橐吾属植物的化学成分及生物活性研究
Studies on the Chemical Constituents and Biological Activities of Ligularia Plants
DOI: 10.12677/hjas.2025.154058, PDF, HTML, XML,   
作者: 李临风:兰州交通大学交通运输学院,甘肃 兰州
关键词: 橐吾属化学成分生物活性Ligularia Chemical Constituents Biological Activity
摘要: 橐吾属植物(Ligularia)为菊科(Compositae)千里光族(Senecioneae Cass)。橐吾属植物分布广泛,种类繁多,具有极高的药用价值。橐吾属植物化学成分多样,包括萜类、苯丙素类、黄酮类、生物碱类、甾体类等,其中倍半萜为主要成分。近几年来,诸多国内外学者对橐吾属植物开展一系列的深入研究,表明橐吾属植物具有抗菌、抗虫、抗炎、细胞毒活性等作用。本文综述了近些年来关于橐吾属植物的化学成分及生物活性的研究进展。
Abstract: Ligularia plants are Compositae Senecioneae Cass. Ligularia plants are widely distributed and diverse, with high medicinal value. Ligularia plants have a variety of chemical compositions, including terpenoids, phenylpropanoids, flavonoids, alkaloids, steroids and so on, of which sesquiterpenes are the main components. In recent years, many domestic and foreign scholars have carried out a series of in-depth studies on Gewürztraminer plants, indicating that Ligularia plants have antibacterial, anthelmintic, anti-inflammatory and cytotoxic activities. This paper summarizes the progress of research on the chemical composition and biological activities of Ligularia plants in recent years.
文章引用:李临风. 橐吾属植物的化学成分及生物活性研究[J]. 农业科学, 2025, 15(4): 472-477. https://doi.org/10.12677/hjas.2025.154058

1. 引言

橐吾属(Ligularia sp.)为菊科(Compositae)多年生草本植物,俗称日侯、山紫菀等[1]。目前发现有150多种,其中大部分分布于我国西南地区[2]。橐吾属植物中的化合物种类较多,主要为萜类、生物碱、黄酮、甾醇等类型的化合物,其中以倍半萜类化合物居多。

橐吾属植物的根茎和全草均可入药,且有极高的药用价值,具有止咳化痰、活血化瘀的功效,常被当作藏药广泛使用,例如蹄叶橐吾具有理气活血、清热润肺的功效;箭叶橐吾具有解毒、治疗皮肤病的功效[3];黄帚橐吾具有清热解毒的功效;阿勒泰橐吾具有缓解失眠的功效。

近年来,许多国内外学者纷纷将目光聚焦于此,一方面使其化合物种类更加丰富多样,另一方面更是对其次生代谢产物的又一拓展。本文将针对橐吾属植物的化学成分及生物活性方面的最新进展进行综述,希望能为相关领域提供参考。

2. 橐吾属植物的化学成分

橐吾属植物化学成分多样,目前为止,已从藏橐吾、蹄叶橐吾、天山橐吾等多种植物中分离得到萜类、生物碱类、苯丙素类等化学成分,其中倍半萜类化合物是其最主要的化学成分。

2.1. 萜类

萜类化合物是橐吾属植物中的主要成分,可分为倍半萜、单萜、二萜、三萜,其中,倍半萜类化合物最为常见。

Nagano H [3]等从大黄橐吾中分离得到双环艾里莫芬烷型倍半萜dehydrofukinone (图1-1)。赵[4]等从离舌橐吾中法分离得到双环艾里莫芬烷型倍半萜1β-methyl-6,9-diene-8-oxo-eremophil-(l2)-oic acid (图1-2)。李[5]等从黄帚橐吾中分离得到双环艾里莫芬烷型倍半萜(4S,5S)-9-hydroxy-6,9-diene-8-oxoeremophil-12-nor-11-ketone (图1-3)。Saito Y [6] [7]等从沼生橐吾和穗序橐吾中分离得到三环呋喃并艾里莫芬烷型倍半萜10βH-6β-(2'-methoxy) furanoeremophilane (图1-4)和1α-furanoeremophilan-6-one (图1-5)。吴[8]等从黄帚橐吾中分离得到三环艾里莫芬烷内酯型倍半萜6β-hydroxy-8α-methoxyere mophila-1(10),7(11)-diene-12,8β-olide (图1-6)。Saito Y [9]等从细茎橐吾中分离得到四环以上的艾里莫芬烷型倍半萜15,6α-epoxy-15α-methoxyfuranoeremophil-3-ene (图1-7)。Baba H [10]等从齿叶橐吾中分离得到没药烷型倍半萜bisabola-2,10-dien-1-one (图1-8)。王[11]等从黄帚橐吾中分离得到倍半萜二聚体virgaurin C (图1-9)。高雪[12]等从天山橐吾中分离得到了一个新的愈创木烷型倍半萜2α-hydroxy-1βH,7αH,10αH-guai-4,11(12)-dien-3-one (图1-10)。高坤[13]等从木里橐吾中分离得到了一个新的单萜类化合物rel-(1R,2R,3R,4S,5S)-p-Menthane-1,2,3,5-tetrol (图1-11)。Lee [14]等从蹄叶橐吾中分离到一个二萜类化合物分别为Spiciformisin A (图1-12)。李柄林[15]等从箭叶橐吾中分离得到一个三萜类化合物7β,16β,28-Triacetoxyolean-12-en-3-one (图1-13)。

Figure 1. Structure of chemical constituents in Ligularia plants

1. 橐吾属植物中的化学成分结构

2.2. 黄酮类

橐吾属植物中还含有黄酮类化合物,是广泛存在于天然产物化学中的重要的次生代谢物,不仅仅只有黄酮类,还有二氢黄酮类、黄酮醇类。橐吾属植物中黄酮类的单体化合物大部分呈现为结晶状,还有一部分呈现为无定型粉末。祝英[16]等从箭叶橐吾中分离得到两个黄酮类化合物oroxylin A (图1-14) wogonin (图1-15)。

2.3. 苯丙素类

橐吾属植物中还含有苯丙素类化合物,是天然存在的三个直链碳与一类苯环构成的有机化合物,在橐吾属植物中分布广泛,主要以木脂素和香豆素的形式存在。高雪[17]等从天山橐吾根部中分离得到了一个新的8-O-4'类型的木脂素narynenol (图1-16)。王彩芳[18]等从棉毛橐吾中分离得到一个新的木脂素4-[(3',4'-dihydroxycinnamoyl)-oxy] methyl cinnamate (图1-17)。

2.4. 生物碱类

橐吾属植物中极少数还含有生物碱类化合物,是一种含氮元素的有机化合物,一般为复杂的环状结构,单体化合物一般呈结晶形固体,生物活性良好,是天然产物中重要的组成之一。雷华[19]等从刚毛橐吾中分离得到一个新的吡咯里西啶生物碱ligulachyroine A,到目前为止这种结构的十二元大环吡咯里西啶生物碱,都鲜少报道(图1-18)。

3. 橐吾属植物的生物活性

由于研究人员对橐吾属植物的进一步开发,逐步发现其不仅化学成分多样,生物活性还普遍较好,有很强的药理作用,故其对于新药开发具有重要的战略意义。

3.1. 抗菌活性

刘春梅[20]等人对从舟叶橐吾中分离得到的8个倍半萜,进行抑菌活性测试,发现其均对大肠杆菌金黄色葡萄球菌等有微弱的抗菌活性。T. Bunyapaiboonsri [21]等人对从Stereum cf. sanguinolentum BCC 22926分离得到的化合物stereumin T进行抗菌活性检测,发现其对蜡样芽孢杆菌有较好的抗菌活性。徐阳军[22]等人对从掌叶橐吾中分离得到的化合物(4S,5S,6R,8R,10R)-6-(angeloyloxy)-8-ethoxyeremophil-7(11)-en-8,12-olid-15-oic acid进行抑菌活性测试,发现其对枯草芽孢杆菌有较强的抑菌活性。

3.2. 抗虫活性

马斌[23]等人对从黄亮橐吾中分离出的苯并呋喃类化合物2-acetyl-5,6-dimethyoxybenzofuran进行研究,发现其对家畜及昆虫皆具有细胞毒活性,同时具备杀虫和昆虫拒食活性。林云森[24]等人对从黄亮橐吾中分离得到的苯并呋喃euparin,进行生物活性研究,发现其兼具杀虫和拒食活性,从而证实了黄亮橐吾能作为杀虫剂使用的原理。Luo [25]等人对从黄帚橐吾中萃取分离出的乙醇提取物进行了疥螨毒性实验,发现其乙醇部位的萃取物对螨虫有极强的杀螨性能,在此试验基础上,将乙醇提取物进行更加深入的探究实验,结果表明,随着其乙醇提取物浓度的升高,半致死时间(LT50)中值越来越短。这表明,黄帚橐吾的乙醇部位提取物的杀螨性能极强,完全可以当作一种新的治疗剂去开发利用,来达到控制动物体内疥螨的目的。

3.3. 抗炎活性

Hong [26]等人对从蹄叶橐吾的乙酸乙酯部位萃取物中分离纯化得到的化合物3,5-dicaffeoylquinic acid进行研究,发现其具有强效消炎作用和清除自由基作用,此外,还能抑制某些蛋白酶的表达。Su [27]等人对从Sinularia scabra中分离得到的1个新的倍半萜scabralins A进行细胞活性测试,发现其可以强效抑制由脂多糖刺激引起的RAW 264.7细胞的增殖。李齐明[28]等人对从Stahlianthus involucratus中分离得到的个倍半萜二聚体进行研究,发现化合物involucratustones A和化合物involucratustones B对癌细胞系有一定的抑制作用,而化合物involucratustones C具有抗炎作用。G. Delgado [29]等人对从Heterotheca inuloides中分离得到的新倍半萜进行研究,发现了化合物dicadalenol具有显著的抗炎功能,能够明显抑制TPA诱导的小鼠耳肿胀现象。

3.4. 抗氧化活性

Pyun [30]等人对从蹄叶橐吾(LF)和黑涩石楠(AM)的复合材料(LF + AM)进行研究,发现其能够抗氧化和降低炎症反应。Shang [31]等人对从箭叶橐吾中分离得到的四个化合物分别进行研究,实验结果表明,这4个化合物之中,3,5-di-O-caffeoylquinic acid含量最高,自由基清除能力最强,3,4-di-O-caffeoylquinic acid的抗氧化活性最强。除此之外,箭叶橐吾在韩国常被用于治疗黄疸、猩红热、风湿性关节炎等疾病的良药。

4. 总结与展望

综上所述,橐吾属植物中的化学成分多样,含有丰富的萜类、黄酮类、苯丙素类等。其中,倍半萜类化合物的生物活性表现优异,具有良好的发展前景,故可将其作为抗肿瘤和抗癌方面的先导化合物。目前对于橐吾属植物的化学成分及生物活性研究还只是冰山一角,在天然产物化学领域仍有较大的研究空间,对于橐吾属植物的化学成分以及生物活性方面的空白还需要研究者们不断去填充和完善。相信随着分离技术的不断改进,会有更多结构新颖、生物活性突出的化合物被应用于实践中。

参考文献

[1] 刘尚武, 邓德山, 刘建全. 橐吾属的起源、演化与地理分布[J]. 植物分类学报, 1994, 32(6): 514-524.
[2] 刘守金, 戚欢阳, 齐辉, 等. 中国西北地区橐吾属植物的种类及药用资源[J]. 中国中药杂志, 2006, 31(10): 793-797.
[3] Nagano, H., Hanai, R., Yamada, H., Matsushima, M., Miura, Y., Hoya, T., et al. (2012) Chemical and Genetic Study of Ligularia duciformis and Related Species in Sichuan and Yunnan Provinces of China. Chemistry & Biodiversity, 9, 789-805.
https://doi.org/10.1002/cbdv.201100240
[4] Zhao, Y., Jia, Z. and Yang, L. (1994) Novel Sesquiterpenes from Ligularia veitchiana. Planta Medica, 60, 91-92.
https://doi.org/10.1055/s-2006-959418
[5] Dong, L., Xiong, H., Qi, F., Li, H., Fan, G., Che, J., et al. (2014) A New Norsesquiterpenoid from Ligularia virgaurea. Journal of Asian Natural Products Research, 17, 415-419.
https://doi.org/10.1080/10286020.2014.971018
[6] Saito, Y., Hattori, M., Iwamoto, Y., Takashima, Y., Mihara, K., Sasaki, Y., et al. (2011) Overlapping Chemical and Genetic Diversity in Ligularia lamarum and Ligularia subspicata. Isolation of Ten New Eremophilanes and a New Seco-Bakkane Compound. Tetrahedron, 67, 2220-2231.
https://doi.org/10.1016/j.tet.2011.01.082
[7] Saito, Y., Hidaka, M., Fukuda, A., Okamoto, Y., Nakashima, K., Tori, M., et al. (2017) Intra-Specific Diversity of the Chemical Composition of Ligularia lamarum in the Hengduan Mountains, China: The Structures of Four New Eremophilanes and a New Seco-Eremophilane. Phytochemistry Letters, 20, 139-145.
https://doi.org/10.1016/j.phytol.2017.04.026
[8] Wu, Q.X., Shi, Y.P. and Yang, L. (2004) Eremophilane Sesquiterpene Lactones from Ligularia virgaurea ssp. oligocephala. Planta Medica, 70, 479-482.
[9] Saito, Y., Shiosaki, Y., Fujiwara, M., Mihara, K., Nakamizo, H., Otose, K., et al. (2018) Eremophilanes from Ligularia hookeri Collected in China and Structural Revision of 3β-Acyloxyfuranoeremophilan-15,6-olide. Chemical and Pharmaceutical Bulletin, 66, 668-673.
https://doi.org/10.1248/cpb.c18-00191
[10] Baba, H., Yaoita, Y. and Kikuchi, M. (2007) Sesquiterpenoids from Ligularia dentata. Helvetica Chimica Acta, 90, 1302-1312.
https://doi.org/10.1002/hlca.200790131
[11] Wang, B., Jia, Z. and Yang, X. (1997) Two Minor Benzofuranosesquiterpene Dimers from Ligularia virgaurea. Planta Medica, 63, 577-578.
https://doi.org/10.1055/s-2006-957775
[12] Gao, X., Xie, W. and Jia, Z. (2008) Four New Terpenoids from the Roots of Ligularia narynensis. Journal of Asian Natural Products Research, 10, 185-192.
https://doi.org/10.1080/10286020701394431
[13] Wu, Q., Liu, C., Chen, Y. and Gao, K. (2006) Terpenoids from the Roots of Ligularia muliensis. Helvetica Chimica Acta, 89, 915-922.
https://doi.org/10.1002/hlca.200690094
[14] Lee, K., Koo, S., Jung, S., Choi, J., Jung, H. and Park, H. (2002) Structure of Three New Terpenoids, Spiciformisins a Andb, and Monocyclosqualene, Isolated from the Herbs of Ligularia fischeri var. spiciformis and Cytotoxicity. Archives of Pharmacal Research, 25, 820-823.
https://doi.org/10.1007/bf02976998
[15] Li, P. and Jia, Z. (2008) A New Triterpene and New Sesquiterpenes from the Roots of Ligularia sagitta. Helvetica Chimica Acta, 91, 1717-1727.
https://doi.org/10.1002/hlca.200890188
[16] Gong, Y., Meng, X. and Zhu, Y. (2018) Phytochemical and Chemotaxonomic Study on the Whole Plants of Ligularia sagitta. Biochemical Systematics and Ecology, 80, 122-127.
https://doi.org/10.1016/j.bse.2018.07.006
[17] Gao, X. and Jia, Z.J. (2008) A New 8-O-4’-Type Neolignan from Ligularia narynensis. Chinese Chemical Letters, 19, 71-72.
https://doi.org/10.1016/j.cclet.2007.10.039
[18] Wang, C.F., Zhao, Y., Shi, S.Y., Li, J.P., Zhang, Z.Z. and Liu, Y.Z. (2010) A New Naphthoquinone and a New Neolignan from Ligularia vellerea Rhizomes. Chemistry of Natural Compounds, 46, 184-186.
https://doi.org/10.1007/s10600-010-9563-z
[19] Hua, L., Chen, J. and Gao, K. (2012) A New Pyrrolizidine Alkaloid and Other Constituents from the Roots of Ligularia achyrotricha (Diels) Ling. Phytochemistry Letters, 5, 541-544.
https://doi.org/10.1016/j.phytol.2012.05.009
[20] Liu, C., Fei, D., Wu, Q. and Gao, K. (2006) Bisabolane Sesquiterpenes from the Roots of Ligularia cymbulifera. Journal of Natural Products, 69, 695-699.
https://doi.org/10.1021/np0505061
[21] Bunyapaiboonsri, T., Yoiprommarat, S., Nopgason, R., Komwijit, S., Veeranondha, S., Puyngain, P., et al. (2014) Cadinane Sesquiterpenoids from the Basidiomycete Stereum Cf. Sanguinolentum BCC 22926. Phytochemistry, 105, 123-128.
https://doi.org/10.1016/j.phytochem.2014.06.006
[22] Xu, Y., Nan, Z., Li, W., Huang, H. and Yuan, C. (2009) New Eremophilanolides from Ligularia hodgsonii. Helvetica Chimica Acta, 92, 209-216.
https://doi.org/10.1002/hlca.200800250
[23] Ma, B., Gao, K., Shi, Y. and Jia, Z. (1997) Phenol Derivatives from Ligularia intermedia. Phytochemistry, 46, 915-919.
https://doi.org/10.1016/s0031-9422(97)00546-3
[24] Lin, Y.S. (2005) Benzofuran Compounds from Ligularia caloxantha. Chinese Traditional and Herbal Drugs, 36, 335-337.
[25] Luo, B., Liao, F., Hu, Y., Liu, X., He, Y., Wu, L., et al. (2015) Acaricidal Activity of Extracts from Ligularia virgaurea against the Sarcoptes scabiei Mite in Vitro. Experimental and Therapeutic Medicine, 10, 247-250.
https://doi.org/10.3892/etm.2015.2503
[26] Hong, S., Joo, T. and Jhoo, J. (2015) Antioxidant and Anti-Inflammatory Activities of 3,5-Dicaffeoylquinic Acid Isolated from Ligularia fischeri Leaves. Food Science and Biotechnology, 24, 257-263.
https://doi.org/10.1007/s10068-015-0034-y
[27] Su, J., Huang, C., Li, P., Lu, Y., Wen, Z., Kao, Y., et al. (2012) Bioactive Cadinane-Type Compounds from the Soft Coral Sinularia scabra. Archives of Pharmacal Research, 35, 779-784.
https://doi.org/10.1007/s12272-012-0503-2
[28] Li, Q., Luo, J., Zhang, Y., Li, Z., Wang, X., Yang, M., et al. (2015) Involucratustones A-C: Unprecedented Sesquiterpene Dimers Containing Multiple Contiguous Quaternary Carbons from Stahlianthus involucratus. ChemistryA European Journal, 21, 13206-13209.
https://doi.org/10.1002/chem.201502631
[29] Delgado, G., del Socorro Olivares, M., Chávez, M.I., Ramírez-Apan, T., Linares, E., Bye, R., et al. (2001) Antiinflammatory Constituents from Heterotheca inuloides. Journal of Natural Products, 64, 861-864.
https://doi.org/10.1021/np0005107
[30] Pyun, C., Seo, T., Kim, D., Kim, T. and Bae, J. (2020) Protective Effects of Ligularia fischeri and Aronia melanocarpa Extracts on Alcoholic Liver Disease (in Vitro and in Vivo Study). BioMed Research International, 2020, Article ID: 9720387.
https://doi.org/10.1155/2020/9720387
[31] Shang, Y.F., Kim, S.M., Song, D., Pan, C., Lee, W.J. and Um, B. (2010) Isolation and Identification of Antioxidant Compounds from Ligularia fischeri. Journal of Food Science, 75, C530-C535.
https://doi.org/10.1111/j.1750-3841.2010.01714.x