[1]
|
Laufs, U., Parhofer, K.G., Ginsberg, H.N. and Hegele, R.A. (2020) Clinical Review on Triglycerides. European Heart Journal, 41, 99-109c. https://doi.org/10.1093/eurheartj/ehz785
|
[2]
|
Nordestgaard, B.G., Benn, M., Schnohr, P. and Tybjærg-Hansen, A. (2007) Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart Disease, and Death in Men and Women. JAMA, 298, 299-308. https://doi.org/10.1001/jama.298.3.299
|
[3]
|
Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration (2010) Triglyceride-Mediated Pathways and Coronary Disease: Collaborative Analysis of 101 Studies. The Lancet, 375, 1634-1639. https://doi.org/10.1016/S0140-6736(10)60545-4
|
[4]
|
Dron, J.S., Wang, J., Cao, H., McIntyre, A.D., Iacocca, M.A., Menard, J.R., et al. (2019) Severe Hypertriglyceridemia Is Primarily Polygenic. Journal of Clinical Lipidology, 13, 80-88. https://doi.org/10.1016/j.jacl.2018.10.006
|
[5]
|
Packard, C.J., Boren, J. and Taskinen, M. (2020) Causes and Consequences of Hypertriglyceridemia. Frontiers in Endocrinology, 11, Article 252. https://doi.org/10.3389/fendo.2020.00252
|
[6]
|
Dron, J.S. and Hegele, R.A. (2020) Genetics of Hypertriglyceridemia. Frontiers in Endocrinology, 11, Article 455. https://doi.org/10.3389/fendo.2020.00455
|
[7]
|
覃媛媛, 林发全. 高甘油三酯血症患者脂蛋白脂酶基因突变的研究进展[J]. 中华检验医学杂志, 2019, 42(7): 581-584.
|
[8]
|
Johansen, C.T. and Hegele, R.A. (2012) Allelic and Phenotypic Spectrum of Plasma Triglycerides. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 833-842. https://doi.org/10.1016/j.bbalip.2011.10.007
|
[9]
|
Brahm, A. and Hegele, R. (2013) Hypertriglyceridemia. Nutrients, 5, 981-1001. https://doi.org/10.3390/nu5030981
|
[10]
|
Hegele, R.A., Ginsberg, H.N., Chapman, M.J., Nordestgaard, B.G., Kuivenhoven, J.A., Averna, M., et al. (2014) The Polygenic Nature of Hypertriglyceridaemia: Implications for Definition, Diagnosis, and Management. The Lancet Diabetes & Endocrinology, 2, 655-666. https://doi.org/10.1016/s2213-8587(13)70191-8
|
[11]
|
Gallo, A., Béliard, S., D’Erasmo, L. and Bruckert, E. (2020) Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Current Atherosclerosis Reports, 22, Article No. 63. https://doi.org/10.1007/s11883-020-00885-1
|
[12]
|
Paquette, M., Bernard, S., Hegele, R.A. and Baass, A. (2019) Chylomicronemia: Differences between Familial Chylomicronemia Syndrome and Multifactorial Chylomicronemia. Atherosclerosis, 283, 137-142. https://doi.org/10.1016/j.atherosclerosis.2018.12.019
|
[13]
|
Lewis, G.F., Xiao, C. and Hegele, R.A. (2015) Hypertriglyceridemia in the Genomic Era: A New Paradigm. Endocrine Reviews, 36, 131-147. https://doi.org/10.1210/er.2014-1062
|
[14]
|
Moulin, P., Dufour, R., Averna, M., Arca, M., Cefalù, A.B., Noto, D., et al. (2018) Identification and Diagnosis of Patients with Familial Chylomicronaemia Syndrome (FCS): Expert Panel Recommendations and Proposal of an “FCS Score”. Atherosclerosis, 275, 265-272. https://doi.org/10.1016/j.atherosclerosis.2018.06.814
|
[15]
|
Falko, J.M. (2018) Familial Chylomicronemia Syndrome: A Clinical Guide for Endocrinologists. Endocrine Practice, 24, 756-763. https://doi.org/10.4158/ep-2018-0157
|
[16]
|
Hegele, R.A., Berberich, A.J., Ban, M.R., Wang, J., Digenio, A., Alexander, V.J., et al. (2018) Clinical and Biochemical Features of Different Molecular Etiologies of Familial Chylomicronemia. Journal of Clinical Lipidology, 12, 920-927.E4. https://doi.org/10.1016/j.jacl.2018.03.093
|
[17]
|
Meyer, G. (1987) Forms and Spatial Arrangement of Neurons in the Primary Motor Cortex of Man. Journal of Comparative Neurology, 262, 402-428. https://doi.org/10.1002/cne.902620306
|
[18]
|
Wang, H. and Eckel, R.H. (2009) Lipoprotein Lipase: From Gene to Obesity. American Journal of Physiology-Endocrinology and Metabolism, 297, E271-E288. https://doi.org/10.1152/ajpendo.90920.2008
|
[19]
|
Mead, J., Irvine, S. and Ramji, D. (2002) Lipoprotein Lipase: Structure, Function, Regulation, and Role in Disease. Journal of Molecular Medicine, 80, 753-769. https://doi.org/10.1007/s00109-002-0384-9
|
[20]
|
Kirchgessner, T.G., Chuat, J.C., Heinzmann, C., Etienne, J., Guilhot, S., Svenson, K., et al. (1989) Organization of the Human Lipoprotein Lipase Gene and Evolution of the Lipase Gene Family. Proceedings of the National Academy of Sciences, 86, 9647-9651. https://doi.org/10.1073/pnas.86.24.9647
|
[21]
|
Brahm, A.J. and Hegele, R.A. (2015) Chylomicronaemia—Current Diagnosis and Future Therapies. Nature Reviews Endocrinology, 11, 352-362. https://doi.org/10.1038/nrendo.2015.26
|
[22]
|
Sun, K., Yang, W., Huang, Y., Wang, Y., Xiang, L. and Qi, J. (2013) Leu452His Mutation in Lipoprotein Lipase Gene Transfer Associated with Hypertriglyceridemia in Mice in Vivo. PLOS ONE, 8, e75462. https://doi.org/10.1371/journal.pone.0075462
|
[23]
|
Chan, L., Mak, Y., Tomlinson, B., et al. (2000) Compound Heterozygosity of Leu252Val and Leu252Arg Causing Lipoprotein Lipase Deficiency in a Chinese Patient with Hypertriglyceridemia. European Journal of Clinical Investigation, 30, 33-40. https://doi.org/10.1046/j.1365-2362.2000.00587.x
|
[24]
|
Yu, X., Zhao, T., Wang, L., Liu, Z., Zhang, C., Chen, R., et al. (2006) A Novel Substitution at the Translation Initiator Codon (ATG→ATC) of the Lipoprotein Lipase Gene Is Mainly Responsible for Lipoprotein Lipase Deficiency in a Patient with Severe Hypertriglyceridemia and Recurrent Pancreatitis. Biochemical and Biophysical Research Communications, 341, 82-87. https://doi.org/10.1016/j.bbrc.2005.12.165
|
[25]
|
Lun, Y., Sun, X., Wang, P., Chi, J., Hou, X. and Wang, Y. (2017) Severe Hypertriglyceridemia Due to Two Novel Loss-of-Function Lipoprotein Lipase Gene Mutations (C310R/E396V) in a Chinese Family Associated with Recurrent Acute Pancreatitis. Oncotarget, 8, 47741-47754. https://doi.org/10.18632/oncotarget.17762
|
[26]
|
潘晓冬, 杜兰萍, 孙立元, 等. 高甘油三酯血症患者脂蛋白脂肪酶基因检测意义[J]. 中华实用诊断与治疗杂志, 2012, 26(3): 227-229, 233.
|
[27]
|
Ramasamy, I. (2016) Update on the Molecular Biology of Dyslipidemias. Clinica Chimica Acta, 454, 143-185. https://doi.org/10.1016/j.cca.2015.10.033
|
[28]
|
Wolska, A., Dunbar, R.L., Freeman, L.A., Ueda, M., Amar, M.J., Sviridov, D.O., et al. (2017) Apolipoprotein C-II: New Findings Related to Genetics, Biochemistry, and Role in Triglyceride Metabolism. Atherosclerosis, 267, 49-60. https://doi.org/10.1016/j.atherosclerosis.2017.10.025
|
[29]
|
Pégorier, J., May, C.L. and Girard, J. (2004) Control of Gene Expression by Fatty Acids. The Journal of Nutrition, 134, 2444S-2449S. https://doi.org/10.1093/jn/134.9.2444s
|
[30]
|
Tuzgol, S., Bijvoet, S.M., Bruin, T., Kastelein, J.J. and Hayden, M.R. (1994) Apolipoprotein CII-Padova (Tyr37-->Stop) as a Cause of Chylomicronaemia in an Italian Kindred from Siculiana. Journal of Medical Genetics, 31, 622-626. https://doi.org/10.1136/jmg.31.8.622
|
[31]
|
Wolska, A., Reimund, M. and Remaley, A.T. (2020) Apolipoprotein C-II: The Re-Emergence of a Forgotten Factor. Current Opinion in Lipidology, 31, 147-153. https://doi.org/10.1097/mol.0000000000000680
|
[32]
|
Hubacek, J.A. (2016) Apolipoprotein A5 Fifteen Years Anniversary: Lessons from Genetic Epidemiology. Gene, 592, 193-199. https://doi.org/10.1016/j.gene.2016.07.070
|
[33]
|
May-Zhang, L., Liu, M., Black, D. and Tso, P. (2022) Apolipoprotein A5, a Unique Modulator of Fasting and Postprandial Triglycerides. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1867, Article 159185. https://doi.org/10.1016/j.bbalip.2022.159185
|
[34]
|
Garelnabi, M., Lor, K., Jin, J., Chai, F. and Santanam, N. (2013) The Paradox of ApoA5 Modulation of Triglycerides: Evidence from Clinical and Basic Research. Clinical Biochemistry, 46, 12-19. https://doi.org/10.1016/j.clinbiochem.2012.09.007
|
[35]
|
Forte, T. and Ryan, R. (2015) Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism. Current Drug Targets, 16, 1274-1280. https://doi.org/10.2174/1389450116666150531161138
|
[36]
|
Péterfy, M. (2012) Lipase Maturation Factor 1: A Lipase Chaperone Involved in Lipid Metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 790-794. https://doi.org/10.1016/j.bbalip.2011.10.006
|
[37]
|
Wu, S.A., Kersten, S. and Qi, L. (2021) Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends in Endocrinology & Metabolism, 32, 48-61. https://doi.org/10.1016/j.tem.2020.11.005
|
[38]
|
Lima, J.G., Helena C Nobrega, L., Moura Bandeira, F.T., Pires Sousa, A.G., Medeiros de Araujo Macedo, T.B., Cavalcante Nogueira, A.C., et al. (2021) A Novel GPIHBP1 Mutation Related to Familial Chylomicronemia Syndrome: A Series of Cases. Atherosclerosis, 322, 31-38. https://doi.org/10.1016/j.atherosclerosis.2021.02.020
|
[39]
|
Birrane, G., Beigneux, A.P., Dwyer, B., Strack-Logue, B., Kristensen, K.K., Francone, O.L., et al. (2018) Structure of the Lipoprotein Lipase-GPIHBP1 Complex that Mediates Plasma Triglyceride Hydrolysis. Proceedings of the National Academy of Sciences, 116, 1723-1732. https://doi.org/10.1073/pnas.1817984116
|
[40]
|
Kristensen, K.K., Leth-Espensen, K.Z., Kumari, A., Grønnemose, A.L., Lund-Winther, A., Young, S.G., et al. (2021) GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Frontiers in Cell and Developmental Biology, 9, Article 702508. https://doi.org/10.3389/fcell.2021.702508
|
[41]
|
Baass, A., Paquette, M., Bernard, S. and Hegele, R.A. (2020) Familial Chylomicronemia Syndrome: An Under-Recognized Cause of Severe Hypertriglyceridaemia. Journal of Internal Medicine, 287, 340-348. https://doi.org/10.1111/joim.13016
|
[42]
|
Young, S.G., Fong, L.G., Beigneux, A.P., Allan, C.M., He, C., Jiang, H., et al. (2019) GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metabolism, 30, 51-65. https://doi.org/10.1016/j.cmet.2019.05.023
|