温度和时间对富氟流体中Zr高温高压水解行为的影响
The Influence of Temperature and Time on the High-Temperature and High-Pressure Hydrolysis Behavior of Zr in Fluorine Rich Fluids
DOI: 10.12677/ag.2025.154053, PDF, HTML, XML,    科研立项经费支持
作者: 潘瑞龙, 易泽邦, 傅旋霓:桂林理工大学地球科学学院,广西 桂林
关键词: 氟锆络合物水解反应热液体系Fluorine Zirconium Complex Hydrolysis Reaction Hydrothermal System
摘要: 目前已经有大量的实验研究得到了Zr矿物在热液中的一些行为以及热力学数据,但是由于使用络合物水解法进行研究的人较少,且研究范围较为局限,且因为数据过少而无法确认其数据的准确性,因此为了更全面地了解Zr的流体迁移能力,同时验证前人的实验数据,本研究使用富氟络合物水解和热力学模拟计算相结合的方法对Zr流体活动性进行研究,通过高温高压实验,探究热液体系中富氟的锆络合物水解行为的问题。实验结果显示,在150℃~500℃之间,随着温度的升高水解率逐渐升高,当温度达到500℃时水解率已经达到了90%以上,并获得了实验条件下的Zr-F络合物的累积水解平衡常数。该实验可帮助解释富F流体的出现可能是造成伟晶岩锆石具有异常低Zr/Hf的原因。并且该实验结果也可为验证Zr-F络合物的水解数据提供帮助。
Abstract: At present, a large number of experimental studies have obtained some behaviors and thermodynamic data of Zr minerals in hydrothermal solutions. However, due to the limited number of researchers using complex hydrolysis method and the limited scope of research, and the lack of data, the accuracy of the data cannot be confirmed. Therefore, in order to comprehensively understand the fluid migration ability of Zr and verify previous experimental data, this study uses a combination of fluoride rich complex hydrolysis and thermodynamic simulation calculation to study the fluid activity of Zr. Through high-temperature and high-pressure experiments, the problem of fluoride rich zirconium complex hydrolysis behavior in hydrothermal systems is explored. The experimental results showed that the hydrolysis rate gradually increased with the increase of temperature between 150˚C~500˚C. When the temperature reached 500˚C, the hydrolysis rate had already reached over 90%, and the cumulative hydrolysis equilibrium constant of Zr-F complex under experimental conditions was obtained. This experiment can help explain why the occurrence of F-rich fluids may be the reason for the abnormally low Zr/Hf content of zircon in pegmatite. The experimental results can also provide assistance in verifying the hydrolysis data of Zr-F complexes.
文章引用:潘瑞龙, 易泽邦, 傅旋霓. 温度和时间对富氟流体中Zr高温高压水解行为的影响[J]. 地球科学前沿, 2025, 15(4): 525-537. https://doi.org/10.12677/ag.2025.154053

1. 引言

锆是第四周期元素周期表中第40号元素,原子量为91.224,在自然界中主要以氧化物或硅酸盐的形式存在于各种岩石和沙土中[1]。锆金属在地壳中含量较高,但是由于自然界中具有工业价值的锆多以锆英石、斜锆石等形式存在,开采提炼难度大,耗费成本高,因此锆也被称为“稀有金属”[2]。锆及其化合物具有耐高温、耐腐蚀、抗氧化、耐磨损、压电性和生物相容等优异的特性,被广泛的应用在核工业、陶瓷、医学、医学、电子领域、建材领域,其中核工业和陶瓷是锆最重要的应用领域[3]-[5]

锆通常被认为是最不活泼的元素之一,因而被广泛应用于岩石成因分类和同位素定年中[6]-[8]。大量的溶解度实验也支持Zr的不活泼性质。例如,在1000℃纯水下Zr的溶解度只有ppm级别[9] [10]。因此,通常认为锆石基本不溶于地幔或俯冲流体,Zr甚至其他高场强元素(HFSE)元素都会残留在源区,从而导致地幔或俯冲流体亏损HFSE,继而将这种亏损信息传递给弧岩浆[11]-[14]。但是随着被热液蚀变过的锆石被发现[15]、锆石或其他氟锆矿物在热液中沉淀被找到[16]-[21]、流体包裹体中发现锆石子晶等[22] [23],说明无论在浅部热液体系还是深部超临界流体体系中Zr都能大量溶解进入流体,另一方面也暗示Zr可能与F形成了酸基络合物发生了迁移[24]-[26]

在俯冲带,元素转移的流体相包括含水流体、含水熔体和超临界流体[27]-[29]。由于压力和温度的升高,这些源自板块活动相的性质和组成随着俯冲深度的变化而变化[30]。在低于岩石H2O体系固相的温度下,只有含水流体与固体矿物共存;在此温度以上,熔化发生,因此含水熔体 ± 含水流体与固体矿物共存。随着压力和温度的升高,由于H2O在硅酸盐熔体中的溶解度和硅酸盐在H2O中的溶解度相互增强,含水流体和含水熔体之间的不混相间隙减小并最终关闭[29] [31],在湿固相和临界曲线相交的第二个临界端点之外形成富溶质超临界流体。含水硅酸盐熔体与含水流体之间的超临界现象已被观察到[32]-[35],且野外研究也表明,超高压岩石中的多相包裹体代表了变质作用过程中产生的富溶质超临界流体[36] [37]。因此,超临界流体可能在深俯冲期间普遍存在,并负责俯冲带的化学输运[27] [38]

为了获得Zr在高温高压流体中热力学性质,前人开展了大量的高温高压实验和热力学模拟研究。Bernini et al. (2013)和Shikina et al. (2014)通过可靠的实验方法发现在1000℃纯水中Zr的溶解度大概只有ppm级别[9] [10],而这也证实了Zr难以在纯水体系中发生迁移。除此之外,Zr在富Si流体中的溶解度要比纯水体系中高一个数量级[9] [39] [40]。Ryzhenko et al. (2008)和Migdisov et al. (2011)都曾对斜锆石在氢氟酸中的矿物溶解度进行研究,结果显示随着体系中HF浓度的升高,斜锆石的溶解度也单调增大,且两者的对数值呈现良好的线性关系,但两人在溶解能力的实验结果上相差1~3个数量级[41] [42]。同时Migdisov et al. (2011)认为温度的升高抑制了Zr在富F流体中的活动能力,这一趋势与Zr在其他溶液体系中的活动能力趋势相反(Mysen, 2015) [40] [42]。同时将结果与Ryzhenko et al. (2008)和Migdisov et al. (2011)的数据进行了对比,发现在cHF > 0.1 mol/L时,流体中的Zr活动性随HF浓度上升的趋势基本一致,都是单调增加,但是在具体数值上存在一定的差异,当cF < 0.1 mol/L时模拟结果却迅速下降,而前人数据均保持了稳定的线性关系[41]-[43]

虽然目前人们对Zr在热液中的一些行为有了初步的认识[9] [10] [39]-[43],但是Zr元素在迁移阶段的具体行为还缺乏针对性研究,这些问题急需解决。且在已经开展的相关实验中,几乎都是采用赋锆矿物溶解度法进行,该方法时间长,污染大,很多实验之间的结果还存在较大的差异[43],同时由于目前使用络合物水解法进行的研究过少,因此仍需要更多的实验对Zr在热液中的迁移行为进行研究。

为了解决上述问题,本研究以最稳定的且具有最高氟配位的六氟锆酸水溶液(H2ZrF6)为实验初始物,在150℃~500℃和100 MPa条件下开展高温水解实验,以此模拟含氟热液中Zr和氟的络合行为。由于 ZrF 6 2 络合物的高温不稳定性,易于发生水解,在特定条件下逐步形成稳定的络合物,从而为我们检验和探究热液中存在的氟锆络合物种型及其稳定性定量表征提供了可能[43]

2. 实验方法与计算

2.1. 实验原理

本实验所采用初始物为六氟锆酸45%水溶液(Macklin),室温下密度为1.512 g/mL,溶质的分子质量为207.23,无色液体。

在热液中,H2ZrF6络合物具有氟酸基络合阴离子—— ZrF 6 2 ,它在水中会发生逐步水解。整个过程为:

ZrF 6 2 + H 2 OZr( OH ) F 5 2 +HF (1a)

Zr( OH ) F 5 2 + H 2 OZr ( OH ) 2 F 4 2 +HF (1b)

Zr ( OH ) 2 F 4 2 + H 2 OZr ( OH ) 3 F 3 2 +HF (1c)

Zr ( OH ) 3 F 3 2 + H 2 OZr ( OH ) 4 F 2 2 +HF (1d)

Zr ( OH ) 4 F 2 2 + H 2 OZr ( OH ) 5 F 2 +HF (1e)

Zr ( OH ) 5 F 2 + H 2 OZr ( OH ) 6 2 +HF (1f)

Zr ( OH ) 6 2 Zr ( OH ) 4 +2 OH (1g)

Zr ( OH ) 4 ZrO 2 + 2 H 2 O (1h)

本文主要研究的是H2ZrF6络合物在特定温度、压力、浓度的条件下的水解程度,这一过程用反应产生沉淀的量来表示。至于其他中间产物,对于该实验来说其研究意义并不大。因此以上络合物反应可以综合成一个理想的水解反应方程式。该方程式为:

ZrF 6 2 +2 H 2 O ZrO 2 +4HF+2 F (2)

2.2. 水热高压釜实验

高温高压水解实验在中国科学院广州地球化学研究所高温高压实验地球科学中心水热实验室进行,所用装置为立式Tuttle型冷封式水热高压釜(图1)。该装置采用去离子水作为传压介质,通过气动液体增压泵产生高压水形成静压压力;该装置温度上限为900℃,压力上限为500 MPa。实验过程中采用K型热电偶连接高精度控温仪进行温度控制,使用耐震指针式精密压力表监控釜内压力,温度误差优于±3℃,压力误差小于5 MPa。实验结束时,使用冰水混合物浸没高压釜进行快速淬火,使得样品在数秒内降温至100℃以下。该方法可有效减少淬火效应的发生,并避免络合物水解沉淀物的返溶[44] [45]

Figure 1. Schematic diagram of high-temperature and high-pressure hydrolysis experimental device

1. 高温高压水解实验装置示意图[46]

在高温高压水解实验前,使用移液枪将初始物水溶液从试剂瓶中移入离心管中,再采用移液枪将100 μL初始溶液滴入一端已焊封的金管(长2 cm、口径4 mm)内,并采用德国LAMPERT PUKU3型氩弧焊机焊封另一端。再将经过称量的焊封后的金管放入60℃烘箱一小时以上,对比前后称量的重量,重量无变化的金管表明无泄漏,可用于后续高温高压水解实验。

实验过程中,将合格的金管放入Tuttle型水热高压釜底部,并放入一根镍棒充填釜内空间,以减少热对流的发生(图1)。然后密封好高压釜,将压力和温度升至设计的实验条件,并分别反应1~72小时。实验结束后,取出金管,清洗称量后,提取金管内反应溶液至离心管中,放入离心机(Thermo Fisher Scientific, LABOFUGE 200)中离心10分钟,提取上层清液,加入5%稀硝酸稀释至不同倍数,并加入相应的Cs、Re元素作为内标待测。由于金属络合物高温水解过程中产生的固体沉淀物会以纳米颗粒的形式沉积在金管内壁[46] [47],因此,提取溶液后的金管被剪成碎块,使用酒精和去离子水洗涤数次,自然风干后待测。

2.3. 分析测试

溶液和固体样品的成分测试均在中国科学院广州地球化学研究所深地过程与战略矿产资源全国重点实验室完成。溶液样品中Zr的含量测试采用的设备为美国Thermo Scientific iCAP Qc ICP-MS。该设备的检出限小于0.1 ng/L,分析时使用1 ppb、10 ppb和100 ppb的含Zr溶液作为外标,Zr的分析精度优于3%。固体样品的成分鉴定使用高分辨率共聚焦显微激光拉曼(德国WITec alpha 300R)。该设备配备488、532、633三种激光器和300、600、1800三种光栅,光谱分辨率可达0.8 cm1,样品空间分辨率可达50~100 nm [48]

3. 结果分析

3.1. 氟锆络合物水解反应的动力学平衡时间

为了了解Zr-F络合物水解反应到达平衡所需的时间,我们开展了一系列水解动力学的实验。Ti-F络合物的水解动力学实验显示,这些金属络合物水解反应的速率与温度成正比[44] [45] [47]。这表明高温有助于金属络合物更快达到水解平衡。因此,我们选择络合物初始溶液在实验设计的最低温度(150℃)和100 MPa条件下开展水解反应的动力学实验。

动力学实验结果如图2表1所示,反应后金管内壁的固体沉淀物均为氧化锆纳米晶。这表明该络合物在150℃的条件下1小时即可达到水解反应平衡。因此,Zr-F络合物在200℃~500℃温度下达到水解平衡的时间应小于1小时。因此,本研究设计的温度梯度实验时间为12小时,可确保所有反应达到平衡。

Figure 2. Experimental results of dynamic equilibrium of Zr-F complex at 150˚C and 100 MPa

2. 150℃和100 MPa条件下Zr-F络合物的动力学平衡实验结果

Table 1. Kinetic experiment of hydrolysis reaction of Zr-F complex at 150˚C

1. Zr-F络合物150℃条件下水解反应的动力学实验

实验序号

时间(h)

初始Zr浓度(ppm)

残余Zr浓度(ppm)

1

1

6496.7

2803.7

2

1

6496.7

2827.9

3

2

6496.7

2815.5

4

2

6496.7

2837.7

5

4

6496.7

2910.8

6

4

6496.7

2796.9

7

6

6496.7

3003.5

8

6

6496.7

2787.0

9

8

6496.7

3110.1

10

8

6496.7

2838.5

11

12

6496.7

2737.3

12

12

6496.7

2863.4

13

12

6496.7

2806.3

14

18

6496.7

2986.3

15

18

6496.7

2824.8

16

24

6496.7

3023.8

17

24

6496.7

2783.9

3.2. 温度对氟锆络合物水解反应的影响

为了了解温度和初始物浓度对Zr-F络合物水解反应的影响,我们使用初始物浓度为0.1 mol/L的H2ZrF6络合物,分别在100℃~550℃温度下开展了一系列序列实验。

反应后各浓度溶液中残余的Zr浓度如表2图3所示。可以明显看出,随着反应温度从150℃、200℃、300℃、400℃到500℃,Zr-F络合物的水解程度与温度呈正比,表明Zr-F络合物在热液流体中的稳定性越来越低,导致Zr溶解在流体中的浓度也越来越低。

Table 2. Residual concentration and cumulative hydrolysis equilibrium constant of Zr-F hydrolysis at different temperatures

2. 不同温度下Zr-F水解残余浓度及累积水解平衡常数

实验序号

温度(˚C)

初始Zr浓度(ppm)

残余Zr浓度(ppm)

累计水解平衡常数(lnK)

1

150

6496.7

2803.7

−7.6

2

150

6496.7

2827.9

−7.6

3

150

6496.7

2815.5

−7.6

4

150

6496.7

2837.7

−7.6

5

150

6496.7

2910.8

−7.8

6

150

6496.7

2796.9

−7.6

7

150

6496.7

3003.5

−8.0

8

150

6496.7

2787.0

−7.5

9

150

6496.7

3110.1

−8.2

10

150

6496.7

2838.5

−7.6

11

150

6496.7

2737.3

−7.5

12

150

6496.7

2863.4

−7.7

13

150

6496.7

2806.3

−7.6

14

150

6496.7

2986.3

−7.9

15

150

6496.7

2824.8

−7.6

16

150

6496.7

3023.8

−8.0

17

150

6496.7

2783.9

−7.5

18

200

6496.7

2089.9

−6.7

19

200

6496.7

2046.6

−6.6

20

300

6496.7

849.9

−4.2

21

300

6496.7

848.4

−4.2

22

400

6496.7

338.3

−2.4

23

400

6496.7

297.2

−2.2

24

400

6496.7

292.8

−2.2

25

500

6496.7

101.1

−0.3

26

500

6496.7

103.4

−0.3

Figure 3. Experimental results of Zr-F complex hydrolysis reaction under 150˚C~500˚C and 100 MPa conditions

3. 150℃~500℃和100 MPa条件下Zr-F络合物水解反应实验结果

3.3. 水解反应相关的热力学参数标定

从方程(2)中可以看到,整个水解反应受控于该络合物种型的水解平衡常数,因此,计算相关的水解平衡常数就可以了解体系中温度、pH和F浓度对Zr溶解、迁移行为的影响,并可利用该水解平衡常数判断络合物种型的热力学稳定性差异。

依据方程(2),水解反应的常数可表述为:

K= c HF 4 γ HF 4 c F 2 γ F 2 c Zr γ Zr (3)

式中γ为溶液组分的活度系数,c为溶液组分的表观浓度。

由于本研究主要涉及高温高压稀溶液体系,因此水溶液下各组分的活度系数可以使用HKF模型中的Debye-Hückel方程[49]-[51]进行计算。在该模型中,活度系数的表达式为:

log γ i = A γ Z i 2 I 1+ B γ å i I + b γ I (4)

在式子中,i表示体系中的不同组分,γ表示组分在体系中的活度系数,Z表示该组分所带的电荷数,AγBγbγ均为HKF模型中的经验参数,å为组分的离子半径,I为体系中的离子强度,表达式为:

I= 1 2 i=1 n c i Z i 2 (5)

在式(5)中,各组分表观浓度均可根据浓度测定或化学计量学关系求得。并可以根据反应式(4)获得各组分在给定温压条件下的活度系数γ,继而可根据式(3)计算得到络合物的累积水解平衡常数(表2)。

任何化学反应达到平衡后,其反应常数与温度之间的关系遵循范特霍夫方程[44] [45] [47]

lnK= Δ r H m θ RT + Δ r S m θ R (6)

Zr-F络合物的累积水解平衡常数计算结果及范特霍夫方程拟合结果如表2图4所示。从图4中可以看到,在150℃~500℃条件下Zr-F络合物累积水解平衡常数基本符合范特霍夫方程,其线性拟合R2值为0.99,表明lnK和温度的倒数是呈线性相关的,并获得该条件下范特霍夫拟合方程为:

lnK= 6946/T +8.14 (7)

通过方程(7)可以计算出在150℃~500℃条件下该水解反应中 Δ r H m θ = +58.05 ± 1.65 kJ/mol, Δ r S m θ = −67.72 ± 3.13 J/(mol·K),说明Zr-F络合物稳定性随温度变化比较显著。

Figure 4. Cumulative hydrolysis equilibrium constant of Zr-F complex under the conditions of 150˚C~500˚C and linear fitting of its van der Hoff equation

4. 150℃~500℃条件下Zr-F络合物累积水解平衡常数及其范特霍夫方程线性拟合

4. 讨论

4.1. 与前人研究的对比

何俊杰(2018)使用0.005 mol/L和0.01 mol/L两种初始物浓度的(NH4)2ZrF6在200℃~500℃温度下进行水解实验,希望对Zr在热液中的行为和流体活动性进行更多的研究,结果显示随着温度升高Zr-F络合物流体活动性会随之下降,并证明了纯水中的F确实能大幅提高Zr的迁移能力,流体中1000 ppm的F可以搬运超过上千ppm的Zr [43]。但是该研究数据的准确性在之前有待商榷。该研究虽然进行了水解的时间序列实验,但是初始物并不是(NH4)2ZrF6络合物,而是K2TiF6络合物,该研究认为(NH4)2ZrF6和K2TiF6的络合物水解反应有着极为相似的行为,所以反应平衡时间应该也相似。但是实际上本研究的时间序列结果表明,Zr-F络合物的水解反应平衡时间大概是1小时,虽然能证明何俊杰(2018)中Zr-F络合物的水解实验均达到了平衡,但与该研究预计的6小时左右相差较大,而且在本研究同时做过Ta-F络合物的时间序列,证明了Ta-F络合物的水解实验平衡时间大概是24小时,所以何俊杰(2018)中Ta-F络合物的水解实验可能未达到平衡就已经结束实验了,因此建议做每种不同的络合物水解实验之前都要先进行时间序列的实验验证其实验平衡时间。

从实验结果看,本研究的实验结果在相同温度条件下的水解程度要比何俊杰(2018)的明显要高得多,比如同样在200℃,本研究的水解率大约是68%,而何俊杰(2018)中0.01 mol/L浓度的在该温度下水解率才将近9%,而0.005 mol/L浓度的水解率才将近21%,当温度上升到400℃时,本研究的水解率大约是95%,而何俊杰(2018)中两个浓度的水解率都才70%多。并且计算出来的热力学参数也有一点差别,但是趋势都是相同的。由于前人的研究中发现初始浓度越低水解程度越高[43] [47],而本研究中使用的初始物浓度远高于何俊杰(2018)中的两个浓度,且热力学计算方法均完全相同,因此有理由相信应该是初始物不同导致的这些差别,并且说明了初始物的阳离子不同可能会对实验结果造成较大的差别。

4.2. 地质意义

自然观察和高温高压实验均指出F能最大程度活化并迁移Zr [16] [52] [53]。按照氟锆络合物最高配位离子团 ZrF 6 2 来说,Zr和F存在1:6的摩尔浓度关系,换算成质量浓度即F/Zr ≈ 1.25。若流体中F/Zr浓度比低于1.25,说明氟锆络合物的主要配位形式不是以最高配位存在,Zr的迁移并不能达到最大化;若流体中F/Zr浓度比高于1.25,则氟锆络合物将主要以最高配位形式存在,且流体中过量的F将抑制反应(3)向正方向进行,使得水解反应难以发生,促使Zr的迁移最大化。低浓度(≤1%)的F主要溶于硅酸盐熔体(Dfluid/melt < 0.4),而不相容于流体相和大多矿物相[54] [55];高浓度(≥7%)的F则优先进入流体相(Dfluid/melt > 1) [56] [57]。在岩浆–热液体系中,F主要逐步富集在熔体里,这又能降低熔体的固溶线,使得熔体缓慢结晶[58]。当熔体演化到高演化阶段,熔体中的F浓度才增加至足够高,此时F转向于在流体中富集,从而为岩浆热液提供了大量的F。Thomas et al. (2005)通过对高演化岩石中的熔体和流体包裹体研究发现,熔体中的F含量最高可达6.4%,而流体中的F也可以达到2.0%左右。这说明岩浆演化到高演化程度时,热液中的F浓度可以富集到完全满足HFSE的活化、迁移的需求。而大量伟晶岩和成矿的高演化花岗岩中富集HFSE也证实了这一点[59]-[61]

4.3. 俯冲带中的锆转移

富溶质超临界流体可有效地从俯冲壳岩中提取锆,造山橄榄岩中新形成的锆石便是证据[62] [63]。然而,问题是锆是否可以转移到弧岩浆源或火山弧。与洋中脊玄武岩(MORB)相比,弧岩浆的HFSE (Zr,Hf,Nb和Ta)相对于大离子亲石元素(LILE)具有耗损的特征[30]。而且由于含水流体过于稀释,无法使弧岩浆地幔源区富集锆[9],而富溶质超临界流体有望成为俯冲带活化锆的理想介质。值得注意的是,在俯冲带中,由超临界流体介导的传质更有可能是分步骤发生的[31]。虽然超临界流体可能是从板状岩中浸出元素的初始介质,但随着压力、温度,尤其是大块岩石成分的变化,它们可能在板状岩–地幔界面分离成不混溶的含水熔体和含水流体[31] [64]。随着这一过程的继续,含水熔体将与地幔橄榄岩反应,形成含锆石的交代域[62] [63] [65] [66],而含水流体可能上升到弧岩浆源区[66]。在这种情况下,锆的动员不仅受锆石在超临界流体中的溶解度控制,还受含水熔体和含水流体之间Zr的分配控制。含水流体和含水熔体之间Zr的高分配系数表明[67],约23%的溶解在超临界流体中的锆被分配到流体中,并被输送到弧岩浆源区。

因此,HFSE可从俯冲板块向地幔楔块移动,但弧岩浆中记录的HFSE损耗特征可能部分源于板块–地幔界面的流体–岩石相互作用,在此过程中,大多数HFSE被新形成的锆石和金红石清除[62] [63] [65]。这种耗尽可能表明HFSE相对于LILE的溶解度较低,但并不一定意味着这些元素在俯冲带流体中不动。

5. 结论

本研究首次尝试对前人的实验范围进行扩充,并与前人的实验进行对照。使用浓度为0.1 mol/L的H2ZrF6络合物在100 MPa压力和150℃~500℃温度下的稳定性进行了研究,得到以下主要结论:

(1) 在反应温度为150℃,反应压力为100 MPa时,Zr-F络合物水解反应大概在1小时左右便可达到平衡,说明相较于其他HFSE-F络合物来说较快达到平衡;

(2) 随着反应温度从150℃逐步增加到500℃,Zr-F络合物的水解程度与温度呈正比,表明Zr-F络合物在热液流体中的稳定性越来越低,导致Zr在流体中的浓度也越来越低。

(3) 获得了高温高压条件下Zr-F络合物的表观水解常数,其在温度150℃~500℃下的拟合关系式为:lnK = −6946/T + 8.14,此时该反应热力学参数为: Δ r H m θ = +58.05 ± 1.65 kJ/mol, Δ r S m θ = −67.72 ± 3.13 J/(mol·K)。

基金项目

国家自然科学基金项目(92162106, 42330305)、中国科学院基础与交叉前沿科研先导专项(XDB0840102)、中国科学院广州地球化学研究所所长基金重大项目(2022SZJJZD-02)和 广东省战略金属与绿色利用基础学科研究中心项目(2024B0303390002)

参考文献

[1] Perks, C. and Mudd, G. (2019) Titanium, Zirconium Resources and Production: A State of the Art Literature Review. Ore Geology Reviews, 107, 629-646.
https://doi.org/10.1016/j.oregeorev.2019.02.025
[2] 张继豪. β相水淬锆和锆合金的微结构及耐腐蚀性研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
[3] Manicone, P.F., Rossi Iommetti, P. and Raffaelli, L. (2007) An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 35, 819-826.
https://doi.org/10.1016/j.jdent.2007.07.008
[4] Birkby, I. and Stevens, R. (1996) Applications of Zirconia Ceramics. Key Engineering Materials, 122, 527-552.
https://doi.org/10.4028/www.scientific.net/kem.122-124.527
[5] 王秋皓. 锆石浮选组合捕收剂作用机理及应用[D]: [硕士学位论文]. 长沙: 中南大学, 2023.
[6] Pupin, J.P. (1980) Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73, 207-220.
https://doi.org/10.1007/bf00381441
[7] Hoskin, P.W.O. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62.
https://doi.org/10.2113/0530027
[8] Schaltegger, U., Pettke, T., Audétat, A., Reusser, E. and Heinrich, C.A. (2005) Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part I: Crystallization of zircon and REE-Phosphates over Three Million Years—A Geochemical and U-Pb Geochronological Study. Chemical Geology, 220, 215-235.
https://doi.org/10.1016/j.chemgeo.2005.02.018
[9] Bernini, D., Audétat, A., Dolejš, D. and Keppler, H. (2013) Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 119, 178-187.
https://doi.org/10.1016/j.gca.2013.05.018
[10] Shikina, N.D., Vasina, O.N., Gurova, E.V., Popova, E.S., Tagirov, B.R., Shazzo, Y.K., et al. (2013) Experimental Study of ZrO2(c) Solubility in Water and Aqueous Perchloric Acid Solutions at 150 and 250˚C. Geochemistry International, 52, 82-87.
https://doi.org/10.1134/s0016702914010078
[11] Tropper, P. (2005) Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90, 502-505.
https://doi.org/10.2138/am.2005.1806
[12] Zack, T. and John, T. (2007) An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239, 199-216.
https://doi.org/10.1016/j.chemgeo.2006.10.020
[13] Brenan, J.M., Shaw, H.F., Phinney, D.L. and Ryerson, F.J. (1994) Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for High Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters, 128, 327-339.
https://doi.org/10.1016/0012-821x(94)90154-6
[14] Gaetani, G.A., Asimow, P.D. and Stolper, E.M. (2008) A Model for Rutile Saturation in Silicate Melts with Applications to Eclogite Partial Melting in Subduction Zones and Mantle Plumes. Earth and Planetary Science Letters, 272, 720-729.
https://doi.org/10.1016/j.epsl.2008.06.002
[15] McNaughton, N.J., Mueller, A.G. and Groves, D.I. (2005) The Age of the Giant Golden Mile Deposit, Kalgoorlie, Western Australia: Ion-Microprobe Zircon and Monazite U-Pb Geochronology of a Synmineralization Lamprophyre Dike. Economic Geology, 100, 1427-1440.
https://doi.org/10.2113/gsecongeo.100.7.1427
[16] Giere, R. (1986) Zirconolite, Allanite and Hoegbomite in a Marble Skarn from the Bergell Contact Aureole: Implications for Mobility of Ti, Zr and REE. Contributions to Mineralogy and Petrology, 93, 459-470.
https://doi.org/10.1007/bf00371716
[17] Gieré, R. (1990) Hydrothermal Mobility of Ti, Zr and REE: Examples from the Bergell and Adamello Contact Aureoles (Italy). Terra Nova, 2, 60-67.
https://doi.org/10.1111/j.1365-3121.1990.tb00037.x
[18] Claoue-Long, J.C., King, R.W. and Kerrich, R. (1990) Archaean Hydrothermal Zircon in the Abitibi Greenstone Belt: Constraints on the Timing of Gold Mineralisation. Earth and Planetary Science Letters, 98, 109-128.
https://doi.org/10.1016/0012-821x(90)90091-b
[19] Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., et al. (2004) U-Pb Dating of Serpentinization: Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203, 183-203.
https://doi.org/10.1016/j.chemgeo.2003.10.005
[20] Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2005) Magmatic-to-Hydrthermal Crystallization in the W–-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220, 191-213.
https://doi.org/10.1016/j.chemgeo.2005.02.017
[21] Kebede, T., Horie, K., Hidaka, H. and Terada, K. (2007) Zircon ‘Mcrovein’ in Peralkaline Granitic Gneiss, Western Ethiopia: Origin, SHRIMP U-Pb Geochronology and Trace Element Investigations. Chemical Geology, 242, 76-102.
https://doi.org/10.1016/j.chemgeo.2007.03.014
[22] de Hoog, J.C.M. and van Bergen, M.J. (2000) Volatile-Induced Transport of HFSE, REE, Th and U in Arc Magmas: Evidence from Zirconolite-Bearing Vesicles in Potassic Lavas of Lewotolo Volcano (Indonesia). Contributions to Mineralogy and Petrology, 139, 485-502.
https://doi.org/10.1007/s004100000146
[23] Schaltegger, U. (2007) Hydrothermal Zircon. Elements, 3, 51-79.
https://doi.org/10.2113/gselements.3.1.51
[24] 肖益林, 黄建, 刘磊, 等. 金红石: 重要的地球化学“信息库” [J]. 岩石学报, 2011, 27(2): 398-416.
[25] Gao, J., John, T., Klemd, R. and Xiong, X. (2007) Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71, 4974-4996.
https://doi.org/10.1016/j.gca.2007.07.027
[26] Rapp, J.F., Klemme, S., Butler, I.B. and Harley, S.L. (2010) Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids: An Experimental Investigation. Geology, 38, 323-326.
https://doi.org/10.1130/g30753.1
[27] Kessel, R., Schmidt, M.W., Ulmer, P. and Pettke, T. (2005) Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437, 724-727.
https://doi.org/10.1038/nature03971
[28] Li, W. and Ni, H. (2020) Dehydration at Subduction Zones and the Geochemistry of Slab Fluids. Science China Earth Sciences, 63, 1925-1937.
https://doi.org/10.1007/s11430-019-9655-1
[29] Ni, H., Zhang, L., Xiong, X., Mao, Z. and Wang, J. (2017) Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicochemical Properties. Earth-Science Reviews, 167, 62-71.
https://doi.org/10.1016/j.earscirev.2017.02.006
[30] Chen, W., Zhang, G., Ruan, M., Wang, S. and Xiong, X. (2021) Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research: Solid Earth, 126, e2020JB020708.
https://doi.org/10.1029/2020jb020708
[31] Manning, C. (2004) The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223, 1-16.
https://doi.org/10.1016/j.epsl.2004.04.030
[32] Bureau, H. (1999) Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165, 187-196.
https://doi.org/10.1016/s0012-821x(98)00266-0
[33] Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N. and Ono, S. (2012) Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 109, 18695-18700.
https://doi.org/10.1073/pnas.1207687109
[34] Mibe, K., Chou, I. and Bassett, W.A. (2008) In Situ Raman Spectroscopic Investigation of the Structure of Subduction‐zone Fluids. Journal of Geophysical Research: Solid Earth, 113, B04208.
https://doi.org/10.1029/2007jb005179
[35] Shen, A.H. and Keppler, H. (1997) Direct Observation of Complete Miscibility in the Albite-H2O System. Nature, 385, 710-712.
https://doi.org/10.1038/385710a0
[36] Zhang, Z., Shen, K., Sun, W., Liu, Y., Liou, J.G., Shi, C., et al. (2008) Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72, 3200-3228.
https://doi.org/10.1016/j.gca.2008.04.014
[37] Ferrando, S., Frezzotti, M.L., Dallai, L. and Compagnoni, R. (2005) Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223, 68-81.
https://doi.org/10.1016/j.chemgeo.2005.01.029
[38] Zheng, Y. and Hermann, J. (2014) Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66, Article No. 93.
https://doi.org/10.1186/1880-5981-66-93
[39] Ayers, J.C., Zhang, L., Luo, Y. and Peters, T.J. (2012) Zircon Solubility in Alkaline Aqueous Fluids at Upper Crustal Conditions. Geochimica et Cosmochimica Acta, 96, 18-28.
https://doi.org/10.1016/j.gca.2012.08.027
[40] Mysen, B. (2015) An in Situ Experimental Study of Zr4+ Transport Capacity of Water-Rich Fluids in the Temperature and Pressure Range of the Deep Crust and Upper Mantle. Progress in Earth and Planetary Science, 2, Article No. 38.
https://doi.org/10.1186/s40645-015-0070-5
[41] Ryzhenko, B.N., Kovalenko, N.I., Prisyagina, N.I., Starshinova, N.P. and Krupskaya, V.V. (2008) Experimental Determination of Zirconium Speciation in Hydrothermal Solutions. Geochemistry International, 46, 328-339.
https://doi.org/10.1134/s0016702908040022
[42] Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V. and Salvi, S. (2011) An Experimental Study of the Solubility of Baddeleyite (ZrO2) in Fluoride-Bearing Solutions at Elevated Temperature. Geochimica et Cosmochimica Acta, 75, 7426-7434.
https://doi.org/10.1016/j.gca.2011.09.043
[43] 何俊杰. 热液体系中高场强元素富氟络合物的水解行为及活动性规律[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018.
[44] 何俊杰, 丁兴, 王玉荣, 等. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义[J]. 岩石学报, 2015, 31(7): 1870-1878.
[45] 何俊杰, 丁兴, 王玉荣, 等. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约 [J]. 岩石学报, 2015, 31(3): 802-810.
[46] 丁兴, 何俊杰, 刘灼瑜. 热液条件下锐钛矿晶体生长的实验[J]. 地球科学, 2018, 43(5): 1763-1772.
[47] Yan, H., He, J., Liu, X., Wang, H., Liu, J. and Ding, X. (2020) Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15-773.15 K and 100 MPA. Journal of Solution Chemistry, 49, 836-848.
https://doi.org/10.1007/s10953-020-00993-1
[48] Yan, H., Ding, X., Liu, J., Tu, X., Sun, W. and Chou, I. (2024) Osmium Transport and Enrichment from the Lithosphere to the Hydrosphere: New Perspectives from Hydrothermal Experiments and Geochemical Modeling. Journal of Geophysical Research: Solid Earth, 129, e2023JB028261.
https://doi.org/10.1029/2023jb028261
[49] Helgeson, H.C. and Kirkham, D.H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274, 1199-1261.
https://doi.org/10.2475/ajs.274.10.1199
[50] Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb. American Journal of Science, 281, 1249-1516.
https://doi.org/10.2475/ajs.281.10.1249
[51] Tanger, J.C. and Helgeson, H.C. (1988) Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes. American Journal of Science, 288, 19-98.
https://doi.org/10.2475/ajs.288.1.19
[52] Rubin, J.N., Henry, C.D. and Price, J.G. (1993) The Mobility of Zirconium and Other “Immobile” Elements during Hydrothermal Alteration. Chemical Geology, 110, 29-47.
https://doi.org/10.1016/0009-2541(93)90246-f
[53] Salvi, S. and Williams-Jones, A.E. (1996) The Role of Hydrothermal Processes in Concentrating High-Field Strength Elements in the Strange Lake Peralkaline Complex, Northeastern Canada. Geochimica et Cosmochimica Acta, 60, 1917-1932.
https://doi.org/10.1016/0016-7037(96)00071-3
[54] London, D., Hervig, R.L. and Morgan, G.B. (1988) Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360-373.
https://doi.org/10.1007/bf00375368
[55] Dolejs, D. and Baker, D.R. (2007) Liquidus Equilibria in the System K2O-Na2O-Al2O3-SiO2-F2O-1-H2O to 100 MPa: II. Differentiation Paths of Fluorosilicic Magmas in Hydrous Systems. Journal of Petrology, 48, 807-828.
https://doi.org/10.1093/petrology/egm002
[56] Webster, J.D. (1990) Partitioning of F between H2O and CO2 Fluids and Topaz Rhyolite Melt: Implications for Mineralizing Magmatic-Hydrothermal Fluids in F-Rich Granitic Systems. Contributions to Mineralogy and Petrology, 104, 424-438.
https://doi.org/10.1007/bf01575620
[57] Carroll, M.R. and Webster, J.D. (1994) Chapter 7. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. In: Wallace, P. and Anderson Jr., A.T., Eds., Volatiles in Magmas, De Gruyter, 231-280.
https://doi.org/10.1515/9781501509674-013
[58] Manning, D.A.C. (1981) The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76, 206-215.
https://doi.org/10.1007/bf00371960
[59] Dostal, J. and Chatterjee, A.K. (2000) Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163, 207-218.
https://doi.org/10.1016/s0009-2541(99)00113-8
[60] Hanson, S.L., Simmons, W.B. and Falster, A.U. (1998) Nb-Ta-Ti Oxides in Granitic Pegmatites from the Topsham Pegmatite District, Southern Maine. Canadian Mineralogist, 36, 601-608.
[61] 李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311-4322.
[62] Faithfull, J.W., Dempster, T.J., MacDonald, J.M. and Reilly, M. (2018) Metasomatism and the Crystallization of Zircon Megacrysts in Archaean Peridotites from the Lewisian Complex, NW Scotland. Contributions to Mineralogy and Petrology, 173, Article No. 99.
https://doi.org/10.1007/s00410-018-1527-5
[63] Li, H., Chen, R., Zheng, Y. and Hu, Z. (2016) The Crust‐Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 121, 687-712.
https://doi.org/10.1002/2015jb012231
[64] Chen, W., Xiong, X., Wang, J., Xue, S., Li, L., Liu, X., et al. (2018) TiO2 Solubility and Nb and Ta Partitioning in Rutile‐silica‐Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123, 4765-4782.
https://doi.org/10.1029/2018jb015808
[65] Kalfoun, F., Ionov, D. and Merlet, C. (2002) HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites. Earth and Planetary Science Letters, 199, 49-65.
https://doi.org/10.1016/s0012-821x(02)00555-1
[66] Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006) Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249, 173-187.
https://doi.org/10.1016/j.epsl.2006.07.017
[67] Louvel, M., Sanchez-Valle, C., Malfait, W.J., Cardon, H., Testemale, D. and Hazemann, J. (2014) Constraints on the Mobilization of Zr in Magmatic-Hydrothermal Processes in Subduction Zones from in Situ Fluid-Melt Partitioning Experiments. American Mineralogist, 99, 1616-1625.
https://doi.org/10.2138/am.2014.4799