[1]
|
Sun, M., Ju, J., Ding, Y., Zhao, C. and Tian, C. (2022) The Signaling Pathways Regulated by KRAB Zinc-Finger Proteins in Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877, Article 188731. https://doi.org/10.1016/j.bbcan.2022.188731
|
[2]
|
Wolf, G., Greenberg, D. and Macfarlan, T.S. (2015) Spotting the Enemy Within: Targeted Silencing of Foreign DNA in Mammalian Genomes by the Krüppel-Associated Box Zinc Finger Protein Family. Mobile DNA, 6, Article No. 17. https://doi.org/10.1186/s13100-015-0050-8
|
[3]
|
Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G. and Rauscher, F.J. (2002) SETDB1: A Novel KAP-1-Associated Histone H3, Lysine 9-Specific Methyltransferase That Contributes to Hp1-Mediated Silencing of Euchromatic Genes by KRAB Zinc-Finger Proteins. Genes & Development, 16, 919-932. https://doi.org/10.1101/gad.973302
|
[4]
|
Sripathy, S.P., Stevens, J. and Schultz, D.C. (2006) The KAP1 Corepressor Functions to Coordinate the Assembly of De Novo HP1-Demarcated Microenvironments of Heterochromatin Required for KRAB Zinc Finger Protein-Mediated Transcriptional Repression. Molecular and Cellular Biology, 26, 8623-8638. https://doi.org/10.1128/mcb.00487-06
|
[5]
|
Sun, Y., Keown, J.R., Black, M.M., Raclot, C., Demarais, N., Trono, D., et al. (2019) A Dissection of Oligomerization by the TRIM28 Tripartite Motif and the Interaction with Members of the KRAB-ZFP Family. Journal of Molecular Biology, 431, 2511-2527. https://doi.org/10.1016/j.jmb.2019.05.002
|
[6]
|
Bai, W., Ye, X., Zhang, M., Zhu, H., Xi, W., Huang, X., et al. (2014) MiR‐200c Suppresses TGF‐β Signaling and Counteracts Trastuzumab Resistance and Metastasis by Targeting ZNF217 and ZEB1 in Breast Cancer. International Journal of Cancer, 135, 1356-1368. https://doi.org/10.1002/ijc.28782
|
[7]
|
Vendrell, J.A., Thollet, A., Nguyen, N.T., Ghayad, S.E., Vinot, S., Bièche, I., et al. (2012) ZNF217 Is a Marker of Poor Prognosis in Breast Cancer That Drives Epithelial-Mesenchymal Transition and Invasion. Cancer Research, 72, 3593-3606. https://doi.org/10.1158/0008-5472.can-11-3095
|
[8]
|
Xu, L., Zhang, J., Ma, Y., Yuan, Y., Yu, H., Wang, J., et al. (2022) Microrna-135 Inhibits Initiation of Epithelial-Mesenchymal Transition in Breast Cancer by Targeting ZNF217 and Promoting M6a Modification of Nanog. Oncogene, 41, 1742-1751. https://doi.org/10.1038/s41388-022-02211-2
|
[9]
|
Wang, H., Xu, H., Ma, F., Zhan, M., Yang, X., Hua, S., et al. (2020) Zinc Finger Protein 703 Induces EMT and Sorafenib Resistance in Hepatocellular Carcinoma by Transactivating CLDN4 Expression. Cell Death & Disease, 11, Article No. 225. https://doi.org/10.1038/s41419-020-2422-3
|
[10]
|
Pei, L., He, X., Li, S., Sun, R., Xiang, Q., Ren, G., et al. (2018) KRAB Zinc-Finger Protein 382 Regulates Epithelial-Mesenchymal Transition and Functions as a Tumor Suppressor, but Is Silenced by CpG Methylation in Gastric Cancer. International Journal of Oncology, 53, 961-972. https://doi.org/10.3892/ijo.2018.4446
|
[11]
|
Wang, S., Cheng, Y., Du, W., Lu, L., Zhou, L., Wang, H., et al. (2012) Zinc-Finger Protein 545 Is a Novel Tumour Suppressor That Acts by Inhibiting Ribosomal RNA Transcription in Gastric Cancer. Gut, 62, 833-841. https://doi.org/10.1136/gutjnl-2011-301776
|
[12]
|
Ecco, G., Imbeault, M. and Trono, D. (2017) KRAB Zinc Finger Proteins. Development, 144, 2719-2729. https://doi.org/10.1242/dev.132605
|
[13]
|
Olechnowicz, A., Oleksiewicz, U. and Machnik, M. (2023) KRAB-ZFPs and Cancer Stem Cells Identity. Genes & Diseases, 10, 1820-1832. https://doi.org/10.1016/j.gendis.2022.03.013
|
[14]
|
Sobocińska, J., Molenda, S., Machnik, M. and Oleksiewicz, U. (2021) KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. International Journal of Molecular Sciences, 22, 2212. https://doi.org/10.3390/ijms22042212
|
[15]
|
Nischwitz, S., Cepok, S., Kroner, A., Wolf, C., Knop, M., Müller-Sarnowski, F., et al. (2010) Evidence for VAV2 and ZNF433 as Susceptibility Genes for Multiple Sclerosis. Journal of Neuroimmunology, 227, 162-166. https://doi.org/10.1016/j.jneuroim.2010.06.003
|
[16]
|
Gu, S., Hou, P., Liu, K., Niu, X., Wei, B., Mao, F., et al. (2019) ZNF433 Positively Regulates the Beta-Catenin/TCF Pathway in Prostate Cancer and Enhances the Tumorigenicity of Cancer Cells. OncoTargets and Therapy, 12, 1031-1039. https://doi.org/10.2147/ott.s178150
|
[17]
|
Heyliger, S.O., Soliman, K.F.A., Saulsbury, M.D. and Reams, R.R. (2021) The Identification of Zinc-Finger Protein 433 as a Possible Prognostic Biomarker for Clear-Cell Renal Cell Carcinoma. Biomolecules, 11, Article 1193. https://doi.org/10.3390/biom11081193
|
[18]
|
Schultz, D.C., Friedman, J.R. and Rauscher, F.J. (2001) Targeting Histone Deacetylase Complexes via KRAB-Zinc Finger Proteins: The PHD and Bromodomains of KAP-1 Form a Cooperative Unit That Recruits a Novel Isoform of the Mi-2α Subunit of NuRD. Genes & Development, 15, 428-443. https://doi.org/10.1101/gad.869501
|
[19]
|
Kosuge, M., Ito, J. and Hamada, M. (2024) Landscape of Evolutionary Arms Races between Transposable Elements and KRAB-ZFP Family. Scientific Reports, 14, Article No. 23358. https://doi.org/10.1038/s41598-024-73752-7
|
[20]
|
Gao, S., Hsieh, C., Zhou, J. and Shemshedini, L. (2013) Zinc Finger 280B Regulates SGCα1 and P53 in Prostate Cancer Cells. PLOS ONE, 8, e78766. https://doi.org/10.1371/journal.pone.0078766
|
[21]
|
Tao, C., Luo, J., Tang, J., Zhou, D., Feng, S., Qiu, Z., et al. (2020) The Tumor Suppressor Zinc Finger Protein 471 Suppresses Breast Cancer Growth and Metastasis through Inhibiting AKT and Wnt/β-Catenin Signaling. Clinical Epigenetics, 12, Article No. 173. https://doi.org/10.1186/s13148-020-00959-6
|
[22]
|
Xiang, S., Xiang, T., Xiao, Q., Li, Y., Shao, B. and Luo, T. (2017) Zinc-Finger Protein 545 Is Inactivated Due to Promoter Methylation and Functions as a Tumor Suppressor through the Wnt/β-Catenin, PI3K/AKT and MAPK/ERK Signaling Pathways in Colorectal Cancer. International Journal of Oncology, 51, 801-811. https://doi.org/10.3892/ijo.2017.4064
|
[23]
|
Zhang, C., Xiang, T., Li, S., Ye, L., Feng, Y., Pei, L., et al. (2018) The Novel 19q13 KRAB Zinc-Finger Tumour Suppressor ZNF382 Is Frequently Methylated in Oesophageal Squamous Cell Carcinoma and Antagonises Wnt/β-Catenin Signalling. Cell Death & Disease, 9, Article No. 573. https://doi.org/10.1038/s41419-018-0604-z
|
[24]
|
Liu, Y., Yin, W., Wang, J., Lei, Y., Sun, G., Li, W., et al. (2019) KRAB-Zinc Finger Protein ZNF268A Deficiency Attenuates the Virus-Induced Pro-Inflammatory Response by Preventing IKK Complex Assembly. Cells, 8, Article 1604. https://doi.org/10.3390/cells8121604
|
[25]
|
Wang, T., Wang, X., Xu, J., Wu, X., Qiu, H., Yi, H., et al. (2012) Overexpression of the Human ZNF300 Gene Enhances Growth and Metastasis of Cancer Cells through Activating NF‐κB Pathway. Journal of Cellular and Molecular Medicine, 16, 1134-1145. https://doi.org/10.1111/j.1582-4934.2011.01388.x
|
[26]
|
高梅. KRAB型锌指蛋白家族中p53调控分子的筛选及功能研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2009.
|
[27]
|
Olcina, M.M., Leszczynska, K.B., Senra, J.M., Isa, N.F., Harada, H. and Hammond, E.M. (2015) H3K9me3 Facilitates Hypoxia-Induced P53-Dependent Apoptosis through Repression of APAK. Oncogene, 35, 793-799. https://doi.org/10.1038/onc.2015.134
|
[28]
|
Tian, C., Xing, G., Xie, P., Lu, K., Nie, J., Wang, J., et al. (2009) KRAB-Type Zinc-Finger Protein APAK Specifically Regulates P53-Dependent Apoptosis. Nature Cell Biology, 11, 580-591. https://doi.org/10.1038/ncb1864
|
[29]
|
Yuan, L., Tian, C., Wang, H., Song, S., Li, D., Xing, G., et al. (2012) APAK Competes with P53 for Direct Binding to Intron 1 of p53AIP1 to Regulate Apoptosis. EMBO reports, 13, 363-370. https://doi.org/10.1038/embor.2012.10
|
[30]
|
Zhang, X., Zheng, Q., Yue, X., Yuan, Z., Ling, J., Yuan, Y., et al. (2022) ZNF498 Promotes Hepatocellular Carcinogenesis by Suppressing p53-Mediated Apoptosis and Ferroptosis via the Attenuation of p53 Ser46 Phosphorylation. Journal of Experimental & Clinical Cancer Research, 41, Article No. 79. https://doi.org/10.1186/s13046-022-02288-3
|
[31]
|
An, N., Peng, H., Hou, M., Su, D., Wang, L., Shen, X., et al. (2023) The Zinc Figure Protein ZNF575 Impairs Colorectal Cancer Growth via Promoting P53 Transcription. Oncology Research, 31, 307-316. https://doi.org/10.32604/or.2023.028564
|
[32]
|
Chugh, R.M., Bhanja, P., Zitter, R., Gunewardena, S., Badkul, R. and Saha, S. (2025) Modulation of β-Catenin Promotes WNT Expression in Macrophages and Mitigates Intestinal Injury. Cell Communication and Signaling, 23, Article No. 78. https://doi.org/10.1186/s12964-025-02065-7
|
[33]
|
Koelman, E.M.R., Yeste-Vázquez, A. and Grossmann, T.N. (2022) Targeting the Interaction of β-Catenin and TCF/LEF Transcription Factors to Inhibit Oncogenic Wnt Signaling. Bioorganic & Medicinal Chemistry, 70, Article 116920. https://doi.org/10.1016/j.bmc.2022.116920
|
[34]
|
Chen, L., Wu, X., Xie, H., Yao, N., Xia, Y., Ma, G., et al. (2019) ZFP57 Suppress Proliferation of Breast Cancer Cells through Down-Regulation of Mest-Mediated Wnt/β-Catenin Signalling Pathway. Cell Death & Disease, 10, Article No. 169. https://doi.org/10.1038/s41419-019-1335-5
|
[35]
|
Zhan, W., Li, Y., Liu, X., Zheng, C. and Fu, Y. (2020) ZNF671 Inhibits the Proliferation and Metastasis of NSCLC via the Wnt/β-Catenin Pathway. Cancer Management and Research, 12, 599-610. https://doi.org/10.2147/cmar.s235933
|
[36]
|
Capece, D., Verzella, D., Tessitore, A., Alesse, E., Capalbo, C. and Zazzeroni, F. (2018) Cancer Secretome and Inflammation: The Bright and the Dark Sides of NF-κB. Seminars in Cell & Developmental Biology, 78, 51-61. https://doi.org/10.1016/j.semcdb.2017.08.004
|
[37]
|
Deka, K. and Li, Y. (2023) Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells, 12, Article 788. https://doi.org/10.3390/cells12050788
|
[38]
|
Seaton, G., Smith, H., Brancale, A., Westwell, A.D. and Clarkson, R. (2024) Multifaceted Roles for BCL3 in Cancer: A Proto-Oncogene Comes of Age. Molecular Cancer, 23, Article No. 7. https://doi.org/10.1186/s12943-023-01922-8
|
[39]
|
Taniguchi, K. and Karin, M. (2018) NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nature Reviews Immunology, 18, 309-324. https://doi.org/10.1038/nri.2017.142
|
[40]
|
Wang, W., Guo, M., Hu, L., Cai, J., Zeng, Y., Luo, J., et al. (2012) The Zinc Finger Protein ZNF268 Is Overexpressed in Human Cervical Cancer and Contributes to Tumorigenesis via Enhancing NF-κB Signaling. Journal of Biological Chemistry, 287, 42856-42866. https://doi.org/10.1074/jbc.m112.399923
|
[41]
|
Catapano, R., Sepe, L., Toscano, E., Paolella, G., Chiurazzi, F., Barbato, S.P., et al. (2022) Biological Relevance of ZNF224 Expression in Chronic Lymphocytic Leukemia and Its Implication in NF-κB Pathway Regulation. Frontiers in Molecular Biosciences, 9, Article 1010984. https://doi.org/10.3389/fmolb.2022.1010984
|
[42]
|
Quenneville, S., Turelli, P., Bojkowska, K., Raclot, C., Offner, S., Kapopoulou, A., et al. (2012) The KRAB-ZFP/KAP1 System Contributes to the Early Embryonic Establishment of Site-Specific DNA Methylation Patterns Maintained during Development. Cell Reports, 2, 766-773. https://doi.org/10.1016/j.celrep.2012.08.043
|
[43]
|
Liu, H., Wei, Q., Huang, C., Zhang, Y. and Guo, Z. (2017) Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. International Journal of Molecular Sciences, 18, Article 1898. https://doi.org/10.3390/ijms18091898
|
[44]
|
孙冉. 1.ZNF471在人食管鳞状细胞癌中作用和机制研究2.IRF4在食管鳞状细胞癌患者中的预后意义研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2019.
|
[45]
|
范伟荣. 转录因子ZFP57促进卵巢癌发生发展的作用及其分子机制研究[D]: [博士学位论文]. 广州: 南方医科大学, 2023.
|
[46]
|
Wang, X., Yao, L., Li, Z., Zhang, J., Ruan, M., Mulati, Y., et al. (2024) ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/Akt/mTOR Signalling but Is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. International Journal of Biological Sciences, 20, 643-663. https://doi.org/10.7150/ijbs.89785
|
[47]
|
赵佳. ZNF526在肝癌中的作用及机制研究[D]: [硕士学位论文]. 重庆: 中南大学, 2022.
|
[48]
|
董科. ZNF8特异性促进乳腺癌肺转移功能和作用机制的研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
|
[49]
|
Lin, L., Chuang, C., Li, C., Liao, C., Cheng, C., Cheng, T., et al. (2010) ZBRK1 Acts as a Metastatic Suppressor by Directly Regulating MMP9 in Cervical Cancer. Cancer Research, 70, 192-201. https://doi.org/10.1158/0008-5472.can-09-2641
|
[50]
|
Chong, Y., Zhang, K., Zeng, Y., Chen, Q., Feng, Q., Cui, N., et al. (2024) ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both in Vivo and in Vitro. Cancers, 16, Article 3717. https://doi.org/10.3390/cancers16213717
|
[51]
|
Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., et al. (2021) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 50, D20-D26. https://doi.org/10.1093/nar/gkab1112
|
[52]
|
Heyliger, S.O., Soliman, K.F.A., Saulsbury, M.D. and Reams, R.R. (2022) Prognostic Relevance of ZNF844 and Chr 19p13.2 KRAB-Zinc Finger Proteins in Clear Cell Renal Carcinoma. Cancer Genomics-Proteomics, 19, 305-327. https://doi.org/10.21873/cgp.20322
|