[1]
|
Zhao, X., Huang, H. and Du, C. (2022) Association of Physical Fitness with Cognitive Function in the Community-Dwelling Older Adults. BMC Geriatrics, 22, Article No. 868. https://doi.org/10.1186/s12877-022-03564-9
|
[2]
|
Chen, S., Huang, G., Yuan, L., Zeng, Q., Wang, D., Wen, X., et al. (2021) Neuroimaging Mechanisms of High-Frequency Repetitive Transcranial Magnetic Stimulation for Treatment of Amnestic Mild Cognitive Impairment: A Double-Blind Randomized Sham-Controlled Trial. Neural Regeneration Research, 16, 707-713. https://doi.org/10.4103/1673-5374.295345
|
[3]
|
Burke, M.J., Fried, P.J. and Pascual-Leone, A. (2019) Transcranial Magnetic Stimulation: Neurophysiological and Clinical Applications. In: Handbook of Clinical Neurology, Elsevier, 73-92. https://doi.org/10.1016/b978-0-12-804281-6.00005-7
|
[4]
|
Tatti, E., Rossi, S., Innocenti, I., Rossi, A. and Santarnecchi, E. (2016) Non-Invasive Brain Stimulation of the Aging Brain: State of the Art and Future Perspectives. Ageing Research Reviews, 29, 66-89. https://doi.org/10.1016/j.arr.2016.05.006
|
[5]
|
Koch, G., Casula, E.P., Bonnì, S., Borghi, I., Assogna, M., Minei, M., et al. (2022) Precuneus Magnetic Stimulation for Alzheimer’s Disease: A Randomized, Sham-Controlled Trial. Brain, 145, 3776-3786. https://doi.org/10.1093/brain/awac285
|
[6]
|
Buss, S.S., Fried, P.J. and Pascual-Leone, A. (2019) Therapeutic Noninvasive Brain Stimulation in Alzheimer’s Disease and Related Dementias. Current Opinion in Neurology, 32, 292-304. https://doi.org/10.1097/wco.0000000000000669
|
[7]
|
Pople, C.B., Meng, Y., Li, D.Z., Bigioni, L., Davidson, B., Vecchio, L.M., et al. (2020) Neuromodulation in the Treatment of Alzheimer’s Disease: Current and Emerging Approaches. Journal of Alzheimer’s Disease, 78, 1299-1313. https://doi.org/10.3233/jad-200913
|
[8]
|
Rajji, T.K. (2019) Transcranial Magnetic and Electrical Stimulation in Alzheimer’s Disease and Mild Cognitive Impairment: A Review of Randomized Controlled Trials. Clinical Pharmacology & Therapeutics, 106, 776-780. https://doi.org/10.1002/cpt.1574
|
[9]
|
Liu, Y., Fu, Y., Zhang, Y., Liu, F., Rose, G.M., He, X., et al. (2020) Butein Attenuates the Cytotoxic Effects of LPS-Stimulated Microglia on the SH-SY5Y Neuronal Cell Line. European Journal of Pharmacology, 868, Article 172858. https://doi.org/10.1016/j.ejphar.2019.172858
|
[10]
|
程洁鸿, 张桂梁, 郭宝剑, 孙业伟, 张高小, 王玉强, 张在军. T-006改善APP/PS1/Tau转基因小鼠学习记忆功能及调控突触相关蛋白表达[J]. 中山大学学报(医学科学版), 2021, 42(5): 667-675.
|
[11]
|
Nedergaard, M. and Goldman, S.A. (2020) Glymphatic Failure as a Final Common Pathway to Dementia. Science, 370, 50-56. https://doi.org/10.1126/science.abb8739
|
[12]
|
Siddappaji, K.K. and Gopal, S. (2021) Molecular Mechanisms in Alzheimer’s Disease and the Impact of Physical Exercise with Advancements in Therapeutic Approaches. AIMS Neuroscience, 8, 357-389. https://doi.org/10.3934/neuroscience.2021020
|
[13]
|
Huang, Z., Tan, T., Du, Y., Chen, L., Fu, M., Yu, Y., et al. (2017) Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease. Frontiers in Aging Neuroscience, 9, Article 292. https://doi.org/10.3389/fnagi.2017.00292
|
[14]
|
Choung, J.S., Kim, J.M., Ko, M., Cho, D.S. and Kim, M. (2021) Therapeutic Efficacy of Repetitive Transcranial Magnetic Stimulation in an Animal Model of Alzheimer’s Disease. Scientific Reports, 11, Article No. 437. https://doi.org/10.1038/s41598-020-80147-x
|
[15]
|
Tao, Y., Lei, B., Zhu, Y., Fang, X., Liao, L., Chen, D., et al. (2022) Repetitive Transcranial Magnetic Stimulation Decreases Serum Amyloid-β and Increases Ectodomain of P75 Neurotrophin Receptor in Patients with Alzheimer’s Disease. Journal of Integrative Neuroscience, 21, Article 140. https://doi.org/10.31083/j.jin2105140
|
[16]
|
Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., et al. (2016) Gamma Frequency Entrainment Attenuates Amyloid Load and Modifies Microglia. Nature, 540, 230-235. https://doi.org/10.1038/nature20587
|
[17]
|
Lin, Y., Jin, J., Lv, R., Luo, Y., Dai, W., Li, W., et al. (2021) Repetitive Transcranial Magnetic Stimulation Increases the Brain’s Drainage Efficiency in a Mouse Model of Alzheimer’s Disease. Acta Neuropathologica Communications, 9, Article No. 102. https://doi.org/10.1186/s40478-021-01198-3
|
[18]
|
Naseri, N.N., Wang, H., Guo, J., Sharma, M. and Luo, W. (2019) The Complexity of Tau in Alzheimer’s Disease. Neuroscience Letters, 705, 183-194. https://doi.org/10.1016/j.neulet.2019.04.022
|
[19]
|
许蓬娟, 蔡青, 谭俊珍, 等. Wnt/β-Catenin信号通路在阿尔茨海默病神经元变性中的研究进展[J]. 重庆医科大学学报, 2019, 44(4): 419-423.
|
[20]
|
Liu, X., Zhang, Y., Wang, J., et al. (2020) Repetitive Transcranial Magnetic Stimulation Attenuates Tau Hyperphosphorylation via Inhibiting GSK-3β Signaling in a Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 57, 2319-2332.
|
[21]
|
Yang, H., Li, Q., Wu, T., et al. (2023) 10 Hz Repetitive Transcranial Magnetic Stimulation Rescues Cortical Synaptic Plasticity and Microtubule Dynamics in 3xTg-AD Mice by Suppressing GSK-3β Overactivation. Aging and Disease, 14, 401-415.
|
[22]
|
张凤霞, 张旻, 朱珊珊. 重复经颅磁刺激对阿尔茨海默病患者临床症状及血浆微小核糖核酸-125b、血浆磷酸化Tau-181蛋白的影响[J]. 中国康复医学杂志, 2024, 39(2): 196-200.
|
[23]
|
Chi, H., Chang, H. and Sang, T. (2018) Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. International Journal of Molecular Sciences, 19, Article 3082. https://doi.org/10.3390/ijms19103082
|
[24]
|
Obulesu, M. and Lakshmi, M.J. (2014) Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues. Neurochemical Research, 39, 2301-2312. https://doi.org/10.1007/s11064-014-1454-4
|
[25]
|
Paradis, E., Douillard, H., Koutroumanis, M., Goodyer, C. and LeBlanc, A. (1996) Amyloid β Peptide of Alzheimer’s Disease Downregulates Bcl-2 and Upregulates Bax Expression in Human Neurons. The Journal of Neuroscience, 16, 7533-7539. https://doi.org/10.1523/jneurosci.16-23-07533.1996
|
[26]
|
Chen, X., Chen, S., Liang, W. and Ba, F. (2019) Administration of Repetitive Transcranial Magnetic Stimulation Attenuates Aβ1-42-Induced Alzheimer’s Disease in Mice by Activating β-Catenin Signaling. BioMed Research International, 2019, Article 1431760. https://doi.org/10.1155/2019/1431760
|
[27]
|
Yulug, B., Hanoglu, L., Kilic, E., Polat, B. and Rüdiger Schabitz, W. (2016) The Neuroprotective Role of Repetitive Transcranial Magnetic Stimulation (rTMS) for Neurodegenerative Diseases: A Short Review on Experimental Studies. Mini-Reviews in Medicinal Chemistry, 16, 1269-1273. https://doi.org/10.2174/1389557516666160523145154
|
[28]
|
李欣梦, 孙雪华. 重复经颅磁刺激改善阿尔茨海默病认知障碍作用机制的研究进展[J]. 中风与神经疾病杂志, 2024, 41(8): 704-708.
|
[29]
|
Thickbroom, G.W. (2007) Transcranial Magnetic Stimulation and Synaptic Plasticity: Experimental Framework and Human Models. Experimental Brain Research, 180, 583-593. https://doi.org/10.1007/s00221-007-0991-3
|
[30]
|
Tan, T., Xie, J., Liu, T., Chen, X., Zheng, X., Tong, Z., et al. (2013) Low-Frequency (1HZ) Repetitive Transcranial Magnetic Stimulation (rTMS) Reverses Aβ1-42-Mediated Memory Deficits in Rats. Experimental Gerontology, 48, 786-794. https://doi.org/10.1016/j.exger.2013.05.001
|
[31]
|
Wang, F., Zhang, Y., Wang, L., Sun, P., Luo, X., Ishigaki, Y., et al. (2015) Improvement of Spatial Learning by Facilitating Large-Conductance Calcium-Activated Potassium Channel with Transcranial Magnetic Stimulation in Alzheimer’s Disease Model Mice. Neuropharmacology, 97, 210-219. https://doi.org/10.1016/j.neuropharm.2015.05.027
|
[32]
|
Zhang, N., Xing, M., Wang, Y., Tao, H. and Cheng, Y. (2015) Repetitive Transcranial Magnetic Stimulation Enhances Spatial Learning and Synaptic Plasticity via the VEGF and BDNF-NMDAR Pathways in a Rat Model of Vascular Dementia. Neuroscience, 311, 284-291. https://doi.org/10.1016/j.neuroscience.2015.10.038
|
[33]
|
Zhen, J., Qian, Y., Weng, X., Su, W., Zhang, J., Cai, L., et al. (2017) Gamma Rhythm Low Field Magnetic Stimulation Alleviates Neuropathologic Changes and Rescues Memory and Cognitive Impairments in a Mouse Model of Alzheimer’s Disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3, 487-497. https://doi.org/10.1016/j.trci.2017.07.002
|
[34]
|
Ma, J., Zhang, Z., Kang, L., Geng, D., Wang, Y., Wang, M., et al. (2014) Repetitive Transcranial Magnetic Stimulation (rTMS) Influences Spatial Cognition and Modulates Hippocampal Structural Synaptic Plasticity in Aging Mice. Experimental Gerontology, 58, 256-268. https://doi.org/10.1016/j.exger.2014.08.011
|
[35]
|
Gersner, R., Kravetz, E., Feil, J., Pell, G. and Zangen, A. (2011) Long-Term Effects of Repetitive Transcranial Magnetic Stimulation on Markers for Neuroplasticity: Differential Outcomes in Anesthetized and Awake Animals. The Journal of Neuroscience, 31, 7521-7526. https://doi.org/10.1523/jneurosci.6751-10.2011
|
[36]
|
Müller, M. (2000) Long-Term Repetitive Transcranial Magnetic Stimulation Increases the Expression of Brain-Derived Neurotrophic Factor and Cholecystokinin mRNA, but Not Neuropeptide Tyrosine mRNA in Specific Areas of Rat Brain. Neuropsychopharmacology, 23, 205-215. https://doi.org/10.1016/s0893-133x(00)00099-3
|
[37]
|
Shang, Y., Wang, X., Shang, X., Zhang, H., Liu, Z., Yin, T., et al. (2016) Repetitive Transcranial Magnetic Stimulation Effectively Facilitates Spatial Cognition and Synaptic Plasticity Associated with Increasing the Levels of BDNF and Synaptic Proteins in Wistar Rats. Neurobiology of Learning and Memory, 134, 369-378. https://doi.org/10.1016/j.nlm.2016.08.016
|
[38]
|
Etiévant, A., Manta, S., Latapy, C., Magno, L.A.V., Fecteau, S. and Beaulieu, J. (2015) Repetitive Transcranial Magnetic Stimulation Induces Long-Lasting Changes in Protein Expression and Histone Acetylation. Scientific Reports, 5, Article No. 16873. https://doi.org/10.1038/srep16873
|
[39]
|
Kole, M.H.P., Fuchs, E., Ziemann, U., Paulus, W. and Ebert, U. (1999) Changes in 5-HT1A and NMDA Binding Sites by a Single Rapid Transcranial Magnetic Stimulation Procedure in Rats. Brain Research, 826, 309-312. https://doi.org/10.1016/s0006-8993(99)01257-3
|
[40]
|
Ma, J., Wang, J., Lv, C., Pang, J., Han, B., Wang, M., et al. (2017) The Role of Hippocampal Structural Synaptic Plasticity in Repetitive Transcranial Magnetic Stimulation to Improve Cognitive Function in Male SAMP8 Mice. Cellular Physiology and Biochemistry, 41, 137-144. https://doi.org/10.1159/000455982
|
[41]
|
Wang, F., Geng, X., Tao, H. and Cheng, Y. (2010) The Restoration after Repetitive Transcranial Magnetic Stimulation Treatment on Cognitive Ability of Vascular Dementia Rats and Its Impacts on Synaptic Plasticity in Hippocampal CA1 Area. Journal of Molecular Neuroscience, 41, 145-155. https://doi.org/10.1007/s12031-009-9311-7
|
[42]
|
Yang, H., Liu, Y., Xie, J., Liu, N. and Tian, X. (2015) Effects of Repetitive Transcranial Magnetic Stimulation on Synaptic Plasticity and Apoptosis in Vascular Dementia Rats. Behavioural Brain Research, 281, 149-155. https://doi.org/10.1016/j.bbr.2014.12.037
|
[43]
|
Ueyama, E., Ukai, S., Ogawa, A., Yamamoto, M., Kawaguchi, S., Ishii, R., et al. (2011) Chronic Repetitive Transcranial Magnetic Stimulation Increases Hippocampal Neurogenesis in Rats. Psychiatry and Clinical Neurosciences, 65, 77-81. https://doi.org/10.1111/j.1440-1819.2010.02170.x
|
[44]
|
Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Fragniere, A., Tyers, P., et al. (2009) A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation. Science, 325, 210-213. https://doi.org/10.1126/science.1173215
|
[45]
|
Svob Strac, D., Muck-Seler, D. and Pivac, N. (2015) Neurotransmitter Measures in the Cerebrospinal Fluid of Patients with Alzheimer’s Disease: A Review. Psychiatria Danubina, 27, 14-24.
|
[46]
|
Reinikainen, K.J., Soininen, H. and Riekkinen, P.J. (1990) Neurotransmitter Changes in Alzheimer’s Disease: Implications to Diagnostics and Therapy. Journal of Neuroscience Research, 27, 576-586. https://doi.org/10.1002/jnr.490270419
|
[47]
|
Snowden, S.G., Ebshiana, A.A., Hye, A., Pletnikova, O., O’Brien, R., Yang, A., et al. (2019) Neurotransmitter Imbalance in the Brain and Alzheimer’s Disease Pathology. Journal of Alzheimer’s Disease, 72, 35-43. https://doi.org/10.3233/jad-190577
|
[48]
|
Kaur, S., DasGupta, G. and Singh, S. (2019) Altered Neurochemistry in Alzheimer’s Disease: Targeting Neurotransmitter Receptor Mechanisms and Therapeutic Strategy. Neurophysiology, 51, 293-309. https://doi.org/10.1007/s11062-019-09823-7
|
[49]
|
Speranza, L., di Porzio, U., Viggiano, D., de Donato, A. and Volpicelli, F. (2021) Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells, 10, Article 735. https://doi.org/10.3390/cells10040735
|
[50]
|
He, Z., Jiang, Y., Gu, S., Wu, D., Qin, D., Feng, G., et al. (2021) The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Frontiers in Cell and Developmental Biology, 9, Article 713762. https://doi.org/10.3389/fcell.2021.713762
|
[51]
|
Pan, X., Kaminga, A.C., Wen, S.W., Wu, X., Acheampong, K. and Liu, A. (2019) Dopamine and Dopamine Receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Frontiers in Aging Neuroscience, 11, Article 175. https://doi.org/10.3389/fnagi.2019.00175
|
[52]
|
D’Amelio, M., Puglisi-Allegra, S. and Mercuri, N. (2018) The Role of Dopaminergic Midbrain in Alzheimer’s Disease: Translating Basic Science into Clinical Practice. Pharmacological Research, 130, 414-419. https://doi.org/10.1016/j.phrs.2018.01.016
|
[53]
|
Nobili, A., Latagliata, E.C., Viscomi, M.T., Cavallucci, V., Cutuli, D., Giacovazzo, G., et al. (2017) Dopamine Neuronal Loss Contributes to Memory and Reward Dysfunction in a Model of Alzheimer’s Disease. Nature Communications, 8, Article No. 14727. https://doi.org/10.1038/ncomms14727
|
[54]
|
Liu, J., Chang, L., Song, Y., Li, H. and Wu, Y. (2019) The Role of NMDA Receptors in Alzheimer’s Disease. Frontiers in Neuroscience, 13, Article 43. https://doi.org/10.3389/fnins.2019.00043
|
[55]
|
Kodis, E.J., Choi, S., Swanson, E., Ferreira, G. and Bloom, G.S. (2018) N‐Methyl‐D‐Aspartate Receptor-Mediated Calcium Influx Connects Amyloid‐β Oligomers to Ectopic Neuronal Cell Cycle Reentry in Alzheimer’s Disease. Alzheimer’s & Dementia, 14, 1302-1312. https://doi.org/10.1016/j.jalz.2018.05.017
|
[56]
|
Niimi, M., Fujita, Y., Ishima, T., Hashimoto, K., Sasaki, N., Hara, T., et al. (2020) Role of D-Serine in the Beneficial Effects of Repetitive Transcranial Magnetic Stimulation in Post-Stroke Patients. Acta Neuropsychiatrica, 32, 128-134. https://doi.org/10.1017/neu.2020.4
|
[57]
|
Xiao, N. and Le, Q. (2016) Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Archivum Immunologiae et Therapiae Experimentalis, 64, 89-99. https://doi.org/10.1007/s00005-015-0376-4
|
[58]
|
Pinton, S., Sampaio, T., Savall, A. and Gutierrez, M.Z. (2017) Neurotrophic Factors in Alzheimer’s and Parkinson’s Diseases: Implications for Pathogenesis and Therapy. Neural Regeneration Research, 12, 549-557. https://doi.org/10.4103/1673-5374.205084
|
[59]
|
Budni, J., Bellettini-Santos, T., Mina, F., et al. (2015) The Involvement of BDNF, NGF and GDNF in Aging and Alzheimer’s Disease. Aging and disease, 6, 331-341. https://doi.org/10.14336/ad.2015.0825
|
[60]
|
Miranda, M., Morici, J.F., Zanoni, M.B. and Bekinschtein, P. (2019) Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 13, Article 363. https://doi.org/10.3389/fncel.2019.00363
|
[61]
|
Serrano-Pozo, A., Frosch, M.P., Masliah, E. and Hyman, B.T. (2011) Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1, a006189. https://doi.org/10.1101/cshperspect.a006189
|
[62]
|
Velioglu, H.A., Hanoglu, L., Bayraktaroglu, Z., Toprak, G., Guler, E.M., Bektay, M.Y., et al. (2021) Left Lateral Parietal rTMS Improves Cognition and Modulates Resting Brain Connectivity in Patients with Alzheimer’s Disease: Possible Role of BDNF and Oxidative Stress. Neurobiology of Learning and Memory, 180, Article 107410. https://doi.org/10.1016/j.nlm.2021.107410
|
[63]
|
Chen, X., Dong, G. and Wang, L. (2020) High‐Frequency Transcranial Magnetic Stimulation Protects APP/PS1 Mice against Alzheimer’s Disease Progress by Reducing APOE and Enhancing Autophagy. Brain and Behavior, 10, e01740. https://doi.org/10.1002/brb3.1740
|
[64]
|
Ma, J., Zhang, Z., Su, Y., Kang, L., Geng, D., Wang, Y., et al. (2013) Magnetic Stimulation Modulates Structural Synaptic Plasticity and Regulates BDNF-TrkB Signal Pathway in Cultured Hippocampal Neurons. Neurochemistry International, 62, 84-91. https://doi.org/10.1016/j.neuint.2012.11.010
|
[65]
|
庄丽英, 张志珺. 神经炎症与阿尔茨海默病[J]. 中华行为医学与脑科学杂志, 2012, 31(7): 664-665.
|
[66]
|
陈虹茹, 何川, 黄重生, 等. 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响[J]. 实用医学杂志, 2021, 37(12): 1534-1538.
|
[67]
|
Luo, J., Feng, Y., Li, M., Yin, M., Qin, F. and Hu, X. (2022) Repetitive Transcranial Magnetic Stimulation Improves Neurological Function and Promotes the Anti-Inflammatory Polarization of Microglia in Ischemic Rats. Frontiers in Cellular Neuroscience, 16, Article 878345. https://doi.org/10.3389/fncel.2022.878345
|
[68]
|
董靖雯, 杜玉洁, 王理鑫, 等. 重复经颅磁刺激联合认知训练对阿尔茨海默病患者血清炎症因子及T淋巴细胞亚群的影响[J]. 中国当代医药, 2023, 30(21): 8-13.
|
[69]
|
Cha, B., Kim, J., Kim, J.M., Choi, J., Choi, J., Kim, K., et al. (2022) Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation for Post-Stroke Vascular Cognitive Impairment: A Prospective Pilot Study. Frontiers in Neurology, 13, Article 813597. https://doi.org/10.3389/fneur.2022.813597
|
[70]
|
Huang, W., Zhang, X. and Chen, W. (2016) Role of Oxidative Stress in Alzheimer’s Disease. Biomedical Reports, 4, 519-522. https://doi.org/10.3892/br.2016.630
|
[71]
|
Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. and Collin, F. (2018) Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biology, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014
|
[72]
|
Chen, Z. and Zhong, C. (2014) Oxidative Stress in Alzheimer’s Disease. Neuroscience Bulletin, 30, 271-281. https://doi.org/10.1007/s12264-013-1423-y
|
[73]
|
Molinari, C., Morsanuto, V., Ruga, S., Notte, F., Farghali, M., Galla, R., et al. (2020) The Role of BDNF on Aging-Modulation Markers. Brain Sciences, 10, Article 285. https://doi.org/10.3390/brainsci10050285
|
[74]
|
Velioglu, H.A., Hanoglu, L., Bayraktaroglu, Z., Toprak, G., Guler, E.M., Bektay, M.Y., et al. (2021) Left Lateral Parietal rTMS Improves Cognition and Modulates Resting Brain Connectivity in Patients with Alzheimer’s Disease: Possible Role of BDNF and Oxidative Stress. Neurobiology of Learning and Memory, 180, Article 107410. https://doi.org/10.1016/j.nlm.2021.107410
|
[75]
|
Chen, Z. and Zhong, C. (2013) Decoding Alzheimer’s Disease from Perturbed Cerebral Glucose Metabolism: Implications for Diagnostic and Therapeutic Strategies. Progress in Neurobiology, 108, 21-43. https://doi.org/10.1016/j.pneurobio.2013.06.004
|
[76]
|
Cunnane, S.C., Courchesne‐Loyer, A., St‐Pierre, V., Vandenberghe, C., Pierotti, T., Fortier, M., et al. (2016) Can Ketones Compensate for Deteriorating Brain Glucose Uptake during Aging? Implications for the Risk and Treatment of Alzheimer’s Disease. Annals of the New York Academy of Sciences, 1367, 12-20. https://doi.org/10.1111/nyas.12999
|
[77]
|
Wiciński, M., Socha, M., Malinowski, B., Wódkiewicz, E., Walczak, M., Górski, K., et al. (2019) Liraglutide and Its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. International Journal of Molecular Sciences, 20, Article 1050. https://doi.org/10.3390/ijms20051050
|
[78]
|
Cao, H., Zuo, C., Gu, Z., Huang, Y., Yang, Y., Zhu, L., et al. (2022) High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Deficits in 3xTg-AD Mice by Modulating the PI3K/Akt/GLT-1 Axis. Redox Biology, 54, Article 102354. https://doi.org/10.1016/j.redox.2022.102354
|
[79]
|
Tremblay, S., Tuominen, L., Zayed, V., Pascual-Leone, A. and Joutsa, J. (2020) The Study of Noninvasive Brain Stimulation Using Molecular Brain Imaging: A Systematic Review. NeuroImage, 219, Article 117023. https://doi.org/10.1016/j.neuroimage.2020.117023
|
[80]
|
Cho, S.S., Yoon, E.J., Bang, S.A., Park, H.S., Kim, Y.K., Strafella, A.P., et al. (2012) Metabolic Changes of Cerebrum by Repetitive Transcranial Magnetic Stimulation over Lateral Cerebellum: A Study with FDG PET. The Cerebellum, 11, 739-748. https://doi.org/10.1007/s12311-011-0333-7
|
[81]
|
McKinley, R.A., Bridges, N., Walters, C.M. and Nelson, J. (2012) Modulating the Brain at Work Using Noninvasive Transcranial Stimulation. NeuroImage, 59, 129-137. https://doi.org/10.1016/j.neuroimage.2011.07.075
|
[82]
|
Ahmed, M.A., Darwish, E.S., Khedr, E.M., El Serogy, Y.M. and Ali, A.M. (2012) Effects of Low versus High Frequencies of Repetitive Transcranial Magnetic Stimulation on Cognitive Function and Cortical Excitability in Alzheimer’s Dementia. Journal of Neurology, 259, 83-92. https://doi.org/10.1007/s00415-011-6128-4
|
[83]
|
Preston, G., Anderson, E., Silva, C., Goldberg, T. and Wassermann, E.M. (2010) Effects of 10 Hz rTMS on the Neural Efficiency of Working Memory. Journal of Cognitive Neuroscience, 22, 447-456. https://doi.org/10.1162/jocn.2009.21209
|
[84]
|
Turriziani, P., Smirni, D., Mangano, G.R., Zappalà, G., Giustiniani, A., Cipolotti, L., et al. (2019) Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 72, 613-622. https://doi.org/10.3233/jad-190888
|
[85]
|
Traikapi, A. and Konstantinou, N. (2021) Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Frontiers in Systems Neuroscience, 15, Article 782399. https://doi.org/10.3389/fnsys.2021.782399
|
[86]
|
Bai, W., Liu, T., Dou, M., Xia, M., Lu, J. and Tian, X. (2018) Repetitive Transcranial Magnetic Stimulation Reverses Aβ1-42-Induced Dysfunction in Gamma Oscillation during Working Memory. Current Alzheimer Research, 15, 570-577. https://doi.org/10.2174/1567205015666180110114050
|
[87]
|
Wang, S., Li, K., Zhao, S., Zhang, X., Yang, Z., Zhang, J., et al. (2020) Early-Stage Dysfunction of Hippocampal Theta and Gamma Oscillations and Its Modulation of Neural Network in a Transgenic 5xFAD Mouse Model. Neurobiology of Aging, 94, 121-129. https://doi.org/10.1016/j.neurobiolaging.2020.05.002
|
[88]
|
林亚可, 孙婷婷, 黄亚楠, 等. 阿尔茨海默病重复经颅磁刺激治疗的研究进展[J]. 中风与神经疾病杂志, 2023, 40(7): 601-605.
|