[1]
|
Chen, T.K., Knicely, D.H. and Grams, M.E. (2019) Chronic Kidney Disease Diagnosis and Management. JAMA, 322, 1294-1304. https://doi.org/10.1001/jama.2019.14745
|
[2]
|
Vanholder, R., Fouque, D., Glorieux, G., Heine, G.H., Kanbay, M., Mallamaci, F., et al. (2016) Clinical Management of the Uraemic Syndrome in Chronic Kidney Disease. The Lancet Diabetes & Endocrinology, 4, 360-373. https://doi.org/10.1016/s2213-8587(16)00033-4
|
[3]
|
Duranton, F., Cohen, G., De Smet, R., Rodriguez, M., Jankowski, J., Vanholder, R., et al. (2012) Normal and Pathologic Concentrations of Uremic Toxins. Journal of the American Society of Nephrology, 23, 1258-1270. https://doi.org/10.1681/asn.2011121175
|
[4]
|
Meijers, B., Glorieux, G., Poesen, R. and Bakker, S.J.L. (2014) Nonextracorporeal Methods for Decreasing Uremic Solute Concentration: A Future Way to Go? Seminars in Nephrology, 34, 228-243. https://doi.org/10.1016/j.semnephrol.2014.02.012
|
[5]
|
Madero, M., Cano, K.B., Campos, I., Tao, X., Maheshwari, V., Brown, J., et al. (2019) Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. Clinical Journal of the American Society of Nephrology, 14, 394-402. https://doi.org/10.2215/cjn.05240418
|
[6]
|
Meijers, B.K.I. and Evenepoel, P. (2011) The Gut-Kidney Axis: Indoxyl Sulfate, P-Cresyl Sulfate and CKD Progression. Nephrology Dialysis Transplantation, 26, 759-761. https://doi.org/10.1093/ndt/gfq818
|
[7]
|
Lim, Y.J., Sidor, N.A., Tonial, N.C., Che, A. and Urquhart, B.L. (2021) Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13, Article 142. https://doi.org/10.3390/toxins13020142
|
[8]
|
Friedman, E.A. (2009) Can the Bowel Substitute for the Kidney in Advanced Renal Failure? Current Medical Research and Opinion, 25, 1913-1918. https://doi.org/10.1185/03007990903069173
|
[9]
|
Deguchi, T., Ohtsuki, S., Otagiri, M., Takanaga, H., Asaba, H., Mori, S., et al. (2002) Major Role of Organic Anion Transporter 3 in the Transport of Indoxyl Sulfate in the Kidney. Kidney International, 61, 1760-1768. https://doi.org/10.1046/j.1523-1755.2002.00318.x
|
[10]
|
Curtius, H.C., Mettler, M. and Ettlinger, L. (1976) Study of the Intestinal Tyrosine Metabolism Using Stable Isotopes and Gas Chromatography-Mass Spectrometry. Journal of Chromatography A, 126, 569-580. https://doi.org/10.1016/s0021-9673(01)84102-9
|
[11]
|
Liabeuf, S., Drüeke, T.B. and Massy, Z.A. (2011) Protein-Bound Uremic Toxins: New Insight from Clinical Studies. Toxins, 3, 911-919. https://doi.org/10.3390/toxins3070911
|
[12]
|
Watanabe, H., Noguchi, T., Miyamoto, Y., Kadowaki, D., Kotani, S., Nakajima, M., et al. (2012) Interaction between Two Sulfate-Conjugated Uremic Toxins, P-Cresyl Sulfate and Indoxyl Sulfate, during Binding with Human Serum Albumin. Drug Metabolism and Disposition, 40, 1423-1428. https://doi.org/10.1124/dmd.112.045617
|
[13]
|
Motojima, M., Hosokawa, A., Yamato, H., Muraki, T. and Yoshioka, T. (2003) Uremic Toxins of Organic Anions Up-Regulate PAI-1 Expression by Induction of NF-κB and Free Radical in Proximal Tubular Cells. Kidney International, 63, 1671-1680. https://doi.org/10.1046/j.1523-1755.2003.00906.x
|
[14]
|
Owada, S., Goto, S., Bannai, K., Hayashi, H., Nishijima, F. and Niwa, T. (2007) Indoxyl Sulfate Reduces Superoxide Scavenging Activity in the Kidneys of Normal and Uremic Rats. American Journal of Nephrology, 28, 446-454. https://doi.org/10.1159/000112823
|
[15]
|
Lim, Y.J., Sidor, N.A., Tonial, N.C., Che, A. and Urquhart, B.L. (2021) Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13, Article 142. https://doi.org/10.3390/toxins13020142
|
[16]
|
Shimizu, H., Bolati, D., Adijiang, A., Muteliefu, G., Enomoto, A., Nishijima, F., et al. (2011) NF-κB Plays an Important Role in Indoxyl Sulfate-Induced Cellular Senescence, Fibrotic Gene Expression, and Inhibition of Proliferation in Proximal Tubular Cells. American Journal of Physiology-Cell Physiology, 301, C1201-C1212. https://doi.org/10.1152/ajpcell.00471.2010
|
[17]
|
Shimizu, H., Bolati, D., Adijiang, A., Adelibieke, Y., Muteliefu, G., Enomoto, A., et al. (2011) Indoxyl Sulfate Downregulates Renal Expression of Klotho through Production of ROS and Activation of Nuclear Factor-κB. American Journal of Nephrology, 33, 319-324. https://doi.org/10.1159/000324885
|
[18]
|
Rapa, S.F., Prisco, F., Popolo, A., Iovane, V., Autore, G., Di Iorio, B.R., et al. (2021) Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response. International Journal of Molecular Sciences, 22, Article 1135. https://doi.org/10.3390/ijms22031135
|
[19]
|
Sun, C., Chang, S. and Wu, M. (2012) Uremic Toxins Induce Kidney Fibrosis by Activating Intrarenal Renin-Angiotensin-Aldosterone System Associated Epithelial-to-Mesenchymal Transition. PLOS ONE, 7, e34026. https://doi.org/10.1371/journal.pone.0034026
|
[20]
|
Sun, C., Chang, S. and Wu, M. (2012) Suppression of Klotho Expression by Protein-Bound Uremic Toxins Is Associated with Increased DNA Methyltransferase Expression and DNA Hypermethylation. Kidney International, 81, 640-650. https://doi.org/10.1038/ki.2011.445
|
[21]
|
Sun, C.-Y., Hsu, H.-H. and Wu, M.-S. (2012) p-Cresol Sulfate and Indoxyl Sulfate Induce Similar Cellular Inflammatory Gene Expressions in Cultured Proximal Renal Tubular Cells. Nephrology Dialysis Transplantation, 28, 70-78. https://doi.org/10.1093/ndt/gfs133
|
[22]
|
Fujii, H., Nishijima, F., Goto, S., Sugano, M., Yamato, H., Kitazawa, R., et al. (2009) Oral Charcoal Adsorbent (AST-120) Prevents Progression of Cardiac Damage in Chronic Kidney Disease through Suppression of Oxidative Stress. Nephrology Dialysis Transplantation, 24, 2089-2095. https://doi.org/10.1093/ndt/gfp007
|
[23]
|
Lekawanvijit, S., Kompa, A.R., Manabe, M., Wang, B.H., Langham, R.G., Nishijima, F., et al. (2012) Chronic Kidney Disease-Induced Cardiac Fibrosis Is Ameliorated by Reducing Circulating Levels of a Non-Dialysable Uremic Toxin, Indoxyl Sulfate. PLOS ONE, 7, e41281. https://doi.org/10.1371/journal.pone.0041281
|
[24]
|
Lau, W.L., Savoj, J., Nakata, M.B. and Vaziri, N.D. (2018) Altered Microbiome in Chronic Kidney Disease: Systemic Effects of Gut-Derived Uremic Toxins. Clinical Science, 132, 509-522. https://doi.org/10.1042/cs20171107
|
[25]
|
Jing, Y.J., Ni, J.W., Ding, F.H., Fang, Y.H., Wang, X.Q., Wang, H.B., et al. (2016) p-Cresyl Sulfate Is Associated with Carotid Arteriosclerosis in Hemodialysis Patients and Promotes Atherogenesis in ApoE−/− Mice. Kidney International, 89, 439-449. https://doi.org/10.1038/ki.2015.287
|
[26]
|
Watanabe, H., Miyamoto, Y., Enoki, Y., Ishima, Y., Kadowaki, D., Kotani, S., et al. (2014) p‐Cresyl Sulfate, a Uremic Toxin, Causes Vascular Endothelial and Smooth Muscle Cell Damages by Inducing Oxidative Stress. Pharmacology Research & Perspectives, 3, e00092. https://doi.org/10.1002/prp2.92
|
[27]
|
Nii-Kono, T., Iwasaki, Y., Uchida, M., Fujieda, A., Hosokawa, A., Motojima, M., et al. (2007) Indoxyl Sulfate Induces Skeletal Resistance to Parathyroid Hormone in Cultured Osteoblastic Cells. Kidney International, 71, 738-743. https://doi.org/10.1038/sj.ki.5002097
|
[28]
|
韦杏雪, 吴军, 梁新, 丁瑜, 袁发焕. 蛋白结合硫酸吲哚酚损伤红细胞膜[J]. 第三军医大学学报, 2014, 36(24): 2467-2470.
|
[29]
|
Whaley-Connell, A., Habibi, J., Johnson, M., Tilmon, R., Rehmer, N., Rehmer, J., et al. (2009) Nebivolol Reduces Proteinuria and Renal NADPH Oxidase-Generated Reactive Oxygen Species in the Transgenic Ren2 Rat. American Journal of Nephrology, 30, 354-360. https://doi.org/10.1159/000229305
|
[30]
|
Koppe, L., Pillon, N.J., Vella, R.E., Croze, M.L., Pelletier, C.C., Chambert, S., et al. (2013) p-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. Journal of the American Society of Nephrology, 24, 88-99. https://doi.org/10.1681/asn.2012050503
|
[31]
|
Adesso, S., Paterniti, I., Cuzzocrea, S., Fujioka, M., Autore, G., Magnus, T., et al. (2018) AST-120 Reduces Neuroinflammation Induced by Indoxyl Sulfate in Glial Cells. Journal of Clinical Medicine, 7, Article 365. https://doi.org/10.3390/jcm7100365
|
[32]
|
Poesen, R., Mutsaers, H.A.M., Windey, K., van den Broek, P.H., Verweij, V., Augustijns, P., et al. (2015) The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites. PLOS ONE, 10, e0140820. https://doi.org/10.1371/journal.pone.0140820
|
[33]
|
Rossi, M., Johnson, D.W., Xu, H., Carrero, J.J., Pascoe, E., French, C., et al. (2015) Dietary Protein-Fiber Ratio Associates with Circulating Levels of Indoxyl Sulfate and p-Cresyl Sulfate in Chronic Kidney Disease Patients. Nutrition, Metabolism and Cardiovascular Diseases, 25, 860-865. https://doi.org/10.1016/j.numecd.2015.03.015
|
[34]
|
Kieffer, D.A., Piccolo, B.D., Vaziri, N.D., Liu, S., Lau, W.L., Khazaeli, M., et al. (2016) Resistant Starch Alters Gut Microbiome and Metabolomic Profiles Concurrent with Amelioration of Chronic Kidney Disease in Rats. American Journal of Physiology-Renal Physiology, 310, F857-F871. https://doi.org/10.1152/ajprenal.00513.2015
|
[35]
|
Koppe, L. and Fouque, D. (2017) Microbiota and Prebiotics Modulation of Uremic Toxin Generation. Panminerva Medica, 59, 173-187. https://doi.org/10.23736/s0031-0808.16.03282-1
|
[36]
|
Wang, I.-K., Wu, Y.-Y., Yang, Y.-F., Ting, I.-W., Lin, C.-C., Yen, T.-H., et al. (2015) The Effect of Probiotics on Serum Levels of Cytokine and Endotoxin in Peritoneal Dialysis Patients: A Randomised, Double-Blind, Placebo-Controlled Trial. Beneficial Microbes, 6, 423-430. https://doi.org/10.3920/bm2014.0088
|
[37]
|
Meijers, B.K.I., De Preter, V., Verbeke, K., Vanrenterghem, Y. and Evenepoel, P. (2009) p-Cresyl Sulfate Serum Concentrations in Haemodialysis Patients Are Reduced by the Prebiotic Oligofructose-Enriched Inulin. Nephrology Dialysis Transplantation, 25, 219-224. https://doi.org/10.1093/ndt/gfp414
|
[38]
|
Furuse, S.U., Ohse, T., Jo-Watanabe, A., Shigehisa, A., Kawakami, K., Matsuki, T., et al. (2014) Galacto-Oligosaccharides Attenuate Renal Injury with Microbiota Modification. Physiological Reports, 2, e12029. https://doi.org/10.14814/phy2.12029
|
[39]
|
Kobayashi, N., Maeda, A., Horikoshi, S., Shirato, I., Tomino, Y. and Ise, M. (2002) Effects of Oral Adsorbent AST-120 (kremezin®) on Renal Function and Glomerular Injury in Early-Stage Renal Failure of Subtotal Nephrectomized Rats. Nephron, 91, 480-485. https://doi.org/10.1159/000064291
|
[40]
|
Akiyama, Y., Takeuchi, Y., Kikuchi, K., Mishima, E., Yamamoto, Y., Suzuki, C., et al. (2012) A Metabolomic Approach to Clarifying the Effect of AST-120 on 5/6 Nephrectomized Rats by Capillary Electrophoresis with Mass Spectrometry (CE-MS). Toxins, 4, 1309-1322. https://doi.org/10.3390/toxins4111309
|
[41]
|
Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y. and Niwa, T. (2012) Protein-Bound Uremic Toxins in Hemodialysis Patients Measured by Liquid Chromatography/Tandem Mass Spectrometry and Their Effects on Endothelial ROS Production. Analytical and Bioanalytical Chemistry, 403, 1841-1850. https://doi.org/10.1007/s00216-012-5929-3
|
[42]
|
Bammens, B., Evenepoel, P., Verbeke, K. and Vanrenterghem, Y. (2004) Removal of the Protein-Bound Solute p-Cresol by Convective Transport: A Randomized Crossover Study. American Journal of Kidney Diseases, 44, 278-285. https://doi.org/10.1053/j.ajkd.2004.04.033
|
[43]
|
Cornelis, T., Eloot, S., Vanholder, R., Glorieux, G., van der Sande, F.M., Scheijen, J.L., et al. (2015) Protein-Bound Uraemic Toxins, Dicarbonyl Stress and Advanced Glycation End Products in Conventional and Extended Haemodialysis and Haemodiafiltration. Nephrology Dialysis Transplantation, 30, 1395-1402. https://doi.org/10.1093/ndt/gfv038
|
[44]
|
Yamamoto, S., Ito, T., Sato, M., Goto, S., Kazama, J.J., Gejyo, F., et al. (2019) Adsorption of Protein-Bound Uremic Toxins Using Activated Carbon through Direct Hemoperfusion in vitro. Blood Purification, 48, 215-222. https://doi.org/10.1159/000500014
|
[45]
|
Poesen, R., Evenepoel, P., de Loor, H., Bammens, B., Claes, K., Sprangers, B., et al. (2016) The Influence of Renal Transplantation on Retained Microbial-Human Co-Metabolites. Nephrology Dialysis Transplantation, 31, 1721-1729. https://doi.org/10.1093/ndt/gfw009
|
[46]
|
邹川, 吴禹池, 林启展, 刘旭生. 中药结肠洗液联合基础疗法对慢性肾功能衰竭患者BUN、SCr、UA及IS的影响[J]. 中国中西医结合杂志, 2012, 32(9): 1192-1195.
|
[47]
|
戴铭卉, 孔薇, 刘猛, 龚奎. 中药结肠透析与多种透析模式清除慢性肾脏病尿毒症毒素的特点研究[J]. 内蒙古中医药, 2019, 38(5): 164-166.
|
[48]
|
刘广, 郑敏麟, 伞勤. 大黄素对硫酸吲哚酚诱导的心肌细胞损伤的保护作用[J]. 中国中西医结合杂志, 2021, 41(5): 583-588.
|