| [1] | Perks, C. and Mudd, G. (2019) Titanium, Zirconium Resources and Production: A State of the Art Literature Review. Ore Geology Reviews, 107, 629-646. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | 张继豪. β相水淬锆和锆合金的微结构及耐腐蚀性研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023. | 
                     
                                
                                    
                                        | [3] | Manicone, P.F., Rossi Iommetti, P. and Raffaelli, L. (2007) An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 35, 819-826. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Birkby, I. and Stevens, R. (1996) Applications of Zirconia Ceramics. Key Engineering Materials, 122, 527-552. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | 王秋皓. 锆石浮选组合捕收剂作用机理及应用[D]: [硕士学位论文]. 长沙: 中南大学, 2023. | 
                     
                                
                                    
                                        | [6] | Pupin, J.P. (1980) Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73, 207-220. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Hoskin, P.W.O. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Schaltegger, U., Pettke, T., Audétat, A., Reusser, E. and Heinrich, C.A. (2005) Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part I: Crystallization of zircon and REE-Phosphates over Three Million Years—A Geochemical and U-Pb Geochronological Study. Chemical Geology, 220, 215-235. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Bernini, D., Audétat, A., Dolejš, D. and Keppler, H. (2013) Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 119, 178-187. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Shikina, N.D., Vasina, O.N., Gurova, E.V., Popova, E.S., Tagirov, B.R., Shazzo, Y.K., et al. (2013) Experimental Study of ZrO2(c) Solubility in Water and Aqueous Perchloric Acid Solutions at 150 and 250˚C. Geochemistry International, 52, 82-87. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Tropper, P. (2005) Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90, 502-505. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Zack, T. and John, T. (2007) An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239, 199-216. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, F.J. (1994) Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for High Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters, 128, 327-339. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Gaetani, G.A., Asimow, P.D. and Stolper, E.M. (2008) A Model for Rutile Saturation in Silicate Melts with Applications to Eclogite Partial Melting in Subduction Zones and Mantle Plumes. Earth and Planetary Science Letters, 272, 720-729. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | McNaughton, N.J., Mueller, A.G. and Groves, D.I. (2005) The Age of the Giant Golden Mile Deposit, Kalgoorlie, Western Australia: Ion-Microprobe Zircon and Monazite U-Pb Geochronology of a Synmineralization Lamprophyre Dike. Economic Geology, 100, 1427-1440. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Giere, R. (1986) Zirconolite, Allanite and Hoegbomite in a Marble Skarn from the Bergell Contact Aureole: Implications for Mobility of Ti, Zr and REE. Contributions to Mineralogy and Petrology, 93, 459-470. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Gieré, R. (1990) Hydrothermal Mobility of Ti, Zr and REE: Examples from the Bergell and Adamello Contact Aureoles (Italy). Terra Nova, 2, 60-67. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Claoue-Long, J.C., King, R.W. and Kerrich, R. (1990) Archaean Hydrothermal Zircon in the Abitibi Greenstone Belt: Constraints on the Timing of Gold Mineralisation. Earth and Planetary Science Letters, 98, 109-128. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., et al. (2004) U-Pb Dating of Serpentinization: Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203, 183-203. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2005) Magmatic-to-Hydrthermal Crystallization in the W–-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220, 191-213. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Kebede, T., Horie, K., Hidaka, H. and Terada, K. (2007) Zircon ‘Mcrovein’ in Peralkaline Granitic Gneiss, Western Ethiopia: Origin, SHRIMP U-Pb Geochronology and Trace Element Investigations. Chemical Geology, 242, 76-102. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | de Hoog, J.C.M. and van Bergen, M.J. (2000) Volatile-Induced Transport of HFSE, REE, Th and U in Arc Magmas: Evidence from Zirconolite-Bearing Vesicles in Potassic Lavas of Lewotolo Volcano (Indonesia). Contributions to Mineralogy and Petrology, 139, 485-502. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Schaltegger, U. (2007) Hydrothermal Zircon. Elements, 3, 51-79. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | 肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学“信息库” [J]. 岩石学报, 2011, 27(2): 398-416. | 
                     
                                
                                    
                                        | [25] | Gao, J., John, T., Klemd, R. and Xiong, X. (2007) Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71, 4974-4996. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Rapp, J.F., Klemme, S., Butler, I.B. and Harley, S.L. (2010) Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids: An Experimental Investigation. Geology, 38, 323-326. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | Kessel, R., Schmidt, M.W., Ulmer, P. and Pettke, T. (2005) Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437, 724-727. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Li, W. and Ni, H. (2020) Dehydration at Subduction Zones and the Geochemistry of Slab Fluids. Science China Earth Sciences, 63, 1925-1937. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Ni, H., Zhang, L., Xiong, X., Mao, Z. and Wang, J. (2017) Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. Earth-Science Reviews, 167, 62-71. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Chen, W., Zhang, G., Ruan, M., Wang, S. and Xiong, X. (2021) Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research: Solid Earth, 126, e2020JB020708. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [31] | Manning, C. (2004) The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223, 1-16. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | Bureau, H. (1999) Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165, 187-196. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N. and Ono, S. (2012) Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 109, 18695-18700. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Mibe, K., Chou, I. and Bassett, W.A. (2008) In Situ Raman Spectroscopic Investigation of the Structure of Subduction‐zone Fluids. Journal of Geophysical Research: Solid Earth, 113, B04208. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | Shen, A.H. and Keppler, H. (1997) Direct Observation of Complete Miscibility in the Albite-H2O System. Nature, 385, 710-712. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [36] | Zhang, Z., Shen, K., Sun, W., Liu, Y., Liou, J.G., Shi, C., et al. (2008) Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72, 3200-3228. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [37] | Ferrando, S., Frezzotti, M.L., Dallai, L. and Compagnoni, R. (2005) Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223, 68-81. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Zheng, Y. and Hermann, J. (2014) Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66, Article No. 93. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Ayers, J.C., Zhang, L., Luo, Y. and Peters, T.J. (2012) Zircon Solubility in Alkaline Aqueous Fluids at Upper Crustal Conditions. Geochimica et Cosmochimica Acta, 96, 18-28. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | Mysen, B. (2015) An in Situ Experimental Study of Zr4+ Transport Capacity of Water-Rich Fluids in the Temperature and Pressure Range of the Deep Crust and Upper Mantle. Progress in Earth and Planetary Science, 2, Article No. 38. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [41] | Ryzhenko, B.N., Kovalenko, N.I., Prisyagina, N.I., Starshinova, N.P. and Krupskaya, V.V. (2008) Experimental Determination of Zirconium Speciation in Hydrothermal Solutions. Geochemistry International, 46, 328-339. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V. and Salvi, S. (2011) An Experimental Study of the Solubility of Baddeleyite (ZrO2) in Fluoride-Bearing Solutions at Elevated Temperature. Geochimica et Cosmochimica Acta, 75, 7426-7434. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [43] | 何俊杰. 热液体系中高场强元素富氟络合物的水解行为及活动性规律[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018. | 
                     
                                
                                    
                                        | [44] | 何俊杰, 丁兴, 王玉荣, 等. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义[J]. 岩石学报, 2015, 31(7): 1870-1878. | 
                     
                                
                                    
                                        | [45] | 何俊杰, 丁兴, 王玉荣, 等. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约 [J]. 岩石学报, 2015, 31(3): 802-810. | 
                     
                                
                                    
                                        | [46] | 丁兴, 何俊杰, 刘灼瑜. 热液条件下锐钛矿晶体生长的实验[J]. 地球科学, 2018, 43(5): 1763-1772. | 
                     
                                
                                    
                                        | [47] | Yan, H., He, J., Liu, X., Wang, H., Liu, J. and Ding, X. (2020) Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15-773.15 K and 100 MPA. Journal of Solution Chemistry, 49, 836-848. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [48] | Yan, H., Ding, X., Liu, J., Tu, X., Sun, W. and Chou, I. (2024) Osmium Transport and Enrichment from the Lithosphere to the Hydrosphere: New Perspectives from Hydrothermal Experiments and Geochemical Modeling. Journal of Geophysical Research: Solid Earth, 129, e2023JB028261. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | Helgeson, H.C. and Kirkham, D.H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274, 1199-1261. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [50] | Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb. American Journal of Science, 281, 1249-1516. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [51] | Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 19-98. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [52] | Rubin, J.N., Henry, C.D. and Price, J.G. (1993) The Mobility of Zirconium and Other “Immobile” Elements during Hydrothermal Alteration. Chemical Geology, 110, 29-47. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [53] | Salvi, S. and Williams-Jones, A.E. (1996) The Role of Hydrothermal Processes in Concentrating High-Field Strength Elements in the Strange Lake Peralkaline Complex, Northeastern Canada. Geochimica et Cosmochimica Acta, 60, 1917-1932. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [54] | London, D., Hervig, R.L. and Morgan, G.B. (1988) Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360-373. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [55] | Dolejs, D. and Baker, D.R. (2007) Liquidus Equilibria in the System K2O-Na2O-Al2O3-SiO2-F2O-1-H2O to 100 MPa: II. Differentiation Paths of Fluorosilicic Magmas in Hydrous Systems. Journal of Petrology, 48, 807-828. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [56] | Webster, J.D. (1990) Partitioning of F between H2O and CO2 Fluids and Topaz Rhyolite Melt: Implications for Mineralizing Magmatic-Hydrothermal Fluids in F-Rich Granitic Systems. Contributions to Mineralogy and Petrology, 104, 424-438. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [57] | Carroll, M.R. and Webster, J.D. (1994) Chapter 7. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. In: Wallace, P. and Anderson Jr., A.T., Eds., Volatiles in Magmas, De Gruyter, 231-280. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [58] | Manning, D.A.C. (1981) The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76, 206-215. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [59] | Dostal, J. and Chatterjee, A.K. (2000) Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163, 207-218. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [60] | Hanson, S.L., Simmons, W.B. and Falster, A.U. (1998) Nb-Ta-Ti Oxides in Granitic Pegmatites from the Topsham Pegmatite District, Southern Maine. Canadian Mineralogist, 36, 601-608. | 
                     
                                
                                    
                                        | [61] | 李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311-4322. | 
                     
                                
                                    
                                        | [62] | Faithfull, J.W., Dempster, T.J., MacDonald, J.M. and Reilly, M. (2018) Metasomatism and the Crystallization of Zircon Megacrysts in Archaean Peridotites from the Lewisian Complex, NW Scotland. Contributions to Mineralogy and Petrology, 173, Article No. 99. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Li, H., Chen, R., Zheng, Y. and Hu, Z. (2016) The Crust‐Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 121, 687-712. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [64] | Chen, W., Xiong, X., Wang, J., Xue, S., Li, L., Liu, X., et al. (2018) TiO2 Solubility and Nb and Ta Partitioning in Rutile‐silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123, 4765-4782. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [65] | Kalfoun, F., Ionov, D. and Merlet, C. (2002) HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites. Earth and Planetary Science Letters, 199, 49-65. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [66] | Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006) Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249, 173-187. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [67] | Louvel, M., Sanchez-Valle, C., Malfait, W.J., Cardon, H., Testemale, D. and Hazemann, J. (2014) Constraints on the Mobilization of Zr in Magmatic-Hydrothermal Processes in Subduction Zones from in Situ Fluid-Melt Partitioning Experiments. American Mineralogist, 99, 1616-1625. [Google Scholar] [CrossRef] |