[1]
|
Accapezzato, D., Caccavale, R., Paroli, M.P., Gioia, C., Nguyen, B.L., Spadea, L., et al. (2023) Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 24, Article 6578. https://doi.org/10.3390/ijms24076578
|
[2]
|
Tsokos, G.C. (2020) Autoimmunity and Organ Damage in Systemic Lupus Erythematosus. Nature Immunology, 21, 605-614. https://doi.org/10.1038/s41590-020-0677-6
|
[3]
|
Herrada, A.A., Escobedo, N., Iruretagoyena, M., Valenzuela, R.A., Burgos, P.I., Cuitino, L., et al. (2019) Innate Immune Cells’ Contribution to Systemic Lupus Erythematosus. Frontiers in Immunology, 10, Article 772. https://doi.org/10.3389/fimmu.2019.00772
|
[4]
|
Siegel, C.H. and Sammaritano, L.R. (2024) Systemic Lupus Erythematosus: A Review. JAMA, 331, 1480-1491. https://doi.org/10.1001/jama.2024.2315
|
[5]
|
Parodis, I. and Sjöwall, C. (2024) Immune Mechanisms and Biomarkers in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 25, Article 9965. https://doi.org/10.3390/ijms25189965
|
[6]
|
Yin, X., Kim, K., Suetsugu, H., Bang, S., Wen, L., Koido, M., et al. (2021) Meta-Analysis of 208370 East Asians Identifies 113 Susceptibility Loci for Systemic Lupus Erythematosus. Annals of the Rheumatic Diseases, 80, 632-640. https://doi.org/10.1136/annrheumdis-2020-219209
|
[7]
|
Fazel-Najafabadi, M., Looger, L., Reddy-Rallabandi, H., et al. (2023) A Multilayered Post-GWAS Analysis Pipeline Defines Functional Variants and Target Genes for Systemic Lupus Erythematosus (SLE). medRxiv: The Preprint Server for Health Sciences. https://doi.org/10.1101/2023.04.07.23288295
|
[8]
|
Ghodke-Puranik, Y., Olferiev, M. and Crow, M.K. (2024) Systemic Lupus Erythematosus Genetics: Insights into Pathogenesis and Implications for Therapy. Nature Reviews Rheumatology, 20, 635-648. https://doi.org/10.1038/s41584-024-01152-2
|
[9]
|
Wang, T., Wang, H., Qiu, L., Wu, L., Ling, H., Xue, Y., et al. (2022) Association of HLA-DR1, HLA-DR13, and HLA-DR16 Polymorphisms with Systemic Lupus Erythematosus: A Meta-Analysis. Journal of Immunology Research, 2022, Article 8140982. https://doi.org/10.1155/2022/8140982
|
[10]
|
Selvaraja, M., Chin, V.K., Abdullah, M., Arip, M. and Amin-Nordin, S. (2021) HLA-DRB1*04 as a Risk Allele to Systemic Lupus Erythematosus and Lupus Nephritis in the Malay Population of Malaysia. Frontiers in Medicine, 7, Article 598665. https://doi.org/10.3389/fmed.2020.598665
|
[11]
|
Rauschert, S., Raubenheimer, K., Melton, P.E. and Huang, R.C. (2020) Machine Learning and Clinical Epigenetics: A Review of Challenges for Diagnosis and Classification. Clinical Epigenetics, 12, Article No. 51. https://doi.org/10.1186/s13148-020-00842-4
|
[12]
|
Karim, M.R., Islam, T., Shajalal, M., Beyan, O., Lange, C., Cochez, M., et al. (2023) Explainable AI for Bioinformatics: Methods, Tools and Applications. Briefings in Bioinformatics, 24, bbad236. https://doi.org/10.1093/bib/bbad236
|
[13]
|
Jiang, S.H., Athanasopoulos, V., Ellyard, J.I., Chuah, A., Cappello, J., Cook, A., et al. (2019) Functional Rare and Low Frequency Variants in BLK and BANK1 Contribute to Human Lupus. Nature Communications, 10, Article No. 2201. https://doi.org/10.1038/s41467-019-10242-9
|
[14]
|
Zhu, H., Mi, W., Luo, H., Chen, T., Liu, S., Raman, I., et al. (2016) Whole-Genome Transcription and DNA Methylation Analysis of Peripheral Blood Mononuclear Cells Identified Aberrant Gene Regulation Pathways in Systemic Lupus Erythematosus. Arthritis Research & Therapy, 18, Article No. 162. https://doi.org/10.1186/s13075-016-1050-x
|
[15]
|
Nehar-Belaid, D., Hong, S., Marches, R., Chen, G., Bolisetty, M., Baisch, J., et al. (2020) Mapping Systemic Lupus Erythematosus Heterogeneity at the Single-Cell Level. Nature Immunology, 21, 1094-1106. https://doi.org/10.1038/s41590-020-0743-0
|
[16]
|
Hao, J., Kim, Y., Kim, T. and Kang, M. (2018) PASNet: Pathway-Associated Sparse Deep Neural Network for Prognosis Prediction from High-Throughput Data. BMC Bioinformatics, 19, Article No. 510. https://doi.org/10.1186/s12859-018-2500-z
|
[17]
|
Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P., et al. (2018) Reactome Graph Database: Efficient Access to Complex Pathway Data. PLOS Computational Biology, 14, e1005968. https://doi.org/10.1371/journal.pcbi.1005968
|
[18]
|
Mandrekar, J.N. (2010) Receiver Operating Characteristic Curve in Diagnostic Test Assessment. Journal of Thoracic Oncology, 5, 1315-1316. https://doi.org/10.1097/jto.0b013e3181ec173d
|
[19]
|
Sun, X., Shu, W., Zhang, Y., Huang, X., Liu, J., Liu, Y., et al. (2023) Identification of Alzheimer’s Disease Associated Genes through Explicable Deep Learning and Bioinformatic. 2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML), Urumqi, 4-6 August 2023, 320-327. https://doi.org/10.1109/prml59573.2023.10348276
|
[20]
|
Zhang, Y., Sun, X., Zhang, P., Zhou, X., Huang, X., Zhang, M., et al. (2024) Identification of Parkinson’s Disease Associated Genes through Explicable Deep Learning and Bioinformatic. In: Huang, D.S., Premaratne, P. and Yuan, C., Eds., Communications in Computer and Information Science, Springer, 136-146. https://doi.org/10.1007/978-981-97-0903-8_14
|
[21]
|
Kim, S.Y., Kang, H.T., Choi, H.R. and Park, S.C. (2011) Biliverdin Reductase A in the Prevention of Cellular Senescence against Oxidative Stress. Experimental and Molecular Medicine, 43, 15-23. https://doi.org/10.3858/emm.2011.43.1.002
|
[22]
|
Vitek, L., Hinds, T.D., Stec, D.E. and Tiribelli, C. (2023) The Physiology of Bilirubin: Health and Disease Equilibrium. Trends in Molecular Medicine, 29, 315-328. https://doi.org/10.1016/j.molmed.2023.01.007
|
[23]
|
Canesin, G., Hejazi, S.M., Swanson, K.D. and Wegiel, B. (2020) Heme-Derived Metabolic Signals Dictate Immune Responses. Frontiers in Immunology, 11, Article 66. https://doi.org/10.3389/fimmu.2020.00066
|
[24]
|
Adin, C.A. (2021) Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants, 10, Article 1536. https://doi.org/10.3390/antiox10101536
|
[25]
|
Hu, Z., Pei, G., Wang, P., Yang, J., Zhu, F., Guo, Y., et al. (2015) Biliverdin Reductase a (BVRA) Mediates Macrophage Expression of Interleukin-10 in Injured Kidney. International Journal of Molecular Sciences, 16, 22621-22635. https://doi.org/10.3390/ijms160922621
|
[26]
|
Gibbs, P.E.M., Miralem, T. and Maines, M.D. (2015) Biliverdin Reductase: A Target for Cancer Therapy? Frontiers in Pharmacology, 6, Article 119. https://doi.org/10.3389/fphar.2015.00119
|
[27]
|
Lobo-Silva, D., Carriche, G.M., Castro, A.G., Roque, S. and Saraiva, M. (2016) Balancing the Immune Response in the Brain: IL-10 and Its Regulation. Journal of Neuroinflammation, 13, Article No. 297. https://doi.org/10.1186/s12974-016-0763-8
|
[28]
|
Hasan, S.N., Sharma, A., Ghosh, S., Hong, S., Roy-Chowdhuri, S., Im, S.-H., et al. (2019) Bcl11B Prevents Catastrophic Autoimmunity by Controlling Multiple Aspects of a Regulatory T Cell Gene Expression Program. Science Advances, 5, eaaw0706. https://doi.org/10.1126/sciadv.aaw0706
|
[29]
|
Wing, J.B., Tanaka, A. and Sakaguchi, S. (2019) Human FOXP3+ Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity, 50, 302-316. https://doi.org/10.1016/j.immuni.2019.01.020
|
[30]
|
Ono, M. (2020) Control of Regulatory T‐Cell Differentiation and Function by T‐Cell Receptor Signalling and Foxp3 Transcription Factor Complexes. Immunology, 160, 24-37. https://doi.org/10.1111/imm.13178
|
[31]
|
García-Aznar, J.M., Alonso Alvarez, S. and Bernal del Castillo, T. (2024) Pivotal Role of BCL11B in the Immune, Hematopoietic and Nervous Systems: A Review of the Bcl11B-Associated Phenotypes from the Genetic Perspective. Genes & Immunity, 25, 232-241. https://doi.org/10.1038/s41435-024-00263-w
|
[32]
|
Naito, T., Tanaka, H., Naoe, Y. and Taniuchi, I. (2011) Transcriptional Control of T-Cell Development. International Immunology, 23, 661-668. https://doi.org/10.1093/intimm/dxr078
|
[33]
|
Drashansky, T.T., Helm, E.Y., Curkovic, N., Cooper, J., Cheng, P., Chen, X., et al. (2021) BCL11B Is Positioned Upstream of PLZF and Rorγt to Control Thymic Development of Mucosal-Associated Invariant T Cells and MAIT17 Program. iScience, 24, Article102307. https://doi.org/10.1016/j.isci.2021.102307
|
[34]
|
Drashansky, T.T., Helm, E., Huo, Z., Curkovic, N., Kumar, P., Luo, X., et al. (2019) Bcl11B Prevents Fatal Autoimmunity by Promoting Treg Cell Program and Constraining Innate Lineages in Treg Cells. Science Advances, 5, eaaw0480. https://doi.org/10.1126/sciadv.aaw0480
|
[35]
|
Wu, C., Fan, W., Yang, H., Chu, P., Liao, P., Chen, L., et al. (2023) Contribution of Genetic Variants Associated with Primary Immunodeficiencies to Childhood-Onset Systemic Lupus Erythematous. Journal of Allergy and Clinical Immunology, 151, 1123-1131. https://doi.org/10.1016/j.jaci.2022.12.807
|