气道反应性测定在儿童哮喘中的应用进展
Progress on Measurement of Airway Responsiveness in Children with Bronchial Asthma
DOI: 10.12677/acm.2025.1541238, PDF, HTML, XML,   
作者: 杨旭旭, 刘 莎*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 支气管哮喘气道高反应性儿童Bronchial Asthma Airway Hyperresponsiveness Children
摘要: 支气管哮喘是一种以慢性气道炎症及气道高反应性为特征的异质性疾病。支气管激发试验是评估气道高反应性的主要方法。传统BPT以肺通气功能为基础,依赖第一秒用力呼气容积(FEV1)变化作为判断指标;而脉冲振荡技术(IOS)因无需主动配合呼吸动作,在学龄前患者中展现出独特优势。准确评估气道高反应性对哮喘的诊断、治疗效果及预后评估中有重要临床价值。本文就AHR的机制、测定技术的进展及其在哮喘管理中的应用进行综述,以期为临床实践提供参考。
Abstract: Bronchial asthma is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. Bronchial provocation test (BPT) is the main method to assess airway hyperresponsiveness. Traditional BPT is based on pulmonary function test and relies on the change of forced expiratory volume in 1 second (FEV1) as a judgment indicator; whereas the impulse oscillometry (IOS) shows unique advantages in preschool patients because it does not require active cooperation with respiratory maneuvers. Accurate assessment of airway hyperresponsiveness has important clinical value in the diagnosis, therapeutic efficacy and prognostic assessment of asthma. This article reviews the mechanism of AHR, the progress of measurement techniques and its application in asthma management, with a view to providing reference for clinical practice in children with asthma.
文章引用:杨旭旭, 刘莎. 气道反应性测定在儿童哮喘中的应用进展[J]. 临床医学进展, 2025, 15(4): 2760-2766. https://doi.org/10.12677/acm.2025.1541238

1. 引言

支气管哮喘(以下简称哮喘)是儿童最常见的慢性呼吸道疾病,近年来其发病率呈现出持续上升的趋势[1],严重影响儿童的身心健康和生活质量。气道高反应性(airway hyperresponsiveness, AHR)是哮喘的主要临床特征之一,表现为气道对激发剂的收缩反应增强[2]。其测定通过量化气道对刺激物的收缩反应强度,为儿童哮喘的诊断、治疗效果评估及预后判断提供重要客观依据[3]。AHR的发生涉及多种机制的相互作用,且不同年龄段的生理差异导致检测方法的适用性和阳性标准尚未达成共识。本文就AHR的机制、测定技术的进展及其在哮喘管理中的应用进行综述,以期为临床实践提供参考。

2. 气道高反应性的机制

哮喘的发生涉及多种病理生理改变,因此目前对于AHR的发生机制尚未达成共识。AHR的主要潜在机制包括气道炎症、气道平滑肌功能异常、气道重塑以及多种其他相关因素。在不同患者中,AHR可能由于这些机制中的某一种单独作用,或者由多种机制共同作用而引发。

2.1. 气道炎症

气道炎症是AHR发生的重要驱动因素,炎症细胞及其释放的介质通过多种途径影响气道反应性。研究显示,痰液中嗜酸性粒细胞和肥大细胞数量增多与AHR程度直接相关[4]。过敏原暴露后,IgE介导的肥大细胞活化释放组胺、白三烯(LTs)和前列腺素D2 (PGD2)等介质[5],直接诱导支气管收缩,同时,Th2细胞分泌IL-4、IL-5、IL-13等多种细胞因子[6],通过上调黏附分子(如VCAM-1)促进嗜酸性粒细胞等炎症细胞募集,破坏气道上皮屏障,增加神经末梢暴露,进一步放大平滑肌对刺激的敏感性,从而导致气道反应性增高。

2.2. 气道平滑肌

气道平滑肌(ASM)的结构与功能改变是AHR的另一个关键机制。研究发现,哮喘患者ASM中收缩蛋白α的表达与AHR的严重程度相关[7]。ASM的收缩涉及肌动蛋白–肌球蛋白交叉桥的形成,其形成速率依赖于肌球蛋白轻链激酶(MLCK)和肌球蛋白轻链磷酸酶(MLCP)的活性,哮喘患者MLCK的表达增加导致ASM收缩速率增快[8],从而导致气道反应性增高。除此以外,ASM功能还可能受到气道炎症环境的影响。IL-4、IL-13等细胞因子可能通过影响钙信号传导增强ASM的收缩性[9]

2.3. 气道重塑

气道重塑是慢性炎症导致的气道结构改变,病理特征主要表现为上皮纤维化、平滑肌增生、基底膜增厚、粘液腺肥大等[10]。慢性炎症刺激下,气道上皮受损并于修复过程中出现异常增生,导致上皮纤维化;同时刺激血管生成因子释放,新血管形成增多,进一步加剧气道壁的增厚,有研究表明,气道口径减小与AHR存在显著相关性[11]。但也有研究指出细胞外机制成分在气道壁过度沉积,导致气道壁的僵硬,反而降低了AHR [12]。目前气道重塑与AHR之间的关系尚未明确,仍需进一步研究。

2.4. 其他相关可能机制

除了上述主要机制外,神经调节异常、氧化应激以及遗传因素也可能导致AHR。全基因组关联研究(GWAS)发现,ADAM33基因多态性与AHR严重程度相关,其通过促进ASM迁移和气道重塑参与发病[13]。环境刺激(如过敏原等)通过NADPH氧化酶诱导ROS过量生成,导致ASM细胞钙信号异常、炎症因子释放及M2受体氧化损伤[14]。肥胖相关哮喘中,脂质过氧化物(如4-HNE)积累进一步加剧AHR [15]

3. 气道反应性的测定方法

支气管激发试验(Bronchial provocation tests, BPT)是检测AHR及其严重程度的最常用方法,临床上常选取乙酰甲胆碱为激发剂[16]。临床实践中需结合受试者呼吸生理特征及操作依从性,选择适宜的肺功能检测方法与其结合进行AHR的测定。

3.1. 以肺通气功能为基础的BPT

肺通气功能可反映容量及流速等指标,然而该检测需要受检者进行爆发性呼气以完成最大呼气流量–容积曲线测定,对儿童配合度提出较高要求[17]。目前临床指南普遍建议该技术适用于6岁以上儿童。在多项肺功能指标中,第一秒用力呼气容积(Forced Expiratory Volume in 1 second, FEV1)是判断AHR的主要指标。当FEV1占预计值百分比 ≥ 70%时,可进行BPT。AHR阳性标准定义为吸入激发剂后FEV1较基线下降 ≥ 20%。在此基础上,通过计算使FEV1下降20%所需的激发剂累积剂量(PD20-FEV1)或激发剂浓度(PC20-FEV1),可定量评估AHR的严重程度[17]。但也有研究发现,肺通气功能检测可能也适用于学龄前儿童。有研究对4~6岁儿童进行肺通气功能检测及BPT [18],发现多数儿童可成功并安全地完成BPT,Vilozni [19]等的研究亦支持这一观点,但他们提出使FEV0.5较基线下降25%的激发剂浓度(PC25-FEV0.5)可能更适合作为AHR阳性的判断指标。故对部分理解力及配合力较好的学龄期儿童,也可选择肺通气功能结合BPT进行AHR检测,但其结果可靠性及指标选取需结合临床进一步评估。

3.2. 以脉冲振荡为基础的BPT

相较于传统肺通气功能检测,脉冲振荡(IOS)具有无需主动配合呼吸动作、操作流程简便等特点[20],为临床开展儿童AHR评估提供了重要解决方案。其常用指标包括R5、X5、AX、Zrs等。关于IOS参数与肺通气功能指标的相关性,早期研究存在争议。部分学者发现IOS指标中,仅X5变化率与FEV1变化率存在弱相关性[21],提示IOS对AHR的评估并不准确。然而,后续多项研究推翻了这一结论,证实IOS参数与肺通气功能指标具有显著相关性[21]-[27],提示IOS联合BPT可作为可靠的气道反应性测定方法。Schulze [23]等的研究进一步揭示,IOS参数R5的变化早于FEV1下降出现,提示其在检测气道反应性方面具有更高的敏感性。基于IOS的AHR阳性结果出现时间较肺通气功能更短[22],表明IOS结合BPT可缩短检测时间,从而减轻患儿的检查过程中的不适感,这对配合度较低的学龄前儿童尤为重要。关于IOS判断AHR的阳性界值,目前尚无明确定论。Jara-Gutierrez [22]等对3~14岁哮喘患儿进行肺活量及IOS测定并进行BPT,发现R5 ≥ 22%,AX ≥ 82%,X5 ≤ 41%可作为AHR阳性标准。而一项针对学龄期儿童的研究则指出,Zrs ≥ 45.85%、R5 ≥ 45.72%,或X5 ≤ 80.74%可作为AHR阳性诊断标准,且Zrs和R5联合可显著提升诊断灵敏度及特异度[24]。Kalliola [25]等人的研究亦证实了IOS在评估AHR时的作用,并指出以R5 ≥ 40%作为AHR阳性判断标准可准确识别出哮喘患儿。总之,IOS联合BPT在儿童尤其是学龄前儿童AHR评估中具有重要临床价值,但未来需推动IOS阳性界值标准化。

4. AHR测定在儿童哮喘管理中的应用

AHR测定在哮喘诊断及病情及治疗反应评估有重要价值,但在哮喘的随访中,目前的临床指南并未将AHR测定列为必要检测手段。由于AHR受多种因素影响,在对AHR进行评价时,需要排除相关影响因素,以确保检测结果的准确性和可靠性。必要时结合其他肺功能检测方法,为临床决策提供更为可靠的依据。

4.1. 诊断

AHR作为哮喘病理生理的核心特征之一,其测定在哮喘诊断与风险预测中具有重要价值。对于6岁以上儿童,指南明确推荐将支气管激发试验(BPT)阳性作为哮喘诊断的客观指标之一[3]。在临床实践中,即使初次BPT检测结果阴性,也不应完全排除哮喘[28],联合其他肺功能检测手段如呼出气一氧化氮(FeNO)等[29],可提高哮喘诊断的准确性,为临床治疗提供更可靠的依据。6岁以下儿童哮喘的诊断一直是临床难点,但通过AHR测定[30]-[33],可早期识别未来可能发展为哮喘的高危患儿。多项研究表明,AHR阳性的学龄前喘息儿童在随访过程中诊断为哮喘的风险显著增加,提示AHR测定在哮喘早期预测中的作用。然而,Delacourt [34]等的研究发现,在病毒诱发喘息的婴幼儿中,仅约20%~30%在4年随访后发展为哮喘,且此类患儿早期AHR水平与最终无症状组无显著差异。AHR可能随年龄增长或环境暴露(如过敏原)而改变[35],故单一时间点的AHR检测可能无法有效预测未来哮喘发生风险,需长期监测。在非典型哮喘如咳嗽变异性哮喘(CVA) [36]及胸闷变异性哮喘(CTVA) [29]的诊断中,AHR检测亦可提供重要临床价值,但其AHR的严重程度均低于典型哮喘。

4.2. 病情严重度及预后评估

AHR不仅与当前哮喘严重程度密切相关,更能为远期预后提供重要预测信息。Akturk [37]等发现,基线AHR阳性可作为病程中哮喘急性发作的独立危险因素。此外,重度AHR的患儿出现哮喘重度急性发作的次数显著升高[31]。均提示我们应加强对AHR及其严重程度的关注。在长期预后方面,Wang [38]等对879名患有轻度至中度持续性哮喘的儿童进行平均12年的随访,发现初始AHR程度较轻的患儿在成年后达到哮喘临床缓解的比例可高达80%。另一项大样本量研究也证明初始低AHR是未来哮喘临床缓解的独立预测因子[39]。对于儿童哮喘患者,早期AHR评估可作为判断成年期哮喘转归的重要检测手段。

4.3. 治疗效果评估及治疗方案指导

哮喘患儿即使达到症状控制及肺通气功能正常,仍有较高比例存在AHR [40]-[42]。有研究指出,AHR与哮喘控制水平评分及FeNO之间一致性较差[41],提示单纯依赖症状和常规肺功能指标可能不足以准确评估病情。初始AHR程度较重的患儿,对治疗反应更为敏感[43],提示AHR可作为疗效预测的指标。Seo [44]等人通过长期随访发现,AHR的降低哮喘患儿咳喘症状控制及生活质量提升显著相关;此外,与单纯使用肺通气功能为哮喘评估手段相比,基于AHR严重程度进行治疗方案的调整可有效降低哮喘急性发作率[43]。研究显示,停药前AHR阳性患儿停药后哮喘复发风险显著升高,因此,对于AHR阳性者,建议延缓药物降级或停药,以减少复发风险[45]。尽管指南建议哮喘随访中基于症状和肺功能进行评估,但AHR的存在及其严重程度对于治疗方案的调整具有补充价值。

5. 小结

AHR的测定对哮喘管理有重要意义,6岁以上儿童可选择肺通气功能结合BPT对其进行测定。对于不能配合用力呼气的儿童,可选择IOS为基础的BPT进行AHR的测定,但其判定指标及阳性界值尚未达成共识。总之,AHR机制及其测定方法的研究,可能有助于研发新的治疗手段,并提高儿童哮喘诊断及病情评估的准确性。未来仍需大样本量及前瞻性研究对不同年龄段儿童的AHR测定方法及其阳性界值判定进行探讨。

NOTES

*通讯作者。

参考文献

[1] 刘传合, 洪建国, 尚云晓, 等. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志, 2013, 51(10): 729-735.
[2] 张静, 朱蕾. 气道高反应性的解读[J]. 中华结核和呼吸杂志, 2015, 38(8): 634-634.
[3] 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版) [J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
[4] Kirby, J.G., Hargreave, F.E., Gleich, G.J. and O’Byrne, P.M. (1987) Bronchoalveolar Cell Profiles of Asthmatic and Nonasthmatic Subjects. American Review of Respiratory Disease, 136, 379-383.
https://doi.org/10.1164/ajrccm/136.2.379
[5] Lin, Y., Nelson, C., Kramer, H. and Parekh, A.B. (2018) The Allergen Der P3 from House Dust Mite Stimulates Store-Operated Ca2+ Channels and Mast Cell Migration through PAR4 Receptors. Molecular Cell, 70, 228-241.e5.
https://doi.org/10.1016/j.molcel.2018.03.025
[6] Altman, M.C., Lai, Y., Nolin, J.D., Long, S., Chen, C., Piliponsky, A.M., et al. (2019) Airway Epithelium-Shifted Mast Cell Infiltration Regulates Asthmatic Inflammation via IL-33 Signaling. Journal of Clinical Investigation, 129, 4979-4991.
https://doi.org/10.1172/jci126402
[7] Slats, A.M., Janssen, K., van Schadewijk, A., van der Plas, D.T., Schot, R., van den Aardweg, J.G., et al. (2008) Expression of Smooth Muscle and Extracellular Matrix Proteins in Relation to Airway Function in Asthma. Journal of Allergy and Clinical Immunology, 121, 1196-1202.
https://doi.org/10.1016/j.jaci.2008.02.017
[8] Ma, X., Cheng, Z., Kong, H., Wang, Y., Unruh, H., Stephens, N.L., et al. (2002) Changes in Biophysical and Biochemical Properties of Single Bronchial Smooth Muscle Cells from Asthmatic Subjects. American Journal of Physiology-Lung Cellular and Molecular Physiology, 283, L1181-L1189.
https://doi.org/10.1152/ajplung.00389.2001
[9] Tang, D.D. (2015) Critical Role of Actin-Associated Proteins in Smooth Muscle Contraction, Cell Proliferation, Airway Hyperresponsiveness and Airway Remodeling. Respiratory Research, 16, Article No. 134.
https://doi.org/10.1186/s12931-015-0296-1
[10] 包淑钧, 唐昊. 支气管哮喘气道重塑病理改变的研究进展[J]. 国际呼吸杂志, 2022, 42(10): 775-779.
[11] Chapman, D.G., Berend, N., King, G.G. and Salome, C.M. (2008) Increased Airway Closure Is a Determinant of Airway Hyperresponsiveness. European Respiratory Journal, 32, 1563-1569.
https://doi.org/10.1183/09031936.00114007
[12] Jarjour, N.N. and Enhorning, G. (1999) Antigen-induced Airway Inflammation in Atopic Subjects Generates Dysfunction of Pulmonary Surfactant. American Journal of Respiratory and Critical Care Medicine, 160, 336-341.
https://doi.org/10.1164/ajrccm.160.1.9806155
[13] Vishweswaraiah, S., Veerappa, A.M., Mahesh, P.A., Jayaraju, B.S., Krishnarao, C.S. and Ramachandra, N.B. (2014) Molecular Interaction Network and Pathway Studies of ADAM33 Potentially Relevant to Asthma. Annals of Allergy, Asthma & Immunology, 113, 418-424.e1.
https://doi.org/10.1016/j.anai.2014.07.009
[14] Xu, S., Panettieri, R.A. and Jude, J. (2022) Metabolomics in Asthma: A Platform for Discovery. Molecular Aspects of Medicine, 85, Article 100990.
https://doi.org/10.1016/j.mam.2021.100990
[15] Ather, J.L., Chung, M., Hoyt, L.R., Randall, M.J., Georgsdottir, A., Daphtary, N.A., et al. (2016) Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 55, 176-187.
https://doi.org/10.1165/rcmb.2016-0070oc
[16] 中华医学会呼吸病学分会哮喘学组. 支气管激发试验临床应用中国专家共识(2024版)[J]. 中华医学杂志, 2024, 104(22): 2031-2040.
[17] 中华医学会儿科学分会呼吸学组肺功能协作组, 《中华实用儿科临床杂志》编辑委员会. 儿童肺功能系列指南(六): 支气管激发试验[J]. 中华实用儿科临床杂志, 2017, 32(4): 263-269.
[18] Li, B., Guan, W., Zhu, Z., Gao, Y., An, J., Yu, X., et al. (2019) Methacholine Bronchial Provocation Test for Assessment of Bronchial Hyperresponsiveness in Preschool Children. Journal of Thoracic Disease, 11, 4328-4336.
https://doi.org/10.21037/jtd.2019.09.47
[19] Vilozni, D., Livnat, G., Dabbah, H., Elias, N., Hakim, F. and Bentur, L. (2009) The Potential Use of Spirometry during Methacholine Challenge Test in Young Children with Respiratory Symptoms. Pediatric Pulmonology, 44, 720-727.
https://doi.org/10.1002/ppul.20978
[20] 中华医学会儿科学分会呼吸学组肺功能协作组, 《中华实用儿科临床杂志》编辑委员会. 儿童肺功能系列指南(三): 脉冲振荡[J]. 中华实用儿科临床杂志, 2016, 31(11): 821-825.
[21] Bailly, C., Crenesse, D. and Albertini, M. (2011) Evaluation of Impulse Oscillometry during Bronchial Challenge Testing in Children. Pediatric Pulmonology, 46, 1209-1214.
https://doi.org/10.1002/ppul.21492
[22] Jara-Gutierrez, P., Aguado, E., del Potro, M.G., Fernandez-Nieto, M., Mahillo, I. and Sastre, J. (2019) Comparison of Impulse Oscillometry and Spirometry for Detection of Airway Hyperresponsiveness to Methacholine, Mannitol, and Eucapnic Voluntary Hyperventilation in Children. Pediatric Pulmonology, 54, 1162-1172.
https://doi.org/10.1002/ppul.24409
[23] Schulze, J., Smith, H., Fuchs, J., Herrmann, E., Dressler, M., Rose, M.A., et al. (2012) Methacholine Challenge in Young Children as Evaluated by Spirometry and Impulse Oscillometry. Respiratory Medicine, 106, 627-634.
https://doi.org/10.1016/j.rmed.2012.01.007
[24] 卜晓凡, 赵京, 李硕, 等. 脉冲振荡法在儿童呼吸道反应性测定中的应用[J]. 中华实用儿科临床杂志, 2018, 33(16): 1233-1236.
[25] Kalliola, S., Malmberg, L.P., Kajosaari, M., Mattila, P.S., Pelkonen, A.S. and Mäkelä, M.J. (2014) Assessing Direct and Indirect Airway Hyperresponsiveness in Children Using Impulse Oscillometry. Annals of Allergy, Asthma & Immunology, 113, 166-172.
https://doi.org/10.1016/j.anai.2014.04.026
[26] Jee, H.M., Kwak, J.H., Jung, D.W. and Han, M.Y. (2010) Useful Parameters of Bronchial Hyperresponsiveness Measured with an Impulse Oscillation Technique in Preschool Children. Journal of Asthma, 47, 227-232.
https://doi.org/10.3109/02770901003624259
[27] Arıkoglu, T., Unlu, A., Yıldırım, D.D. and Kuyucu, S. (2017) The Airway Hyperresponsiveness to Methacholine May Be Predicted by Impulse Oscillometry and Plethysmography in Children with Well-Controlled Asthma. Journal of Asthma, 55, 1166-1173.
https://doi.org/10.1080/02770903.2017.1407337
[28] Park, M., Roh, Y.Y., Kim, H.M., et al. (2024) Pulmonary Function Characteristics in Children with Suspected Asthma: Implications for Asthma Diagnosis. Asian Pacific Journal of Allergy and Immunology, 1-12.
[29] Zhang, T., Xu, L., Zhang, Y. and Zhen, L. (2024) The Diagnostic Value of Bronchial Provocation Testing Combined with Fractional Exhaled Nitric Oxide (FENO) in Children with Chest Tightness-Variant Asthma (CTVA). Respiratory Medicine, 223, Article 107543.
https://doi.org/10.1016/j.rmed.2024.107543
[30] Golan-Lagziel, T., Mandelberg, A., Wolfson, Y., Ater, D. and Armoni Domany, K. (2021) Can Bronchial Challenge Test with Adenosine or Methacholine at Preschool Age Predict School-Age Asthma? Pediatric Pulmonology, 56, 3200-3208.
https://doi.org/10.1002/ppul.25614
[31] Levin, G., Rottenstreich, A., Picard, E., Avital, A., Springer, C. and Cohen, S. (2019) The Correlation of Adenosine Challenge Test Results with Subsequent Clinical Course among Young Children with Suspected Asthma: A Retrospective Cohort Study. Pediatric Pulmonology, 54, 1087-1092.
https://doi.org/10.1002/ppul.24337
[32] Sears, M.R., Greene, J.M., Willan, A.R., Wiecek, E.M., Taylor, D.R., Flannery, E.M., et al. (2003) A Longitudinal, Population-Based, Cohort Study of Childhood Asthma Followed to Adulthood. New England Journal of Medicine, 349, 1414-1422.
https://doi.org/10.1056/nejmoa022363
[33] Kalliola, S., Malmberg, L.P., Malmström, K., Pelkonen, A.S. and Mäkelä, M.J. (2019) Airway Hyperresponsiveness in Young Children with Respiratory Symptoms. Annals of Allergy, Asthma & Immunology, 122, 492-497.
https://doi.org/10.1016/j.anai.2019.02.025
[34] Delacourt, C., Benoist, M., Waernessyckle, S., Rufin, P., Brouard, J., de Blic, J., et al. (2001) Relationship between Bronchial Responsiveness and Clinical Evolution in Infants Who Wheeze. American Journal of Respiratory and Critical Care Medicine, 164, 1382-1386.
https://doi.org/10.1164/ajrccm.164.8.2007066
[35] Donath, H., Klenner, H., Hutter, M., Meoli, A., Trischler, J., Schulze, J., et al. (2023) Severe Bronchial Hyperresponsiveness along with House Dust Mite Allergy Indicates Persistence of Asthma in Young Children. Pediatric Allergy and Immunology, 34, e14047.
https://doi.org/10.1111/pai.14047
[36] 刘莎, 刘芳君, 符州, 等. 气道反应性测定在婴幼儿咳嗽变异性哮喘诊断中的价值[J]. 中华实用儿科临床杂志, 2020, 35(21): 1624-1628.
[37] Akturk, H., Karaloc-Aydiner, E., Ozen, A., Baris, S., Akkoc, T., Bahceciler, N.N., et al. (2017) Predictive Risk Factors for Relapse after Cessation of Inhaled Corticosteroids in Well-Controlled Childhood Asthma. Minerva Pediatrics, 69, 274-280.
https://doi.org/10.23736/s0026-4946.16.04244-4
[38] Wang, A.L., Datta, S., Weiss, S.T. and Tantisira, K.G. (2019) Remission of Persistent Childhood Asthma: Early Predictors of Adult Outcomes. Journal of Allergy and Clinical Immunology, 143, 1752-1759.e6.
https://doi.org/10.1016/j.jaci.2018.09.038
[39] Covar, R.A., Strunk, R., Zeiger, R.S., Wilson, L.A., Liu, A.H., Weiss, S., et al. (2010) Predictors of Remitting, Periodic, and Persistent Childhood Asthma. Journal of Allergy and Clinical Immunology, 125, 359-366.e3.
https://doi.org/10.1016/j.jaci.2009.10.037
[40] Mihatov Štefanović, I. and Vrsalović, R. (2023) Based on What Parameters Is Safe to Discontinuate Inhaled Corticosteroids in Children with Asthma? Journal of Asthma, 60, 2121-2129.
https://doi.org/10.1080/02770903.2023.2220795
[41] Thomas, B., Chay, O.M., Allen, J.C., Chiang, A.S.X., Pugalenthi, A., Goh, A., et al. (2016) Concordance between Bronchial Hyperresponsiveness, Fractional Exhaled Nitric Oxide, and Asthma Control in Children. Pediatric Pulmonology, 51, 1004-1009.
https://doi.org/10.1002/ppul.23426
[42] 司宝婧, 刘长山. 气道反应性检测在儿童及青少年哮喘管理中的临床应用[J]. 国际儿科学杂志, 2024, 51(5): 341-345.
[43] Sont, J.K., Willems, L.N.A., Bel, E.H., Van Krieken, J.H.J.M., Vandenbroucke, J.P. and Sterk, P.J. (1999) Clinical Control and Histopathologic Outcome of Asthma When Using Airway Hyperresponsiveness as an Additional Guide to Long-Term Treatment. American Journal of Respiratory and Critical Care Medicine, 159, 1043-1051.
https://doi.org/10.1164/ajrccm.159.4.9806052
[44] Seo, H., Lee, P., Kim, B., Lee, S., Park, J., Lee, J., et al. (2018) Methacholine Bronchial Provocation Test in Patients with Asthma: Serial Measurements and Clinical Significance. The Korean Journal of Internal Medicine, 33, 807-814.
https://doi.org/10.3904/kjim.2017.043
[45] 张腾腾, 边继美, 张中平, 等. 支气管激发试验在儿童哮喘管理中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(2): 221-225.