[1]
|
Perks, C. and Mudd, G. (2019) Titanium, Zirconium Resources and Production: A State of the Art Literature Review. Ore Geology Reviews, 107, 629-646. https://doi.org/10.1016/j.oregeorev.2019.02.025
|
[2]
|
张继豪. β相水淬锆和锆合金的微结构及耐腐蚀性研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
|
[3]
|
Manicone, P.F., Rossi Iommetti, P. and Raffaelli, L. (2007) An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 35, 819-826. https://doi.org/10.1016/j.jdent.2007.07.008
|
[4]
|
Birkby, I. and Stevens, R. (1996) Applications of Zirconia Ceramics. Key Engineering Materials, 122, 527-552. https://doi.org/10.4028/www.scientific.net/kem.122-124.527
|
[5]
|
王秋皓. 锆石浮选组合捕收剂作用机理及应用[D]: [硕士学位论文]. 长沙: 中南大学, 2023.
|
[6]
|
Pupin, J.P. (1980) Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73, 207-220. https://doi.org/10.1007/bf00381441
|
[7]
|
Hoskin, P.W.O. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62. https://doi.org/10.2113/0530027
|
[8]
|
Schaltegger, U., Pettke, T., Audétat, A., Reusser, E. and Heinrich, C.A. (2005) Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part I: Crystallization of zircon and REE-Phosphates over Three Million Years—A Geochemical and U-Pb Geochronological Study. Chemical Geology, 220, 215-235. https://doi.org/10.1016/j.chemgeo.2005.02.018
|
[9]
|
Bernini, D., Audétat, A., Dolejš, D. and Keppler, H. (2013) Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 119, 178-187. https://doi.org/10.1016/j.gca.2013.05.018
|
[10]
|
Shikina, N.D., Vasina, O.N., Gurova, E.V., Popova, E.S., Tagirov, B.R., Shazzo, Y.K., et al. (2013) Experimental Study of ZrO2(c) Solubility in Water and Aqueous Perchloric Acid Solutions at 150 and 250˚C. Geochemistry International, 52, 82-87. https://doi.org/10.1134/s0016702914010078
|
[11]
|
Tropper, P. (2005) Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90, 502-505. https://doi.org/10.2138/am.2005.1806
|
[12]
|
Zack, T. and John, T. (2007) An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239, 199-216. https://doi.org/10.1016/j.chemgeo.2006.10.020
|
[13]
|
Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, F.J. (1994) Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for High Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters, 128, 327-339. https://doi.org/10.1016/0012-821x(94)90154-6
|
[14]
|
Gaetani, G.A., Asimow, P.D. and Stolper, E.M. (2008) A Model for Rutile Saturation in Silicate Melts with Applications to Eclogite Partial Melting in Subduction Zones and Mantle Plumes. Earth and Planetary Science Letters, 272, 720-729. https://doi.org/10.1016/j.epsl.2008.06.002
|
[15]
|
McNaughton, N.J., Mueller, A.G. and Groves, D.I. (2005) The Age of the Giant Golden Mile Deposit, Kalgoorlie, Western Australia: Ion-Microprobe Zircon and Monazite U-Pb Geochronology of a Synmineralization Lamprophyre Dike. Economic Geology, 100, 1427-1440. https://doi.org/10.2113/gsecongeo.100.7.1427
|
[16]
|
Giere, R. (1986) Zirconolite, Allanite and Hoegbomite in a Marble Skarn from the Bergell Contact Aureole: Implications for Mobility of Ti, Zr and REE. Contributions to Mineralogy and Petrology, 93, 459-470. https://doi.org/10.1007/bf00371716
|
[17]
|
Gieré, R. (1990) Hydrothermal Mobility of Ti, Zr and REE: Examples from the Bergell and Adamello Contact Aureoles (Italy). Terra Nova, 2, 60-67. https://doi.org/10.1111/j.1365-3121.1990.tb00037.x
|
[18]
|
Claoue-Long, J.C., King, R.W. and Kerrich, R. (1990) Archaean Hydrothermal Zircon in the Abitibi Greenstone Belt: Constraints on the Timing of Gold Mineralisation. Earth and Planetary Science Letters, 98, 109-128. https://doi.org/10.1016/0012-821x(90)90091-b
|
[19]
|
Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., et al. (2004) U-Pb Dating of Serpentinization: Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203, 183-203. https://doi.org/10.1016/j.chemgeo.2003.10.005
|
[20]
|
Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2005) Magmatic-to-Hydrthermal Crystallization in the W–-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220, 191-213. https://doi.org/10.1016/j.chemgeo.2005.02.017
|
[21]
|
Kebede, T., Horie, K., Hidaka, H. and Terada, K. (2007) Zircon ‘Mcrovein’ in Peralkaline Granitic Gneiss, Western Ethiopia: Origin, SHRIMP U-Pb Geochronology and Trace Element Investigations. Chemical Geology, 242, 76-102. https://doi.org/10.1016/j.chemgeo.2007.03.014
|
[22]
|
de Hoog, J.C.M. and van Bergen, M.J. (2000) Volatile-Induced Transport of HFSE, REE, Th and U in Arc Magmas: Evidence from Zirconolite-Bearing Vesicles in Potassic Lavas of Lewotolo Volcano (Indonesia). Contributions to Mineralogy and Petrology, 139, 485-502. https://doi.org/10.1007/s004100000146
|
[23]
|
Schaltegger, U. (2007) Hydrothermal Zircon. Elements, 3, 51-79. https://doi.org/10.2113/gselements.3.1.51
|
[24]
|
肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学“信息库” [J]. 岩石学报, 2011, 27(2): 398-416.
|
[25]
|
Gao, J., John, T., Klemd, R. and Xiong, X. (2007) Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71, 4974-4996. https://doi.org/10.1016/j.gca.2007.07.027
|
[26]
|
Rapp, J.F., Klemme, S., Butler, I.B. and Harley, S.L. (2010) Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids: An Experimental Investigation. Geology, 38, 323-326. https://doi.org/10.1130/g30753.1
|
[27]
|
Kessel, R., Schmidt, M.W., Ulmer, P. and Pettke, T. (2005) Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437, 724-727. https://doi.org/10.1038/nature03971
|
[28]
|
Li, W. and Ni, H. (2020) Dehydration at Subduction Zones and the Geochemistry of Slab Fluids. Science China Earth Sciences, 63, 1925-1937. https://doi.org/10.1007/s11430-019-9655-1
|
[29]
|
Ni, H., Zhang, L., Xiong, X., Mao, Z. and Wang, J. (2017) Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. Earth-Science Reviews, 167, 62-71. https://doi.org/10.1016/j.earscirev.2017.02.006
|
[30]
|
Chen, W., Zhang, G., Ruan, M., Wang, S. and Xiong, X. (2021) Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research: Solid Earth, 126, e2020JB020708. https://doi.org/10.1029/2020jb020708
|
[31]
|
Manning, C. (2004) The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223, 1-16. https://doi.org/10.1016/j.epsl.2004.04.030
|
[32]
|
Bureau, H. (1999) Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165, 187-196. https://doi.org/10.1016/s0012-821x(98)00266-0
|
[33]
|
Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N. and Ono, S. (2012) Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 109, 18695-18700. https://doi.org/10.1073/pnas.1207687109
|
[34]
|
Mibe, K., Chou, I. and Bassett, W.A. (2008) In Situ Raman Spectroscopic Investigation of the Structure of Subduction‐zone Fluids. Journal of Geophysical Research: Solid Earth, 113, B04208. https://doi.org/10.1029/2007jb005179
|
[35]
|
Shen, A.H. and Keppler, H. (1997) Direct Observation of Complete Miscibility in the Albite-H2O System. Nature, 385, 710-712. https://doi.org/10.1038/385710a0
|
[36]
|
Zhang, Z., Shen, K., Sun, W., Liu, Y., Liou, J.G., Shi, C., et al. (2008) Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72, 3200-3228. https://doi.org/10.1016/j.gca.2008.04.014
|
[37]
|
Ferrando, S., Frezzotti, M.L., Dallai, L. and Compagnoni, R. (2005) Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223, 68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029
|
[38]
|
Zheng, Y. and Hermann, J. (2014) Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66, Article No. 93. https://doi.org/10.1186/1880-5981-66-93
|
[39]
|
Ayers, J.C., Zhang, L., Luo, Y. and Peters, T.J. (2012) Zircon Solubility in Alkaline Aqueous Fluids at Upper Crustal Conditions. Geochimica et Cosmochimica Acta, 96, 18-28. https://doi.org/10.1016/j.gca.2012.08.027
|
[40]
|
Mysen, B. (2015) An in Situ Experimental Study of Zr4+ Transport Capacity of Water-Rich Fluids in the Temperature and Pressure Range of the Deep Crust and Upper Mantle. Progress in Earth and Planetary Science, 2, Article No. 38. https://doi.org/10.1186/s40645-015-0070-5
|
[41]
|
Ryzhenko, B.N., Kovalenko, N.I., Prisyagina, N.I., Starshinova, N.P. and Krupskaya, V.V. (2008) Experimental Determination of Zirconium Speciation in Hydrothermal Solutions. Geochemistry International, 46, 328-339. https://doi.org/10.1134/s0016702908040022
|
[42]
|
Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V. and Salvi, S. (2011) An Experimental Study of the Solubility of Baddeleyite (ZrO2) in Fluoride-Bearing Solutions at Elevated Temperature. Geochimica et Cosmochimica Acta, 75, 7426-7434. https://doi.org/10.1016/j.gca.2011.09.043
|
[43]
|
何俊杰. 热液体系中高场强元素富氟络合物的水解行为及活动性规律[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018.
|
[44]
|
何俊杰, 丁兴, 王玉荣, 等. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义[J]. 岩石学报, 2015, 31(7): 1870-1878.
|
[45]
|
何俊杰, 丁兴, 王玉荣, 等. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约 [J]. 岩石学报, 2015, 31(3): 802-810.
|
[46]
|
丁兴, 何俊杰, 刘灼瑜. 热液条件下锐钛矿晶体生长的实验[J]. 地球科学, 2018, 43(5): 1763-1772.
|
[47]
|
Yan, H., He, J., Liu, X., Wang, H., Liu, J. and Ding, X. (2020) Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15-773.15 K and 100 MPA. Journal of Solution Chemistry, 49, 836-848. https://doi.org/10.1007/s10953-020-00993-1
|
[48]
|
Yan, H., Ding, X., Liu, J., Tu, X., Sun, W. and Chou, I. (2024) Osmium Transport and Enrichment from the Lithosphere to the Hydrosphere: New Perspectives from Hydrothermal Experiments and Geochemical Modeling. Journal of Geophysical Research: Solid Earth, 129, e2023JB028261. https://doi.org/10.1029/2023jb028261
|
[49]
|
Helgeson, H.C. and Kirkham, D.H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274, 1199-1261. https://doi.org/10.2475/ajs.274.10.1199
|
[50]
|
Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb. American Journal of Science, 281, 1249-1516. https://doi.org/10.2475/ajs.281.10.1249
|
[51]
|
Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 19-98. https://doi.org/10.2475/ajs.288.1.19
|
[52]
|
Rubin, J.N., Henry, C.D. and Price, J.G. (1993) The Mobility of Zirconium and Other “Immobile” Elements during Hydrothermal Alteration. Chemical Geology, 110, 29-47. https://doi.org/10.1016/0009-2541(93)90246-f
|
[53]
|
Salvi, S. and Williams-Jones, A.E. (1996) The Role of Hydrothermal Processes in Concentrating High-Field Strength Elements in the Strange Lake Peralkaline Complex, Northeastern Canada. Geochimica et Cosmochimica Acta, 60, 1917-1932. https://doi.org/10.1016/0016-7037(96)00071-3
|
[54]
|
London, D., Hervig, R.L. and Morgan, G.B. (1988) Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360-373. https://doi.org/10.1007/bf00375368
|
[55]
|
Dolejs, D. and Baker, D.R. (2007) Liquidus Equilibria in the System K2O-Na2O-Al2O3-SiO2-F2O-1-H2O to 100 MPa: II. Differentiation Paths of Fluorosilicic Magmas in Hydrous Systems. Journal of Petrology, 48, 807-828. https://doi.org/10.1093/petrology/egm002
|
[56]
|
Webster, J.D. (1990) Partitioning of F between H2O and CO2 Fluids and Topaz Rhyolite Melt: Implications for Mineralizing Magmatic-Hydrothermal Fluids in F-Rich Granitic Systems. Contributions to Mineralogy and Petrology, 104, 424-438. https://doi.org/10.1007/bf01575620
|
[57]
|
Carroll, M.R. and Webster, J.D. (1994) Chapter 7. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. In: Wallace, P. and Anderson Jr., A.T., Eds., Volatiles in Magmas, De Gruyter, 231-280. https://doi.org/10.1515/9781501509674-013
|
[58]
|
Manning, D.A.C. (1981) The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76, 206-215. https://doi.org/10.1007/bf00371960
|
[59]
|
Dostal, J. and Chatterjee, A.K. (2000) Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163, 207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
|
[60]
|
Hanson, S.L., Simmons, W.B. and Falster, A.U. (1998) Nb-Ta-Ti Oxides in Granitic Pegmatites from the Topsham Pegmatite District, Southern Maine. Canadian Mineralogist, 36, 601-608.
|
[61]
|
李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311-4322.
|
[62]
|
Faithfull, J.W., Dempster, T.J., MacDonald, J.M. and Reilly, M. (2018) Metasomatism and the Crystallization of Zircon Megacrysts in Archaean Peridotites from the Lewisian Complex, NW Scotland. Contributions to Mineralogy and Petrology, 173, Article No. 99. https://doi.org/10.1007/s00410-018-1527-5
|
[63]
|
Li, H., Chen, R., Zheng, Y. and Hu, Z. (2016) The Crust‐Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 121, 687-712. https://doi.org/10.1002/2015jb012231
|
[64]
|
Chen, W., Xiong, X., Wang, J., Xue, S., Li, L., Liu, X., et al. (2018) TiO2 Solubility and Nb and Ta Partitioning in Rutile‐silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123, 4765-4782. https://doi.org/10.1029/2018jb015808
|
[65]
|
Kalfoun, F., Ionov, D. and Merlet, C. (2002) HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites. Earth and Planetary Science Letters, 199, 49-65. https://doi.org/10.1016/s0012-821x(02)00555-1
|
[66]
|
Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006) Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249, 173-187. https://doi.org/10.1016/j.epsl.2006.07.017
|
[67]
|
Louvel, M., Sanchez-Valle, C., Malfait, W.J., Cardon, H., Testemale, D. and Hazemann, J. (2014) Constraints on the Mobilization of Zr in Magmatic-Hydrothermal Processes in Subduction Zones from in Situ Fluid-Melt Partitioning Experiments. American Mineralogist, 99, 1616-1625. https://doi.org/10.2138/am.2014.4799
|