基因失功能(Loss-Of Function, LOF)致病变异引起的[1] [9]。其余的双等位基因LOF变异主要发生在编码参与LPL脂解过程、组装和运输的蛋白的基因中,包括载脂蛋白C-II (APOC2基因)、载脂蛋白A-V (APOA5基因)、脂酶成熟因子1 (LMF1基因)和糖基磷脂酰肌醇锚定高密度脂蛋白结合蛋白1 (GPIHBP1基因) [8] [9]。这些基因中的双等位基因变异会严重破坏LPL的脂解活性,进而导致乳糜微粒(CM)的分解和清除受损,引起乳糜微粒血症[6] [9] [15]。一项对52例患者的队列研究比较了由LPL基因变异和非LPL基因变异引起的FCS的表型[16]。约80%的患者携带LPL基因的双等位基因致病变异。在其余患者中,近一半携带GPIHBP1基因的双等位基因致病变异,剩余患者则携带APOC2、APOA5和LMF1基因的纯合或复合杂合致病变异,或携带一个正常的LPL等位基因和一个变异等位基因。这些分子亚型的表型大多相似,均表现为严重的高甘油三酯血症。

2.2. 多因素乳糜微粒血症综合征(Multifactorial Chylomicronemia Syndrome, MCM)

MCM也称为高脂蛋白血症V型,是一种寡基因或多基因疾病,其表型表达可能因非遗传因素而加剧[9] [17]。MCM的遗传易感性因素主要有两种:一是五个经典基因(如LPL、APOC2、GPIHBP1、APOA5和LMF1)中的罕见杂合变异,二是通过GWAS发现的与HTG相关的常见基因变异。这些常见变异的累积效应可能导致血浆甘油三酯水平显著升高[8] [9]。这些常见突变本身即可导致HTG的易感性,而这种易感性可能与经典基因中的罕见杂合变异以及非遗传因素协同作用,从而引发严重的HTG [6] [13]。然而,即使在甘油三酯水平正常的人群中,也可能存在与HTG相关的遗传决定因素。因此,这些遗传决定因素的存在并不一定导致HTG表型的表达,这表明HTG的发病机制复杂,可能涉及多种遗传和非遗传因素的相互作用[8] [13]

3. 高甘油三酯血症相关基因

3.1. LPL基因

LPL是降解甘油三酯的限速酶,在脂代谢、胰岛素抵抗、脂肪细胞分化中有重要作用[18]。LPL的主要功能是水解血浆中乳糜微粒和极低密度脂蛋白中的甘油三酯。LPL基因位于第8染色体短臂8p22上,由10个外显子和9个内含子组成,碱基长度为30 kp,编码包含475个氨基酸的脂蛋白[19]。第1外显子编码5’非翻译区,包括信号肽和成熟蛋白质的前两个氨基酸。中间8个外显子编码剩余的446个氨基酸,第10个外显子编码3’非翻译区,包括1948个核苷酸[20]。目前报告的LPL基因大多数的错义突变发生在高度保守的第4、5和6外显子中[21]

近年研究表明LPL基因突变与HTG有关,在严重HTG患者中起重要作用。Sun等人发现LPL基因上Leu452His突变导致LP功能障碍,他们将Leu452His突变的LPL基因导入小鼠体内后,发现小鼠血浆中甘油三酯浓度显著升高,而LPL的活性显著降低[22]。Chan等人对1个HTG患者进行全外显子测序,发现LPL基因上有两个突变(Leu252Val与Leu252Arg),细胞外培养结果显示突变影响LPL的释放和催化活性[23]。Yu等人认为LPL基因突变可能通过降低LPL的含量和酶活性而导致HTG的发生[24]。Lun等人在1例中国家系中也证实了LPL基因突变导致甘油三酯代谢异常[25]。潘晓冬等人对12例HTG患者进行基因分析,发现12例患者部分直系亲属血浆中甘油三酯水平均有不同程度的升高,遗传倾向明显[26]。因此,LPL的基因缺陷与HTG发生可能密切相关。

3.2. APOC2基因

apoC-II是一种小分子的可交换载脂蛋白,在LPL的代谢过程中发挥着重要的作用。apoC-II基因由位于染色体19q13.2区的APOE-APOC1-APOC4-APOC2基因簇中的APOC2基因编码,形成由79个氨基酸组成的载脂蛋白。其三级结构呈现三个螺旋,位于第一个螺旋的N端富含疏水氨基酸,负责结合脂蛋白;而位于第三个螺旋的C端对LPL的激活至关重要[27]-[29]。目前已发现的APOC2基因突变包括错义突变、无义突变、剪接突变、移码突变以及调控区域的改变[8] [28]。这些突变导致APOC2基因表达容易在细胞内降解、结构不稳定的转录本。因此,携带者表现出血浆载脂蛋白apoC-II浓度降低或无法检测,以及LPL催化活性的显著降低或缺失[30] [31]

3.3. APOA-V基因

apoA-V在甘油三酯稳态中发挥细胞外和细胞内的双重作用,通过稳定脂蛋白–酶复合物来增强LPL的活性,从而促进脂解。apoA-V主要在肝脏中表达,其血浆浓度低于其他常见载脂蛋白。因此,APOA-V与血浆中甘油三酯浓度成负相关。此外,apoA-V还参与残粒颗粒的摄取,并在肝细胞分泌VLDL中发挥重要作用[32] [33]。APOA-V由APOA5基因编码,该基因是位于11号染色体11q23区的APOA1-APOC3-APOA4基因簇的重要组成部分。APOA5基因包含四个外显子,编码366个氨基酸的蛋白质,其中23个氨基酸构成信号肽。信号肽的切割形成富含α螺旋的疏水性蛋白。其N端结构域呈现两性螺旋构象,可与脂蛋白结合。N端结构域的邻近区域是中央结构域,负责与肝素硫酸蛋白多糖和甘油三酯磷脂结合蛋白1以及细胞受体R-LDL建立离子键。Sun等人发现残基192至238对于脂质结合和LPL的激活是必需的。C端结构域由四个连续的脯氨酸组成,对脂质结合至关重要[34] [35]

3.4. LMF1基因

LMF1基因位于16号染色体的16p13.3区,负责编码LMF1蛋白,该蛋白参与LPL和肝脂肪酶(Hepatic Lipase, HL)的成熟过程[36]。LMF1蛋白作为一种内质网(Endoplasmic Reticulum, ER)分子伴侣,包含五个跨膜结构域和一个关键的保守C端结构域,后者对HL的激活至关重要。尽管LMF1的具体分子机制尚未完全明确,但研究表明,LMF1可能通过与ER分子伴侣相互作用,促进新合成的LPL中二硫键的形成,从而增强LPL的稳定性[37]

3.5. GPIHBP1基因

GPIHBP1在将LPL转运至毛细血管内皮细胞的管腔表面方面发挥着关键作用,确保其稳定定位,并促进TRLs的边缘化,从而为脂解处理创造条件。GPIHBP1蛋白以1:1的化学计量比将LPL锚定在毛细血管内皮细胞上,负责将LPL转运至毛细血管腔,并将脂质底物边缘化至毛细血管内皮,同时防止LPL的自发展开[38] [39]。GPIHBP1是淋巴细胞抗原6-尿激酶型纤溶酶原激活剂受体蛋白家族的成员,其特征是富含半胱氨酸残基。GPIHBP1由位于8号染色体8q24.3区的GPIHBP1基因编码,在毛细血管内皮细胞表达。第2外显子编码一个内在无序的N端结构域,富含酸性残基(谷氨酸和天冬氨酸),这些残基对于稳定LPL的催化结构至关重要[38] [40]。在FCS患者中已发现了GPIHBP1基因的变异[41]。GPIHBP1变异的纯合子携带者表现出持续性乳糜微粒血症,儿童期早期发病,并伴有严重的HTG。GPIHBP1缺乏症表现为血清中LPL酶和GPIHBP1浓度显著降低。其表型仅发生在GPIHBP1基因变异的纯合子或复合杂合子携带者中,而杂合子携带者则表现为正常脂质水平[42]

4. 展望

近年来,HTG在儿童中的诊断年龄逐渐提前,这与儿童肥胖率的上升密切相关。通常情况下,TG水平在儿童时期通常是正常的,直到成年后才可能出现异常。然而,随着生活方式的改变和肥胖问题的加剧,HTG在儿童和青少年中的发病率有所增加。鉴于早期心血管疾病的风险,识别遗传病因对于HTG患者的早期干预和管理至关重要。产前诊断旨在评估胎儿遗传病因的风险,为临床医生和父母提供信息,以便在怀孕期间做出明智的决策。随着遗传学研究方法的快速发展,尤其是新一代测序和全外显子测序的推出,产前诊断的准确性得到了显著提高。这些技术不仅可以检测染色体异常,还能识别单基因疾病和微小基因变异,为胎儿的健康评估提供了更全面的支持。目前关于脂质代谢异常的基因检测应用于产前诊断的文献较少,这些基因突变可能导致甘油三酯的代谢障碍,从而引发血脂异常,导致不良心脏疾病的发生。随着基因检测技术的不断进步,未来有望进一步完善脂质代谢异常的产前诊断流程。其对于心血管疾病的早期干预和生活指导具有重要意义,为优生优育和儿童健康提供更有力的支持。

5. 总结

原发性HTG具有复杂的遗传基础,并呈现出复杂的基因型与表型相关性。未来需要进一步研究预测和预后标志物,以预测胰腺和心血管并发症的风险。遗传筛查有助于识别心血管疾病高风险个体,引导他们接受个性化药物治疗和早期生活方式调整。此外,明确分子诊断有助于早期识别高危家庭成员。需要注意的是,除了导致单基因性乳糜微粒血症的双等位基因罕见变异外,遗传决定因素并非高甘油三酯血症的绝对病因,许多基因变异只有在饮食、酒精、药物以及糖尿病和甲状腺功能减退等因素存在时才会引发疾病。患有FCS和MCM的患者因严重高甘油三酯血症而遭受高发病率和死亡率,生活质量显著下降。鉴于HTG相关的风险,明确识别和诊断至关重要,以预防血浆甘油三酯浓度过高所带来的临床并发症。

基金项目

内蒙古自治区研究生卓越人才项目,项目编号:YKD2023ZY001。

NOTES

*通讯作者。

参考文献

[1] Laufs, U., Parhofer, K.G., Ginsberg, H.N. and Hegele, R.A. (2020) Clinical Review on Triglycerides. European Heart Journal, 41, 99-109c.
https://doi.org/10.1093/eurheartj/ehz785
[2] Nordestgaard, B.G., Benn, M., Schnohr, P. and Tybjærg-Hansen, A. (2007) Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart Disease, and Death in Men and Women. JAMA, 298, 299-308.
https://doi.org/10.1001/jama.298.3.299
[3] Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration (2010) Triglyceride-Mediated Pathways and Coronary Disease: Collaborative Analysis of 101 Studies. The Lancet, 375, 1634-1639.
https://doi.org/10.1016/S0140-6736(10)60545-4
[4] Dron, J.S., Wang, J., Cao, H., McIntyre, A.D., Iacocca, M.A., Menard, J.R., et al. (2019) Severe Hypertriglyceridemia Is Primarily Polygenic. Journal of Clinical Lipidology, 13, 80-88.
https://doi.org/10.1016/j.jacl.2018.10.006
[5] Packard, C.J., Boren, J. and Taskinen, M. (2020) Causes and Consequences of Hypertriglyceridemia. Frontiers in Endocrinology, 11, Article 252.
https://doi.org/10.3389/fendo.2020.00252
[6] Dron, J.S. and Hegele, R.A. (2020) Genetics of Hypertriglyceridemia. Frontiers in Endocrinology, 11, Article 455.
https://doi.org/10.3389/fendo.2020.00455
[7] 覃媛媛, 林发全. 高甘油三酯血症患者脂蛋白脂酶基因突变的研究进展[J]. 中华检验医学杂志, 2019, 42(7): 581-584.
[8] Johansen, C.T. and Hegele, R.A. (2012) Allelic and Phenotypic Spectrum of Plasma Triglycerides. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 833-842.
https://doi.org/10.1016/j.bbalip.2011.10.007
[9] Brahm, A. and Hegele, R. (2013) Hypertriglyceridemia. Nutrients, 5, 981-1001.
https://doi.org/10.3390/nu5030981
[10] Hegele, R.A., Ginsberg, H.N., Chapman, M.J., Nordestgaard, B.G., Kuivenhoven, J.A., Averna, M., et al. (2014) The Polygenic Nature of Hypertriglyceridaemia: Implications for Definition, Diagnosis, and Management. The Lancet Diabetes & Endocrinology, 2, 655-666.
https://doi.org/10.1016/s2213-8587(13)70191-8
[11] Gallo, A., Béliard, S., D’Erasmo, L. and Bruckert, E. (2020) Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Current Atherosclerosis Reports, 22, Article No. 63.
https://doi.org/10.1007/s11883-020-00885-1
[12] Paquette, M., Bernard, S., Hegele, R.A. and Baass, A. (2019) Chylomicronemia: Differences between Familial Chylomicronemia Syndrome and Multifactorial Chylomicronemia. Atherosclerosis, 283, 137-142.
https://doi.org/10.1016/j.atherosclerosis.2018.12.019
[13] Lewis, G.F., Xiao, C. and Hegele, R.A. (2015) Hypertriglyceridemia in the Genomic Era: A New Paradigm. Endocrine Reviews, 36, 131-147.
https://doi.org/10.1210/er.2014-1062
[14] Moulin, P., Dufour, R., Averna, M., Arca, M., Cefalù, A.B., Noto, D., et al. (2018) Identification and Diagnosis of Patients with Familial Chylomicronaemia Syndrome (FCS): Expert Panel Recommendations and Proposal of an “FCS Score”. Atherosclerosis, 275, 265-272.
https://doi.org/10.1016/j.atherosclerosis.2018.06.814
[15] Falko, J.M. (2018) Familial Chylomicronemia Syndrome: A Clinical Guide for Endocrinologists. Endocrine Practice, 24, 756-763.
https://doi.org/10.4158/ep-2018-0157
[16] Hegele, R.A., Berberich, A.J., Ban, M.R., Wang, J., Digenio, A., Alexander, V.J., et al. (2018) Clinical and Biochemical Features of Different Molecular Etiologies of Familial Chylomicronemia. Journal of Clinical Lipidology, 12, 920-927.E4.
https://doi.org/10.1016/j.jacl.2018.03.093
[17] Meyer, G. (1987) Forms and Spatial Arrangement of Neurons in the Primary Motor Cortex of Man. Journal of Comparative Neurology, 262, 402-428.
https://doi.org/10.1002/cne.902620306
[18] Wang, H. and Eckel, R.H. (2009) Lipoprotein Lipase: From Gene to Obesity. American Journal of Physiology-Endocrinology and Metabolism, 297, E271-E288.
https://doi.org/10.1152/ajpendo.90920.2008
[19] Mead, J., Irvine, S. and Ramji, D. (2002) Lipoprotein Lipase: Structure, Function, Regulation, and Role in Disease. Journal of Molecular Medicine, 80, 753-769.
https://doi.org/10.1007/s00109-002-0384-9
[20] Kirchgessner, T.G., Chuat, J.C., Heinzmann, C., Etienne, J., Guilhot, S., Svenson, K., et al. (1989) Organization of the Human Lipoprotein Lipase Gene and Evolution of the Lipase Gene Family. Proceedings of the National Academy of Sciences, 86, 9647-9651.
https://doi.org/10.1073/pnas.86.24.9647
[21] Brahm, A.J. and Hegele, R.A. (2015) Chylomicronaemia—Current Diagnosis and Future Therapies. Nature Reviews Endocrinology, 11, 352-362.
https://doi.org/10.1038/nrendo.2015.26
[22] Sun, K., Yang, W., Huang, Y., Wang, Y., Xiang, L. and Qi, J. (2013) Leu452His Mutation in Lipoprotein Lipase Gene Transfer Associated with Hypertriglyceridemia in Mice in Vivo. PLOS ONE, 8, e75462.
https://doi.org/10.1371/journal.pone.0075462
[23] Chan, L., Mak, Y., Tomlinson, B., et al. (2000) Compound Heterozygosity of Leu252Val and Leu252Arg Causing Lipoprotein Lipase Deficiency in a Chinese Patient with Hypertriglyceridemia. European Journal of Clinical Investigation, 30, 33-40.
https://doi.org/10.1046/j.1365-2362.2000.00587.x
[24] Yu, X., Zhao, T., Wang, L., Liu, Z., Zhang, C., Chen, R., et al. (2006) A Novel Substitution at the Translation Initiator Codon (ATG→ATC) of the Lipoprotein Lipase Gene Is Mainly Responsible for Lipoprotein Lipase Deficiency in a Patient with Severe Hypertriglyceridemia and Recurrent Pancreatitis. Biochemical and Biophysical Research Communications, 341, 82-87.
https://doi.org/10.1016/j.bbrc.2005.12.165
[25] Lun, Y., Sun, X., Wang, P., Chi, J., Hou, X. and Wang, Y. (2017) Severe Hypertriglyceridemia Due to Two Novel Loss-of-Function Lipoprotein Lipase Gene Mutations (C310R/E396V) in a Chinese Family Associated with Recurrent Acute Pancreatitis. Oncotarget, 8, 47741-47754.
https://doi.org/10.18632/oncotarget.17762
[26] 潘晓冬, 杜兰萍, 孙立元, 等. 高甘油三酯血症患者脂蛋白脂肪酶基因检测意义[J]. 中华实用诊断与治疗杂志, 2012, 26(3): 227-229, 233.
[27] Ramasamy, I. (2016) Update on the Molecular Biology of Dyslipidemias. Clinica Chimica Acta, 454, 143-185.
https://doi.org/10.1016/j.cca.2015.10.033
[28] Wolska, A., Dunbar, R.L., Freeman, L.A., Ueda, M., Amar, M.J., Sviridov, D.O., et al. (2017) Apolipoprotein C-II: New Findings Related to Genetics, Biochemistry, and Role in Triglyceride Metabolism. Atherosclerosis, 267, 49-60.
https://doi.org/10.1016/j.atherosclerosis.2017.10.025
[29] Pégorier, J., May, C.L. and Girard, J. (2004) Control of Gene Expression by Fatty Acids. The Journal of Nutrition, 134, 2444S-2449S.
https://doi.org/10.1093/jn/134.9.2444s
[30] Tuzgol, S., Bijvoet, S.M., Bruin, T., Kastelein, J.J. and Hayden, M.R. (1994) Apolipoprotein CII-Padova (Tyr37-->Stop) as a Cause of Chylomicronaemia in an Italian Kindred from Siculiana. Journal of Medical Genetics, 31, 622-626.
https://doi.org/10.1136/jmg.31.8.622
[31] Wolska, A., Reimund, M. and Remaley, A.T. (2020) Apolipoprotein C-II: The Re-Emergence of a Forgotten Factor. Current Opinion in Lipidology, 31, 147-153.
https://doi.org/10.1097/mol.0000000000000680
[32] Hubacek, J.A. (2016) Apolipoprotein A5 Fifteen Years Anniversary: Lessons from Genetic Epidemiology. Gene, 592, 193-199.
https://doi.org/10.1016/j.gene.2016.07.070
[33] May-Zhang, L., Liu, M., Black, D. and Tso, P. (2022) Apolipoprotein A5, a Unique Modulator of Fasting and Postprandial Triglycerides. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1867, Article 159185.
https://doi.org/10.1016/j.bbalip.2022.159185
[34] Garelnabi, M., Lor, K., Jin, J., Chai, F. and Santanam, N. (2013) The Paradox of ApoA5 Modulation of Triglycerides: Evidence from Clinical and Basic Research. Clinical Biochemistry, 46, 12-19.
https://doi.org/10.1016/j.clinbiochem.2012.09.007
[35] Forte, T. and Ryan, R. (2015) Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism. Current Drug Targets, 16, 1274-1280.
https://doi.org/10.2174/1389450116666150531161138
[36] Péterfy, M. (2012) Lipase Maturation Factor 1: A Lipase Chaperone Involved in Lipid Metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 790-794.
https://doi.org/10.1016/j.bbalip.2011.10.006
[37] Wu, S.A., Kersten, S. and Qi, L. (2021) Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends in Endocrinology & Metabolism, 32, 48-61.
https://doi.org/10.1016/j.tem.2020.11.005
[38] Lima, J.G., Helena C Nobrega, L., Moura Bandeira, F.T., Pires Sousa, A.G., Medeiros de Araujo Macedo, T.B., Cavalcante Nogueira, A.C., et al. (2021) A Novel GPIHBP1 Mutation Related to Familial Chylomicronemia Syndrome: A Series of Cases. Atherosclerosis, 322, 31-38.
https://doi.org/10.1016/j.atherosclerosis.2021.02.020
[39] Birrane, G., Beigneux, A.P., Dwyer, B., Strack-Logue, B., Kristensen, K.K., Francone, O.L., et al. (2018) Structure of the Lipoprotein Lipase-GPIHBP1 Complex that Mediates Plasma Triglyceride Hydrolysis. Proceedings of the National Academy of Sciences, 116, 1723-1732.
https://doi.org/10.1073/pnas.1817984116
[40] Kristensen, K.K., Leth-Espensen, K.Z., Kumari, A., Grønnemose, A.L., Lund-Winther, A., Young, S.G., et al. (2021) GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Frontiers in Cell and Developmental Biology, 9, Article 702508.
https://doi.org/10.3389/fcell.2021.702508
[41] Baass, A., Paquette, M., Bernard, S. and Hegele, R.A. (2020) Familial Chylomicronemia Syndrome: An Under-Recognized Cause of Severe Hypertriglyceridaemia. Journal of Internal Medicine, 287, 340-348.
https://doi.org/10.1111/joim.13016
[42] Young, S.G., Fong, L.G., Beigneux, A.P., Allan, C.M., He, C., Jiang, H., et al. (2019) GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metabolism, 30, 51-65.
https://doi.org/10.1016/j.cmet.2019.05.023