|
[1]
|
Morís, D.I., Moura, J.d., Novo, J. and Ortega, M. (2024) Adapted Generative Latent Diffusion Models for Accurate Pathological Analysis in Chest X-Ray Images. Medical & Biological Engineering & Computing, 62, 2189-2212. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kingma, D.P. and Welling, M. (2014) Auto-Encoding Variational Bayes. Stat, 1050: 1.
|
|
[3]
|
Rais, K., Amroune, M., Benmachiche, A., et al. (2024) Exploring Variational Autoencoders for Medical Image Generation: A Comprehensive Study.
|
|
[4]
|
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al. (2014) Generative Adversarial Nets. Communications of the ACM, 63, 139-144.
|
|
[5]
|
Alamir, M. and Alghamdi, M. (2022) The Role of Generative Adversarial Network in Medical Image Analysis: An In-Depth Survey. ACM Computing Surveys, 55, 1-36. [Google Scholar] [CrossRef]
|
|
[6]
|
Tang, Y., Tang, Y., Zhu, Y., Xiao, J. and Summers, R.M. (2021) A Disentangled Generative Model for Disease Decomposition in Chest X-Rays via Normal Image Synthesis. Medical Image Analysis, 67, Article ID: 101839. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., et al. (2015) Deep Unsupervised Learning Using Nonequilibrium Thermodynamics. International Conference on Machine Learning, Lile, 6-11 July 2015, 2256-2265.
|
|
[8]
|
Ho, J., Jain, A. and Abbeel, P. (2020) Denoising Diffusion Probabilistic Models. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, 6-12 December 2020, 6840-6851.
|
|
[9]
|
Rombach, R., Blattmann, A., Lorenz, D., Esser, P. and Ommer, B. (2022) High-Resolution Image Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 10684-10695. [Google Scholar] [CrossRef]
|
|
[10]
|
Kazerouni, A., Aghdam, E.K., Heidari, M., Azad, R., Fayyaz, M., Hacihaliloglu, I., et al. (2023) Diffusion Models in Medical Imaging: A Comprehensive Survey. Medical Image Analysis, 88, Article ID: 102846. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shin, H., Tenenholtz, N.A., Rogers, J.K., Schwarz, C.G., Senjem, M.L., Gunter, J.L., et al. (2018) Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks. Simulation and Synthesis in Medical Imaging: 3rd International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, 16 September 2018, 1-11. [Google Scholar] [CrossRef]
|
|
[12]
|
Chambon, P., Bluethgen, C., Delbrouck, J.B., et al. (2022) Roentgen: Vision-Language Foundation Model for Chest X-Ray Generation.
|
|
[13]
|
Lee, H., Lee, D.Y., Kim, W., et al. (2023) Vision-Language Generative Model for View-Specific Chest X-Ray Generation.
|
|
[14]
|
Yi, X., Walia, E. and Babyn, P. (2019) Generative Adversarial Network in Medical Imaging: A Review. Medical Image Analysis, 58, Article ID: 101552. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pu, Y., Gan, Z., Henao, R., et al. (2016) Variational Autoencoder for Deep Learning of Images, Labels and Captions. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, 5-10 December 2016.
|
|
[16]
|
Karras, T., Laine, S. and Aila, T. (2019) A Style-Based Generator Architecture for Generative Adversarial Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 4401-4410. [Google Scholar] [CrossRef]
|
|
[17]
|
Song, Y., Sohl-Dickstein, J., Kingma, D.P., et al. (2020) Score-Based Generative Modeling through Stochastic Differential Equations.
|
|
[18]
|
Park, E. (2015) Manifold Learning with Variational Auto-Encoder for Medical Image Analysis. Technical Report, University of North Carolina, Tech. Rep.
|
|
[19]
|
Bercea, C.I., Rueckert, D. and Schnabel, J.A. (2022) What Do We Learn? Debunking the Myth of Unsupervised Outlier Detection.
|
|
[20]
|
Burgess, C.P., Higgins, I., Pal. A., et al. (2018) Understanding Disentangling in beta-VAE.
|
|
[21]
|
Zhou, L., Deng, W. and Wu, X. (2020) Unsupervised Anomaly Localization Using VAE and beta-VAE.
|
|
[22]
|
Ghali, R. and Akhloufi, M.A. (2023) Vision Transformers for Lung Segmentation on CXR Images. SN Computer Science, 4, Article No. 414. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Crespi, L., Loiacono, D. and Chiti, A. (2021) Chest X-Rays Image Classification from β-Variational Autoencoders Latent Features. 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, 5-7 December 2021, 1-8. [Google Scholar] [CrossRef]
|
|
[24]
|
Cao, F. and Zhao, H. (2021) Automatic Lung Segmentation Algorithm on Chest X-Ray Images Based on Fusion Variational Auto-Encoder and Three-Terminal Attention Mechanism. Symmetry, 13, Article No. 814. [Google Scholar] [CrossRef]
|
|
[25]
|
Gerlings, J., Jensen, M.S. and Shollo, A. (2021) Explainable AI, but Explainable to Whom? An Exploratory Case Study of xAI in Healthcare. In: Lim, C.-P., et al., Eds., Intelligent Systems Reference Library, Springer International Publishing, 169-198. [Google Scholar] [CrossRef]
|
|
[26]
|
Chatterjee, S., Maity, S., Bhattacharjee, M., Banerjee, S., Das, A.K. and Ding, W. (2022) Variational Autoencoder Based Imbalanced COVID-19 Detection Using Chest X-Ray Images. New Generation Computing, 41, 25-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Montenegro, H. and Cardoso, J.S. (2024) Anonymizing Medical Case-Based Explanations through Disentanglement. Medical Image Analysis, 95, Article ID: 103209. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gu, Y., Yang, J., Usuyama, N., et al. (2023) Biomedjourney: Counterfactual Biomedical Image Generation by Instruction-Learning from Multimodal Patient Journeys.
|
|
[29]
|
Li, F., Huang, W., Luo, M., Zhang, P. and Zha, Y. (2021) A New VAE-GAN Model to Synthesize Arterial Spin Labeling Images from Structural MRI. Displays, 70, Article ID: 102079. [Google Scholar] [CrossRef]
|
|
[30]
|
Siddiqui, A.A., Tirunagari, S., Zia, T., et al. (2024) VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics.
|
|
[31]
|
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2020) Generative Adversarial Networks. Communications of the ACM, 63, 139-144. [Google Scholar] [CrossRef]
|
|
[32]
|
刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展[J]. 自动化学报, 2020, 46(12): 2500-2536.
|
|
[33]
|
Aljohani, A. and Alharbe, N. (2022) Generating Synthetic Images for Healthcare with Novel Deep Pix2Pix GAN. Electronics, 11, Article No. 3470. [Google Scholar] [CrossRef]
|
|
[34]
|
Kora Venu, S. and Ravula, S. (2020) Evaluation of Deep Convolutional Generative Adversarial Networks for Data Augmentation of Chest X-Ray Images. Future Internet, 13, Article No. 8. [Google Scholar] [CrossRef]
|
|
[35]
|
Dhawan, K. and Nijhawan, S.S. (2024) Cross-Modality Synthetic Data Augmentation Using GANs: Enhancing Brain MRI and Chest X-Ray Classification.
|
|
[36]
|
Huang, Y., Maier, A., Fan, F., et al. (2022) Learning Perspective Deformation in X-Ray Transmission Imaging.
|
|
[37]
|
Liang, Z., Huang, J.X. and Antani, S. (2022) Image Translation by Ad Cyclegan for COVID-19 X-Ray Images: A New Approach for Controllable Gan. Sensors, 22, Article No. 9628. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kong, L., Lian, C., Huang, D., et al. (2021) Breaking the Dilemma of Medical Image-to-Image Translation. Advances in Neural Information Processing Systems, Vol. 34, 1964-1978.
|
|
[39]
|
Qin, X., Bui, F.M., Han, Z. and Khademi, A. (2024) Toward Improved Interpretability in Medical Imaging: Revealing the Disease Evidence from Chest X-Ray Images Using an Adversarial Generative Approach. IEEE Access, 12, 82002-82014. [Google Scholar] [CrossRef]
|
|
[40]
|
Kim, E., Lee, S. and Lee, K.M. (2023) Abnormality Detection in Chest X-Ray via Residual-Saliency from Normal Generation. IEEE Access, 11, 21799-21810. [Google Scholar] [CrossRef]
|
|
[41]
|
Saboo, A., Ramachandran, S.N., Dierkes, K., et al. (2021) Towards Disease-Aware Image Editing of Chest X-Rays.
|
|
[42]
|
Jin, Y., Chang, W. and Ko, B. (2023) Generating Chest X-Ray Progression of Pneumonia Using Conditional Cycle Generative Adversarial Networks. IEEE Access, 11, 88152-88160. [Google Scholar] [CrossRef]
|
|
[43]
|
Liang, Z., Huang, J.X., Li, J. and Chan, S. (2020). Enhancing Automated COVID-19 Chest X-Ray Diagnosis by Image-To-Image GAN Translation. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, 16-19 December 2020, 1068-1071.[CrossRef]
|
|
[44]
|
Weber, T., Ingrisch, M., Bischl, B. and Rügamer, D. (2023) Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs. In: Fragemann, J., et al., Eds., Medical Applications with Disentanglements, Springer, 22-32. [Google Scholar] [CrossRef]
|
|
[45]
|
Saboo, A., Gyawali, P.K., Shukla, A., et al. (2021) Latent-Optimization Based Disease-Aware Image Editing for Medical Image Augmentation. BMVC, 22-25 November 2021, 181.
|
|
[46]
|
Wang, Z., Zhang, X., Chen, W. and Niu, J. (2022) Lung Segmentation Reconstruction Based Data Augmentation Approach for Abnormal Chest X-Ray Images Diagnosis. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, 11-15 July 2022, 2203-2207. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., et al. (2019) Chexpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 590-597. [Google Scholar] [CrossRef]
|
|
[48]
|
Khader, F., Müller-Franzes, G., Tayebi Arasteh, S., Han, T., Haarburger, C., Schulze-Hagen, M., et al. (2023) Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. Scientific Reports, 13, Article No. 7303. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Schaudt, D., Späte, C., von Schwerin, R., Reichert, M., von Schwerin, M., Beer, M., et al. (2023) A Critical Assessment of Generative Models for Synthetic Data Augmentation on Limited Pneumonia X-Ray Data. Bioengineering, 10, Article No. 1421. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Packhäuser, K., Folle, L., Thamm, F. and Maier, A. (2023). Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, 18-21 April 2023, 1-5.[CrossRef]
|
|
[51]
|
Dhariwal, P. and Nichol, A. (2021) Diffusion Models Beat Gans on Image Synthesis. Advances in Neural Information Processing Systems, Vol. 34, 8780-8794.
|
|
[52]
|
Weber, T., Ingrisch, M., Bischl, B. and Rügamer, D. (2023) Cascaded Latent Diffusion Models for High-Resolution Chest X-Ray Synthesis. In: Lecture Notes in Computer Science, Springer, 180-191. [Google Scholar] [CrossRef]
|
|
[53]
|
Wolleb, J., Bieder, F., Sandkühler, R. and Cattin, P.C. (2022) Diffusion Models for Medical Anomaly Detection. In: Kashima, H., Ide, T. and Peng, W.-C., Eds., Advances in Knowledge Discovery and Data Mining, Springer, 35-45. [Google Scholar] [CrossRef]
|
|
[54]
|
Fathi, N., Kumar, A., Nichyporuk, B., et al. (2024) DeCoDEx: Confounder Detector Guidance for Improved Diffusion-based Counterfactual Explanations.
|
|
[55]
|
Hashmi, A.U.R., Almakky, I., Qazi, M.A., et al. (2024) Xreal: Realistic Anatomy and Pathology-Aware X-Ray Generation via Controllable Diffusion Model.
|
|
[56]
|
Song, J., Meng, C. and Ermon, S. (2020) Denoising Diffusion Implicit Models.
|
|
[57]
|
Chen, Y., Xu, S., Sellergren, A., et al. (2025) CoCa-CXR: Contrastive Captioners Learn Strong Temporal Structures for Chest X-Ray Vision-Language Understanding.
|