|
[1]
|
Liljedahl, A.K., Boike, J., Daanen, R.P., Fedorov, A.N., Frost, G.V., Grosse, G., et al. (2016) Pan-Arctic Ice-Wedge Degradation in Warming Permafrost and Its Influence on Tundra Hydrology. Nature Geoscience, 9, 312-318. [Google Scholar] [CrossRef]
|
|
[2]
|
Kokelj, S.V., Lantz, T.C., Tunnicliffe, J., Segal, R. and Lacelle, D. (2017) Climate-Driven Thaw of Permafrost Preserved Glacial Landscapes, Northwestern Canada. Geology, 45, 371-374. [Google Scholar] [CrossRef]
|
|
[3]
|
Fraser, R.H., Kokelj, S.V., Lantz, T.C., McFarlane-Winchester, M., Olthof, I. and Lacelle, D. (2018) Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island. Remote Sensing, 10, Article 954. [Google Scholar] [CrossRef]
|
|
[4]
|
Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A., et al. (2019) Permafrost Is Warming at a Global Scale. Nature Communications, 10, Article No. 264. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Magnússon, R.Í., Hamm, A., Karsanaev, S.V., Limpens, J., Kleijn, D., Frampton, A., et al. (2022) Extremely Wet Summer Events Enhance Permafrost Thaw for Multiple Years in Siberian Tundra. Nature Communications, 13, Article No. 1556. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhong, S., Li, B., Hou, B., Xu, X., Hu, J., Jia, R., et al. (2023) Structure, Stability, and Potential Function of Groundwater Microbial Community Responses to Permafrost Degradation on Varying Permafrost of the Qinghai-Tibet Plateau. Science of the Total Environment, 875, Article 162693. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K.G., Hutchings, J.A., et al. (2019) Direct Observation of Permafrost Degradation and Rapid Soil Carbon Loss in Tundra. Nature Geoscience, 12, 627-631. [Google Scholar] [CrossRef]
|
|
[8]
|
Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., et al. (2021) Large-Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27, 3218-3229. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wu, M., Chen, S., Chen, J., Xue, K., Chen, S., Wang, X., et al. (2021) Reduced Microbial Stability in the Active Layer Is Associated with Carbon Loss under Alpine Permafrost Degradation. Proceedings of the National Academy of Sciences, 118, e2025321118. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gao, Z., Niu, F., Wang, Y., Lin, Z. and Wang, W. (2021) Suprapermafrost Groundwater Flow and Exchange around a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Journal of Hydrology, 593, Article 125882. [Google Scholar] [CrossRef]
|
|
[11]
|
Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., et al. (2015) Climate Change and the Permafrost Carbon Feedback. Nature, 520, 171-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Abbott, B.W., Jones, J.B., Godsey, S.E., Larouche, J.R. and Bowden, W.B. (2015) Patterns and Persistence of Hydrologic Carbon and Nutrient Export from Collapsing Upland Permafrost. Biogeosciences, 12, 3725-3740. [Google Scholar] [CrossRef]
|
|
[13]
|
Drake, T.W., Wickland, K.P., Spencer, R.G.M., McKnight, D.M. and Striegl, R.G. (2015) Ancient Low-Molecular-Weight Organic Acids in Permafrost Fuel Rapid Carbon Dioxide Production Upon Thaw. Proceedings of the National Academy of Sciences, 112, 13946-13951. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Anthony, K.M.W., Zimov, S.A., Grosse, G., Jones, M.C., Anthony, P.M., et al. (2014) A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511, 452-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Guillemette, F., Bianchi, T.S. and Spencer, R.G.M. (2017) Old before Your Time: Ancient Carbon Incorporation in Contemporary Aquatic Foodwebs. Limnology and Oceanography, 62, 1682-1700. [Google Scholar] [CrossRef]
|
|
[16]
|
McClelland, J.W., Holmes, R.M., Dunton, K.H. and Macdonald, R.W. (2011) The Arctic Ocean Estuary. Estuaries and Coasts, 35, 353-368. [Google Scholar] [CrossRef]
|
|
[17]
|
Vonk, J.E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., et al. (2010) Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7, 3153-3166. [Google Scholar] [CrossRef]
|
|
[18]
|
Zsolnay, Á. (2003) Dissolved Organic Matter: Artefacts, Definitions, and Functions. Geoderma, 113, 187-209. [Google Scholar] [CrossRef]
|
|
[19]
|
Kaiser, K. and Kalbitz, K. (2012) Cycling Downwards—Dissolved Organic Matter in Soils. Soil Biology and Biochemistry, 52, 29-32. [Google Scholar] [CrossRef]
|
|
[20]
|
Panneer Selvam, B., Lapierre, J., Guillemette, F., Voigt, C., Lamprecht, R.E., Biasi, C., et al. (2017) Degradation Potentials of Dissolved Organic Carbon (DOC) from Thawed Permafrost Peat. Scientific Reports, 7, Article No. 45811. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Spencer, R.G.M., Mann, P.J., Dittmar, T., Eglinton, T.I., McIntyre, C., Holmes, R.M., et al. (2015) Detecting the Signature of Permafrost Thaw in Arctic Rivers. Geophysical Research Letters, 42, 2830-2835. [Google Scholar] [CrossRef]
|
|
[22]
|
Tank, S.E., Striegl, R.G., McClelland, J.W. and Kokelj, S.V. (2016) Multi-Decadal Increases in Dissolved Organic Carbon and Alkalinity Flux from the Mackenzie Drainage Basin to the Arctic Ocean. Environmental Research Letters, 11, Article 054015. [Google Scholar] [CrossRef]
|
|
[23]
|
Olefeldt, D., Persson, A. and Turetsky, M.R. (2014) Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9, Article 035005. [Google Scholar] [CrossRef]
|
|
[24]
|
Öquist, M.G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S.J., Laudon, H., et al. (2014) The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1, 315-319. [Google Scholar] [CrossRef]
|
|
[25]
|
Abbott, B.W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung, A., Kolbe, T., et al. (2016) Using Multi-Tracer Inference to Move Beyond Single-Catchment Ecohydrology. Earth-Science Reviews, 160, 19-42. [Google Scholar] [CrossRef]
|
|
[26]
|
Abbott, B.W., Jones, J.B., Schuur, E.A.G., et al. (2016) Biomass Offsets Little or None of Permafrost Carbon Release from Soils, Streams, and Wildfire: An Expert Assessment. Environmental Research Letters, 11, Article 034014.
|
|
[27]
|
O'Donnell, J.A., Aiken, G.R., Swanson, D.K., Panda, S., Butler, K.D. and Baltensperger, A.P. (2016) Dissolved Organic Matter Composition of Arctic Rivers: Linking Permafrost and Parent Material to Riverine Carbon. Global Biogeochemical Cycles, 30, 1811-1826. [Google Scholar] [CrossRef]
|
|
[28]
|
Striegl, R.G., Aiken, G.R., Dornblaser, M.M., Raymond, P.A. and Wickland, K.P. (2005) A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32, L21413. [Google Scholar] [CrossRef]
|
|
[29]
|
Kicklighter, D.W., Hayes, D.J., McClelland, J.W., Peterson, B.J., McGuire, A.D. and Melillo, J.M. (2013) Insights and Issues with Simulating Terrestrial DOC Loading of Arctic River Networks. Ecological Applications, 23, 1817-1836. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tetzlaff, D., Buttle, J., Carey, S.K., McGuire, K., Laudon, H. and Soulsby, C. (2014) Tracer-Based Assessment of Flow Paths, Storage and Runoff Generation in Northern Catchments: A Review. Hydrological Processes, 29, 3475-3490. [Google Scholar] [CrossRef]
|
|
[31]
|
Jones, J.B. and Rinehart, A.J. (2010) The Long-Term Response of Stream Flow to Climatic Warming in Headwater Streams of Interior Alaskathis Article Is One of a Selection of Papers from the Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research, 40, 1210-1218. [Google Scholar] [CrossRef]
|
|
[32]
|
Rogger, M., Chirico, G.B., Hausmann, H., Krainer, K., Brückl, E., Stadler, P., et al. (2017) Impact of Mountain Permafrost on Flow Path and Runoff Response in a High Alpine Catchment. Water Resources Research, 53, 1288-1308. [Google Scholar] [CrossRef]
|
|
[33]
|
Wang, G., Hu, H. and Li, T. (2009) The Influence of Freeze-Thaw Cycles of Active Soil Layer on Surface Runoff in a Permafrost Watershed. Journal of Hydrology, 375, 438-449. [Google Scholar] [CrossRef]
|
|
[34]
|
Karlsson, J.M., Lyon, S.W. and Destouni, G. (2012) Thermokarst Lake, Hydrological Flow and Water Balance Indicators of Permafrost Change in Western Siberia. Journal of Hydrology, 464, 459-466. [Google Scholar] [CrossRef]
|
|
[35]
|
Herzsprung, P., Osterloh, K., von Tümpling, W., Harir, M., Hertkorn, N., Schmitt-Kopplin, P., et al. (2017) Differences in DOM of Rewetted and Natural Peatlands—Results from High-Field FT-ICR-MS and Bulk Optical Parameters. Science of the Total Environment, 586, 770-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Repeta, D.J., Quan, T.M., Aluwihare, L.I. and Accardi, A. (2002) Chemical Characterization of High Molecular Weight Dissolved Organic Matter in Fresh and Marine Waters. Geochimica et Cosmochimica Acta, 66, 955-962. [Google Scholar] [CrossRef]
|
|
[37]
|
Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, E.L., Shaw, K., Whittington, P., et al. (2008) Effect of Water Table Drawdown on Peatland Dissolved Organic Carbon Export and Dynamics. Hydrological Processes, 22, 3373-3385. [Google Scholar] [CrossRef]
|
|
[38]
|
Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B. and Fenner, N. (2001) Export of Organic Carbon from Peat Soils. Nature, 412, 785-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Clark, J.M., Ashley, D., Wagner, M., Chapman, P.J., Lane, S.N., Evans, C.D., et al. (2009) Increased Temperature Sensitivity of Net DOC Production from Ombrotrophic Peat Due to Water Table Draw-Down. Global Change Biology, 15, 794-807. [Google Scholar] [CrossRef]
|
|
[40]
|
Peng, R., Liu, H., Anenkhonov, O.A., Sandanov, D.V., Korolyuk, A.Y., Shi, L., et al. (2022) Tree Growth Is Connected with Distribution and Warming-Induced Degradation of Permafrost in Southern Siberia. Global Change Biology, 28, 5243-5253. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chen, H.Y. and Popadiouk, R.V. (2002) Dynamics of North American Boreal Mixedwoods. Environmental Reviews, 10, 137-166. [Google Scholar] [CrossRef]
|
|
[42]
|
Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., et al. (2006) The Impact of Boreal Forest Fire on Climate Warming. Science, 314, 1130-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wu, Z., He, H.S., Yang, J., Liu, Z. and Liang, Y. (2014) Relative Effects of Climatic and Local Factors on Fire Occurrence in Boreal Forest Landscapes of Northeastern China. Science of the Total Environment, 493, 472-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cahoon, S.M.P., Sullivan, P.F., Brownlee, A.H., Pattison, R.R., Andersen, H., Legner, K., et al. (2018) Contrasting Drivers and Trends of Coniferous and Deciduous Tree Growth in Interior Alaska. Ecology, 99, 1284-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gibson, C.M., Chasmer, L.E., Thompson, D.K., Quinton, W.L., Flannigan, M.D. and Olefeldt, D. (2018) Wildfire as a Major Driver of Recent Permafrost Thaw in Boreal Peatlands. Nature Communications, 9, Article No. 3041. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ma, Q., Jin, H., Yu, C. and Bense, V.F. (2019) Dissolved Organic Carbon in Permafrost Regions: A Review. Science China Earth Sciences, 62, 349-364. [Google Scholar] [CrossRef]
|
|
[47]
|
Likens, G.E. (2013) Biogeochemistry of a Forested Ecosystem. Springer Science & Business Media.
|
|
[48]
|
Prokushkin, A.S., Prokushkin, S.G., Shibata, H., et al. (2001) Dissolved Organic Carbon in Coniferous Forests of Central Siberia. Eurasian Journal of Forest Research, 2, 45-58.
|
|
[49]
|
Osawa, A., Zyryanova, O.A., Matsuura, Y., et al. (2010) Permafrost Ecosystems. Ecological Studies, 2010, Article 209.
|
|
[50]
|
Margesin, R. (2008) Permafrost Soils. Springer Science & Business Media.
|
|
[51]
|
Michaelson, G.J., Ping, C.L., Kling, G.W. and Hobbie, J.E. (1998) The Character and Bioactivity of Dissolved Organic Matter at Thaw and in the Spring Runoff Waters of the Arctic Tundra North Slope, Alaska. Journal of Geophysical Research: Atmospheres, 103, 28939-28946. [Google Scholar] [CrossRef]
|
|
[52]
|
Ewing, S.A., O’Donnell, J.A., Aiken, G.R., Butler, K., Butman, D., Windham-Myers, L., et al. (2015) Long-Term Anoxia and Release of Ancient, Labile Carbon upon Thaw of Pleistocene Permafrost. Geophysical Research Letters, 42, 10730-10738. [Google Scholar] [CrossRef]
|
|
[53]
|
Vonk, J.E., Mann, P.J., Davydov, S., Davydova, A., Spencer, R.G.M., Schade, J., et al. (2013) High Biolability of Ancient Permafrost Carbon upon Thaw. Geophysical Research Letters, 40, 2689-2693. [Google Scholar] [CrossRef]
|
|
[54]
|
Vonk, J.E., Mann, P.J., Dowdy, K.L., Davydova, A., Davydov, S.P., Zimov, N., et al. (2013) Dissolved Organic Carbon Loss from Yedoma Permafrost Amplified by Ice Wedge Thaw. Environmental Research Letters, 8, Article 035023. [Google Scholar] [CrossRef]
|
|
[55]
|
Abbott, B.W., Larouche, J.R., Jones, J.B., Bowden, W.B. and Balser, A.W. (2014) Elevated Dissolved Organic Carbon Biodegradability from Thawing and Collapsing Permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2049-2063. [Google Scholar] [CrossRef]
|
|
[56]
|
Mann, P.J., Eglinton, T.I., McIntyre, C.P., Zimov, N., Davydova, A., Vonk, J.E., et al. (2015) Utilization of Ancient Permafrost Carbon in Headwaters of Arctic Fluvial Networks. Nature Communications, 6, Article No. 7856. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Larouche, J.R., Abbott, B.W., Bowden, W.B. and Jones, J.B. (2015) The Role of Watershed Characteristics, Permafrost Thaw, and Wildfire on Dissolved Organic Carbon Biodegradability and Water Chemistry in Arctic Headwater Streams. Biogeosciences, 12, 4221-4233. [Google Scholar] [CrossRef]
|
|
[58]
|
Zhou, W., Ma, T., Yin, X., Wu, X., Li, Q., Rupakheti, D., et al. (2023) Dramatic Carbon Loss in a Permafrost Thaw Slump in the Tibetan Plateau Is Dominated by the Loss of Microbial Necromass Carbon. Environmental Science & Technology, 57, 6910-6921. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Michalzik, B., Tipping, E., Mulder, J., Lancho, J.F.G., Matzner, E., Bryant, C.L., et al. (2003) Modelling the Production and Transport of Dissolved Organic Carbon in Forest Soils. Biogeochemistry, 66, 241-264. [Google Scholar] [CrossRef]
|
|
[60]
|
Hope, D., Billett, M.F. and Cresser, M.S. (1994) A Review of the Export of Carbon in River Water: Fluxes and Processes. Environmental Pollution, 84, 301-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Moore, T.R. (2003) Dissolved Organic Carbon in a Northern Boreal Landscape. Global Biogeochemical Cycles, 17, Article 1109. [Google Scholar] [CrossRef]
|
|
[62]
|
Thurman, E.M. (2012) Organic Geochemistry of Natural Waters. Springer Science & Business Media.
|
|
[63]
|
Guggenberger, G. and Zech, W. (1994) Dissolved Organic Carbon in Forest Floor Leachates: Simple Degradation Products or Humic Substances? Science of the Total Environment, 152, 37-47. [Google Scholar] [CrossRef]
|
|
[64]
|
Aiken, G.R., McKnight, D.M., Thorn, K.A. and Thurman, E.M. (1992) Isolation of Hydrophilic Organic Acids from Water Using Nonionic Macroporous Resins. Organic Geochemistry, 18, 567-573. [Google Scholar] [CrossRef]
|
|
[65]
|
Amon, R.M.W., Rinehart, A.J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger, G., et al. (2012) Dissolved Organic Matter Sources in Large Arctic Rivers. Geochimica et Cosmochimica Acta, 94, 217-237. [Google Scholar] [CrossRef]
|
|
[66]
|
Neff, J.C. and Asner, G.P. (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems, 4, 29-48. [Google Scholar] [CrossRef]
|
|
[67]
|
Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T. and Striegl, R.G. (2018) Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13, Article 065011. [Google Scholar] [CrossRef]
|
|
[68]
|
Pengerud, A., Dignac, M., Certini, G., Strand, L.T., Forte, C. and Rasse, D.P. (2017) Soil Organic Matter Molecular Composition and State of Decomposition in Three Locations of the European Arctic. Biogeochemistry, 135, 277-292. [Google Scholar] [CrossRef]
|
|
[69]
|
Koven, C.D., Lawrence, D.M. and Riley, W.J. (2015) Permafrost Carbon-Climate Feedback Is Sensitive to Deep Soil Carbon Decomposability but Not Deep Soil Nitrogen Dynamics. Proceedings of the National Academy of Sciences, 112, 3752-3757. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Wickland, K.P., Neff, J.C. and Aiken, G.R. (2007) Dissolved Organic Carbon in Alaskan Boreal Forest: Sources, Chemical Characteristics, and Biodegradability. Ecosystems, 10, 1323-1340. [Google Scholar] [CrossRef]
|
|
[71]
|
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R. and Mopper, K. (2003) Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37, 4702-4708. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wallage, Z.E., Holden, J. and McDonald, A.T. (2006) Drain Blocking: An Effective Treatment for Reducing Dissolved Organic Carbon Loss and Water Discolouration in a Drained Peatland. Science of the Total Environment, 367, 811-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Fong, S.S. and Mohamed, M. (2007) Chemical Characterization of Humic Substances Occurring in the Peats of Sarawak, Malaysia. Organic Geochemistry, 38, 967-976. [Google Scholar] [CrossRef]
|
|
[74]
|
Fenner, N. and Freeman, C. (2011) Drought-Induced Carbon Loss in Peatlands. Nature Geoscience, 4, 895-900. [Google Scholar] [CrossRef]
|
|
[75]
|
Strack, M., Munir, T.M. and Khadka, B. (2019) Shrub Abundance Contributes to Shifts in Dissolved Organic Carbon Concentration and Chemistry in a Continental Bog Exposed to Drainage and Warming. Ecohydrology, 12, e2100. [Google Scholar] [CrossRef]
|
|
[76]
|
Strack, M., Zuback, Y., McCarter, C. and Price, J. (2015) Changes in Dissolved Organic Carbon Quality in Soils and Discharge 10 Years after Peatland Restoration. Journal of Hydrology, 527, 345-354. [Google Scholar] [CrossRef]
|
|
[77]
|
Lu, K., Gardner, W.S. and Liu, Z. (2018) Molecular Structure Characterization of Riverine and Coastal Dissolved Organic Matter with Ion Mobility Quadrupole Time-Of-Flight LCMS (IM Q-TOF Lcms). Environmental Science & Technology, 52, 7182-7191. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Hodgkins, S.B., Tfaily, M.M., Podgorski, D.C., McCalley, C.K., Saleska, S.R., Crill, P.M., et al. (2016) Elemental Composition and Optical Properties Reveal Changes in Dissolved Organic Matter along a Permafrost Thaw Chronosequence in a Subarctic Peatland. Geochimica et Cosmochimica Acta, 187, 123-140. [Google Scholar] [CrossRef]
|
|
[79]
|
Gandois, L., Hoyt, A.M., Hatté, C., Jeanneau, L., Teisserenc, R., Liotaud, M., et al. (2019) Contribution of Peatland Permafrost to Dissolved Organic Matter along a Thaw Gradient in North Siberia. Environmental Science & Technology, 53, 14165-14174. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Prokushkin, A.S., Gleixner, G., McDowell, W.H., Ruehlow, S. and Schulze, E. (2007) Source and Substrate-Specific Export of Dissolved Organic Matter from Permafrost-Dominated Forested Watershed in Central Siberia. Global Biogeochemical Cycles, 21, GB4003. [Google Scholar] [CrossRef]
|
|
[81]
|
Normand, A.E., Smith, A.N., Clark, M.W., Long, J.R. and Reddy, K.R. (2017) Chemical Composition of Soil Organic Matter in a Subarctic Peatland: Influence of Shifting Vegetation Communities. Soil Science Society of America Journal, 81, 41-49. [Google Scholar] [CrossRef]
|
|
[82]
|
He, M., Li, Q., Chen, L., Qin, S., Kuzyakov, Y., Liu, Y., et al. (2023) Priming Effect Stimulates Carbon Release from Thawed Permafrost. Global Change Biology, 29, 4638-4651. [Google Scholar] [CrossRef] [PubMed]
|