外泌体在细胞外基质相关疾病中的研究进展
Research Progress of Exosomes in Extracellular Matrix Related Diseases
DOI: 10.12677/acm.2025.1541258, PDF, HTML, XML,   
作者: 黄晓敏, 胡云峰*:暨南大学附属第一医院皮肤科,广东 广州
关键词: 外泌体细胞外基质微环境纤维化miRNAExosome Extracellular Matrix Microenvironment Fibrosis miRNA
摘要: 细胞外基质(Extracellular Matrix, ECM)相关疾病,包括纤维化、炎症性疾病和退行性疾病,主要由ECM病理性重塑引起。其异常的ECM结构和功能改变导致组织的修复能力下降,使得疾病难以逆转,然而目前仍缺乏有效的诊疗措施。外泌体作为细胞间通讯的媒介,可通过传递IncRNA、miRNA、蛋白质等功能性分子参与调控细胞的物质运输、信息传递,在多种疾病的发生发展中扮演重要角色。本文通过检索相关文献,归纳整理了外泌体在ECM相关纤维化、炎症性、退行性等疾病中的体外研究进展,并总结目前外泌体在ECM相关疾病中的应用现状,旨在探索外泌体在ECM难逆性疾病中的关键作用,或可为开发新的诊疗策略提供新思路。
Abstract: Extracellular matrix (ECM)-related diseases, including fibrosis, inflammatory diseases and degenerative diseases, are mainly caused by pathological remodeling of ECM. Its abnormal ECM structure and function changes lead to the decline of tissue repair ability, making the disease difficult to reverse. However, there is still a lack of effective diagnosis and treatment measures. Exosomes, serving as mediators of intercellular communication, play crucial roles in various disease pathogenesis by transferring functional molecules such as lncRNAs, miRNAs, and proteins to regulate cellular material transport and signal transduction. This article summarized the research progress of exosomes in ECM related fibrosis, inflammation, degeneration and other diseases in vitro by searching the relevant literature, and summarized the current application status of exosomes in ECM related diseases, aiming to explore the key role of exosomes in ECM refractory diseases, or provide new ideas for the development of new diagnosis and treatment strategies.
文章引用:黄晓敏, 胡云峰. 外泌体在细胞外基质相关疾病中的研究进展[J]. 临床医学进展, 2025, 15(4): 2923-2935. https://doi.org/10.12677/acm.2025.1541258

1. 引言

细胞外基质(Extracellular Matrix, ECM)是细胞外环境中的非细胞成分,在组织和器官的发育、修复、稳态维持等生理过程和炎症、损伤与修复、免疫应答、肿瘤转移等病理过程中发挥重要作用。ECM的异常重塑或过度积累会导致细胞结构和功能受损,直接影响组织的整体功能,进而导致不可逆的器官损伤和衰竭。由于ECM的组成和功能因组织类型不同而异,且每种疾病中的ECM重塑和积累模式存在异质性,治疗方案的制定和效果评估变得异常复杂。慢性进行性疾病往往无明显症状,直到病变到达晚期才被发现,此时组织功能已难以恢复。例如,在神经退行性疾病中,ECM的改变加剧了神经细胞和支持细胞的损伤,导致功能性丧失。现有的治疗方法多局限于减缓病程,而无法有效逆转病理进程。尽管外泌体在多种疾病中的作用逐渐被认识到,现有研究大多集中于外泌体在癌症、免疫反应等领域,然而它们在ECM相关疾病中的具体影响尚不明确。外泌体是细胞分泌的纳米级囊泡,含有蛋白质、脂质和核酸等生物分子,可以携带多种信号分子参与细胞间通讯。由于ECM的异常重塑通常伴随慢性纤维化或结构性损伤,外泌体的靶向性、生物相容性和低免疫原性使其成为治疗这些疾病的理想载体,能够克服传统治疗的瓶颈。本文将综述外泌体在ECM相关疾病中的应用研究进展,并探讨其在精准医疗中的应用前景。

2. 外泌体概述

外泌体是各种真核细胞产生的大小为30~150 nm的脂质双层纳米囊泡[1],属于细胞外囊泡(Extracellular Vesicles, EVs)的一种。它们来源于多泡体(Multivesicular Bodies, MVBs),随后通过细胞膜释放到细胞外基质(ECM)中。外泌体内含有丰富的生物活性物质,包括蛋白质、核酸、脂质和代谢物等,这些物质均来源于其母细胞。外泌体的物质标记和装载过程是一个高度选择性且复杂的过程,涉及ESCRT系统(Endosomal Sorting Complex Required for Transport, ESCRT)、RNA装载蛋白、脂质微区和四次跨膜蛋白超家族等多个细胞内机制的协同作用。正是这种装载机制赋予了外泌体高度的特异性,使其不仅成为细胞间信息传递的有效工具,也成为重要的生物标志物。特别是外泌体装载的核酸和蛋白质,它们反映了母细胞的生理和病理状态,是细胞状态的“快照”。此外,外泌体凭借其天然的生物兼容性、微小尺寸和脂质双层结构,能够跨越血脑屏障(Blood-Brain Barrier, BBB)及肿瘤屏障等多种生理和病理屏障,保持稳定性并发挥功能,因此成为无创疾病诊断的重要标志物。与此同时,外泌体不仅是病理过程的“反映器”,它们还是疾病进展的“促进因子”,在ECM病理性重塑相关疾病中,外泌体介导细胞间的通信网络,推动纤维化、退行性病变等过程,可以解析纤维化、退行性病变等疾病的分子机制,为靶向干预提供依据。

分离、纯化标准和质量控制是外泌体研究的关键。其中,外泌体研究的可重复性高度依赖于提取方法的标准化,而其提取方法的标准化仍是当前研究的挑战。目前,外泌体的提取方法主要包括超速离心法(UC)、密度梯度离心法、聚乙二醇沉淀法(PEG)、尺寸排阻色谱法(SEC)、免疫磁珠法以及试剂盒法等。其中,UC因其可靠性和稳定性被公认为外泌体分离的金标准[2]。为提高外泌体的纯度,研究者常将UC与密度梯度离心联用,后者根据介质不同可分为蔗糖体系和碘克沙醇体系两种,研究表明碘克沙醇介质对样本的干扰效应更小[3]。PEG沉淀法的原理是通过改变溶液环境降低外泌体的溶解性,从而在离心力作用下实现分离[4]。SEC技术依据颗粒大小差异进行分离,该方法能保持外泌体结构的完整性,但存在因粒径相近杂质共洗脱而影响纯度的问题[5]。免疫磁珠法利用特异性结合原理实现靶向分离,虽然可获得高纯度外泌体,但存在操作复杂、成本较高且易受非特异性吸附干扰等局限性,因此这种方法难以推广[6]。商品化试剂盒因其操作简便、通量高等优势适用于大规模样本处理,然而较高的价格限制了其在科研中的普及应用。近来,新兴技术如微流控芯片和免疫亲和捕获法虽提高特异性,但成本较高且缺乏大规模验证。因此,不同方法的选择需权衡纯度、产量和下游应用需求(如诊断需高纯度,治疗需高产量)。

外泌体的提取标准化和功能特性为其在ECM相关疾病中的研究和应用奠定了基础。下文将具体阐述其在各类疾病中的研究进展。

3. 外泌体在早期诊断和治疗ECM病理性重塑疾病中的关键作用

3.1. 纤维化疾病

3.1.1. 慢性肾脏病(Chronic Kidney Disease, CKD)

研究表明,ECM过度积累可通过形成“纤维化微环境”导致肾小管间质结构紊乱和功能障碍,是CKD病理进展的核心机制[7]。Lv等[8]通过免疫金标记技术比较CKD患者和非CKD患者的尿液样本中外泌体表达,发现与非CKD患者比较,CKD患者外泌体miR-29和miR-200家族显著下调,且miR-29c可特异性区分轻、中、重度肾纤维化,其敏感性和特异性高达68.8%和81.3%,提示其可能是肾纤维化的新型非侵入性标志物。不仅如此,Zhao等[9]通过分离肾间质纤维化(RIF)患者的尿外泌体,发现不同程度的RIF患者尿外泌体内的miR-29c水平与肾间质纤维化呈负相关,其曲线下面积(AUC)高达0.8621,说明其是诊断RIF的潜在标志物。因此,通过检测患者尿外泌体中的miRNA水平,或可开发新的肾纤维化早期标志物。

近年来,越来越多的研究表明外泌体通过调控miRNA,在干扰肾纤维化进程方面彰显出治疗潜力。Wang等[10]将miR-let7c通过外泌体从间充质干细胞(Mesenchymal Stem Cells, MSC)转移至肾小管上皮细胞,抑制了TGF-β1诱导的纤维化基因表达,证明了miR-let7c抗肾纤维化作用,这一靶点对肾脏疾病的新型疗法提供了基础,尤其适用于早期CKD。肌肉是人体最主要的代偿器官之一,当肾功能逐渐衰退时,肌肉开始进行代偿,同时因机体营养不良和CKD中的慢性低度炎症而萎缩,直接影响患者的身体功能,导致运动能力下降,营养不良进一步加剧肾脏负担,形成恶性循环。因此,早期识别和干预肌肉萎缩是改善CKD患者预后的关键。输尿管梗阻引发的肾积水是肾脏的一个急性病理过程,导致肾小管损伤、成纤维细胞活化、ECM积累等,是CKD病情进展的重要因素。Zhao等[11]通过输尿管结扎手术建立小鼠肾纤维化模型,发现肾小管细胞通过外泌体传递miR-21至成纤维细胞,抑制PTEN表达,激活PI3K/AKT通路,促进成纤维细胞的活化和肾纤维化的发展,通过干预外泌体miR-21的传递或其对PTEN的调控,可能有效阻止或减缓肾纤维化的进程。Wang等[12]发现输尿管梗阻小鼠血清外泌体中miR-26的表达降低,骨骼肌注射递送外源性miR-26a外泌体,无论外泌体携带的miR-26是通过进入肌肉脉管系统直接进入肾脏,还是通过肌肉MVBs胞吐作用间接进入肾脏,结果都能够通过抑制TGF-β/Smad信号通路,减少肾纤维化,并通过调控FoxO1,减轻肌肉萎缩。以上研究提示,外泌体miRNA调控肾纤维化与肌肉萎缩,早期干预可改善CKD预后。

3.1.2. 慢性肺疾病(Chronic Lung Disease, CLD)

CLD的病程伴随着ECM成分和代谢组学变化,破除了ECM是惰性结构的狭窄认识,开拓了未来肺部病理状态的潜在诊疗靶点[13]。CLD与吸烟密切相关,尤其是慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)。Kaur等[14]从健康非吸烟者、吸烟者、COPD和特发性肺纤维化(Idiopathic Pulmonary Fibrosis, IPF)患者中分离外泌体,采用高通量miRNA测序分析其miRNA谱,发现COPD和IPF患者的外泌体miRNA谱显著不同,与疾病的不同病理过程密切相关,此外还证实COPD主要与免疫和炎症反应的调控相关,而IPF则与主要与纤维化和组织重塑相关。研究[15]发现,IPF患者痰液中miRNA水平发生显著失调,并且识别出了三个独特的miRNA以高特异性和敏感性区分健康人和IPF患者:miR-21、miR-142-3p和miR-223,其中miR-142-3p与肺的碳一氧化物扩散能力和肺泡容积之间存在负相关,首次确定了IPF患者痰源性外泌体的miRNAs是与疾病严重程度相关的潜在生物标志物。此外,Lacedonia等[16]发现IPF患者血浆中外泌体miR-16和let-7d含量显著下调,且这种下调与纤维化的进展相关,特别是在纤维化的早期阶段,可能作为早期潜在的生物标志物,为IPF的早期诊断和开发miRNA为基础的治疗方法提供了启示。Xie等[17]通过博来霉素处理小鼠诱导肺纤维化(Pulmonary Fibrosis, PF),从小鼠肺泡灌洗液中分离外泌体,发现低表达let-7d外泌体直接靶向TGFβRI,促进纤维化,提示TGFβRI/FoxM1通路在靶向治疗具有临床应用潜力。在环状RNA (circRNA)方面也有新的研究进展,Zhang等[18]发现circRNA:120406118|12040782在硅尘处理的小鼠肺泡巨噬细胞中上调,并通过外泌体转移到其他细胞,进一步增强了NOD样受体热蛋白结构域相关蛋白3 (Nod-Like Receptor Protein 3, NLRP3)炎症小体的激活,加剧了巨噬细胞的焦亡,这一过程对PF的发展起到了促进作用。临床上,靶向circRNA11:120406118|12040782或其下游信号通路miR-30b-5p/NLRP3,有可能为IPF等由巨噬细胞焦亡引起的疾病提供新的治疗策略。

为模拟CLD实际病理状态,更好地理解疾病的发展机制和病理变化,Chen等[19]对低氧条件下肺泡上皮细胞分泌的外泌体进行基因表达分析,发现低氧环境下分泌的外泌体HOTAIRM1水平升高,通过miR-30d-3p/YY1/HSF1轴诱导IPF小鼠ECM重塑,为探索IPF的新发病机制和外泌体药物递送治疗提供了参考。除了缺氧这一危险因素,将吸烟作为危险因素设计的实验也有报道。Zhu等[20]从健康人体中分离脂肪来源干细胞(ADSCs)并提取其外泌体,然后将小鼠暴露于香烟烟雾中,给予ADSCs外泌体治疗,结果表明,ADSCs外泌体通过抑制肺泡巨噬细胞焦亡,香烟烟雾暴露诱导的TNF-α、IL-6和CXCL1水平降低,显著减轻了肺部炎症、过度黏液分泌和肺组织损伤。Zou等[21]在中医针灸治疗方面有新的进展,外泌体介导的NLRP3炎症小体产物(主要包括IL-1β和IL-18)刺激肺部炎症反应,而电针特定穴位可能通过抑制NLRP3炎症小体活化及后续炎症,减轻肺气肿。在疾病预后方面,Makiguchi等[22]收集IPF患者和健康对照者的血清样本,结果显示,miR-21-5p水平在IPF患者中显著升高,且其水平与IP在30个月内的死亡率独立相关,尤其与肺功能的下降和生存期有显著关联。

考虑到在传统药物尼达尼布和吡非尼酮药物基础上开发新型药物的局限性,且并不能阻止疾病的根本进展,外泌体疗法具有更广阔的前景[23],各种组织类型的MSC来源的外泌体均表现出巨大的治疗潜力[24]-[26],一些实验结果还表明,与MSC相比,肺球状细胞外泌体在组织修复和抗纤维化方面显示出更广泛的益处[27]。因此,外泌体正在成为细胞疗法治疗CLD的有前途的工具,并有望降低移植风险。

3.2. 炎症性疾病

慢性炎症性疾病通过持续激活免疫细胞释放促纤维化因子(如TGF-β),间接驱动ECM过度沉积,以下以炎症性肠病和心血管疾病为例探讨外泌体的调控作用和研究进展。

3.2.1. 炎症性肠病(Inflammatory Bowel Disease, IBD)

IBD包括溃疡性结肠炎(Ulcerative Colitis, UC)和克罗恩病(Crohn’s Disease, CD),共同特征是肌成纤维细胞形成过多的ECM和肠腔变窄导致的进行性肠道纤维化[28]-[30],因为抗炎药物在缓解或治疗IBD纤维化方面存在各种问题和局限性,手术仍是治疗IBD肠狭窄的主要方式[31],但切除后的患者中仍会出现肠梗阻,这表明手术并不能完全治愈[32],需要在手术治疗的基础上考虑新的治疗策略。

外泌体在早期诊断中起到帮助,可以让患者摆脱结肠镜检查的痛苦。唾液作为口腔的一个重要方面,将口腔与胃肠道和其他身体组织和器官连接起来。Zheng等[33]通过鸟枪法测序比较IBD患者和健康人唾液中的外泌体,发现PSMA7蛋白在IBD患者的唾液外泌体中显著升高,PSMA7与蛋白酶体活性及炎症反应相关,表明它是IBD的潜在生物标志物。Shao等[34]从健康人和IBD患者的血清样本中提取外泌体,发现妊娠带蛋白(PZP)在IBD患者中明显升高,并且根据小鼠实验研究结果提出假设:IBD的结肠细胞可能会分泌外泌体,并且将含有PZP的外泌体释放到血液中,是IBD诊断领域中一个具有潜力的血清学指标。为了补充手术治疗,外泌体疗法被考虑作为一种潜在的新治疗途径。Gómez-Ferrer等[35]将不同来源的EVs(低氧诱导因子过表达和/或促炎性预处理的MSC-EVs)通过尾静脉注射来治疗CD小鼠,显示出增强的抗炎和组织修复能力,有助于肠道愈合。来源于植物的外泌体也具有重要意义,Zhu等[36]研究表明,大蒜衍生的外泌体通过多重机制在UC小鼠模型中发挥了显著的治疗作用。首先,它有效上调了与肠道屏障功能相关的蛋白质表达,改善了紧密连接蛋白的功能障碍,从而减轻了结肠的组织病理损伤和炎症行为。其次,大蒜衍生外泌体通过抑制TLR4/MyD88/NF-κB信号通路的活性,以及调节肠道微生物群组成,显著减少了促炎性细胞因子的分泌,进一步发挥抗炎效果。通过调整免疫反应和增强肠道屏障功能,可以缓解肠道微环境失衡,这对IBD患者是有益的。实验[37]发现围产期组织来源(如脐带或胎盘)的外泌体显著缓解了小鼠结肠炎的炎症反应,可能是通过调控Foxp3+调节性T细胞(Treg)和恢复肠道菌群平衡实现。Th17/Treg细胞平衡是维持肠道免疫稳态的关键因素,外泌体可以作为一种治疗策略,通过调节Th17/Treg细胞平衡来缓解IBD。根据Heidari [38]、Tian [39]、Zhang [40]的研究,人脐带MSC、嗅觉外胚层MSC和三维培养MSC的外泌体,通过调节Th17/Treg细胞平衡,均能有效改善小鼠结肠炎。相较于其他来源,MSC外泌体展现出更强的免疫调节能力、组织修复潜力,以及更低的免疫原性和更好的生物相容性,这使得它们在治疗IBD等免疫相关疾病上具有明显优势。

3.2.2. 心血管疾病(Cardiovascular Disease, CVD)

动脉粥样硬化作为CVD的主要病理基础,是一种慢性炎症性疾病,由脂质沉积引发。炎症因子促使ECM重构,引起ECM蛋白质组的变化,最终引起心肌组织的纤维化,从而对心肌顺应性、僵硬度和心功能产生负面影响,导致心力衰竭等不良预后。然而,心脏纤维化和心脏重塑的机制尚不清楚。因此,减轻心肌纤维化的新型抗纤维化策略仍有待开发,以实现有效的心脏保护。与活细胞疗法相比,外泌体具有更低的免疫排斥风险,无需细胞存活即可传递治疗物质,可能是更好的选择。

外泌体已被有效地用于改善和挽救心功能,逐渐为诊断、治疗、预后提供了一种新思路:无细胞治疗方法,第三代治疗策略[41]-[43]。干预相关血管损伤后及时进行内皮修复对于预防再狭窄和血栓形成至关重要,内皮祖细胞(Endothelial Progenitor Cell, EPC)能促进血管新生和内皮修复,是再生医学中重要的治疗介质,特别在CVD中发挥关键作用。Ke等[44]从人外周血(PB)中分离出晚期EPC,发现PB-EPC衍生的外泌体在体外通过促进间充质–内皮转化和降低HMGB1的表达来延缓心肌纤维化,验证了HMGB1是治疗心肌纤维化的有效靶点。Hu等[45]比较人脐静脉内皮细胞(HUVECs)与EPC的外泌体在血管内皮修复中的作用,结果表明,二者外泌体具有相似的形态、大小分布和特征,但来自EPC的外泌体具有异常高的自我更新和扩增速率,产量更丰富,同时具有相当的生物活性,因此,EPC可能是促进血管修复的外泌体可靠来源。多项研究已经证实了IL-10在心脏损伤和修复中具有保护作用,在急性心肌梗死患者中,血管成形术后24小时内血清高含量IL-10降低心力衰竭进展的发生率。Yue等[46]也证实了这一点,实验表明来自IL-10缺陷型C57BL/6J小鼠EPC的外泌体失去了心肌修复和血管生成活性,并确定了整合素连接激酶是缺血性心脏病的潜在靶点,拓宽了对外泌体介导的炎症反应的理解,揭示了外泌体蛋白应用于缺血性心脏修复的无细胞治疗策略的可能性。Yuan等[47]通过主动脉弓缩窄手术对小鼠施加机械应力,模拟慢性心脏肥大,发现心脏机械应力使心肌细胞分泌更多富含miR-378的外泌体,这些外泌体被转运到心脏成纤维细胞中,通过靶向调节p38MAPK-Smad2/3信号通路抑制纤维化,意味着外泌体携带寡核苷酸的给药方式,有望在未来的临床实践中得到应用。Kuo等[48]通过给大鼠喂养辛伐他汀,减少了外泌体在成纤维细胞中的积累,减轻心脏纤维化,揭示了辛伐他汀除了是一种常规认知的降脂药,还可以作为一种减少外泌体累积进而缓解心脏纤维化进展的疗法。

糖尿病作为一种与CVD联系紧密的疾病,二者具有共同的风险因素、相互加重的病理过程,动脉粥样硬化是糖尿病的一种严重的心血管并发症。Bai等[49]测序分析了EPC衍生的外泌体中包含的miRNA,发现这些外泌体中表达量最高的10个miRNAs中的大多数与动脉粥样硬化有关;对动脉粥样硬化性糖尿病小鼠应用EPC衍生外泌体治疗,可以显著减少硬化斑块和炎症因子的产生,为糖尿病心血管疾病的治疗提供了新的科学依据。实验研究[50]发现小鼠运动过程中释放的外泌体通过microRNA29b和microRNA455下调金属基质酶(MMP) 9水平,减轻MMP9导致的纤维化和肌细胞解偶联,一定程度上解释了运动对糖尿病患者心脏有益的原因。Govindappa等[51]首次证实,在糖尿病环境下,小鼠静脉注射巨噬细胞RNA结合蛋白(HuR)缺陷型外泌体,可抑制血管紧张素II诱导的心脏炎症和纤维化,这项工作对于证明外泌体相关HuR作为限制病理纤维化和心脏病的治疗靶点很有价值。

3.3. 神经退行性疾病(Neurodegenerative Diseases, NDs)

中枢神经系统ECM以非纤维成分为主,其基底膜破坏是神经退行性病变的关键特征,外泌体因穿透BBB的能力成为研究热点。

与大多数器官相比,中枢神经系统的ECM最典型的特征是非纤维成分占优势[52]。基底膜是ECM的一种特殊形式[53],是BBB的重要组成部分,NDs的主要病理特征是BBB破坏和脑细胞内外病理蛋白的沉积[54]。由于NDs的病因复杂性、早期诊断的难度、缺乏疾病修饰疗法以及神经元损伤的不可逆性,治疗面临着巨大的挑战。纳米级外泌体具有通过BBB的能力,并具有表面标记物,为DNs的诊治提供了有利的前提条件[55] [56]

阿尔茨海默病(AD)是发病率最高的神经退行性疾病,AD的“临床前”阶段可以持续10多年,在此期间个体不表现出症状,但存在AD神经病理学相关改变,这增加了早期诊断的难度,外泌体可以穿越BBB,提供难以获取的脑细胞相关信息。Tau蛋白是AD神经病理学特征之一,它在大脑中异常磷酸化并形成神经纤维缠结。Fiandaca等[57]通过elisa法定量分析患者在认知正常时和在1~10年后诊断AD获得的血液外泌体蛋白,证实P-S396-tau、P-T181-tau和Aβ1-42的水平变化可预测临床发病前10年的AD发展,并且可以区分AD与其他形式痴呆。从血清中收获富集神经来源的外泌体,可以避免反复进行脑脊液采样和神经影像检查所带来的病痛和费用,为此,开发准确的血液检测方法至关重要。

帕金森病(PD)也是一种发病率较高的NDs,当运动症状出现时,疾病会迅速进展,并且病理变化发生在运动症状之前。因此,必须开发一种独特的生物标志物,以便在生命早期识别PD。神经元细胞释放的外泌体可能成为潜在的生物标志物,因为它们在神经胶质细胞与神经元的交流中起作用,并作为错误折叠的α-突触核蛋白(α-syn)的传递者,促进疾病在细胞间的传播。实验[58]表明PD患者的脑脊液中α-syn水平偏低,然而在血浆中外泌体水平升高,这表明α-syn可能从脑脊液释放到外周血液循环中,并且其水平与疾病的严重性相关。此外,Wang等[59]发现尿液EV中的两种蛋白质:钙结合蛋白和突触体相关蛋白23,可能有助于预测PD的发生。Fraser [60]发现PD患者的尿液中亮氨酸重复激酶2存在性别差异,提示在治疗PD时可能需要考虑性别因素。不同NDs的疾病进展速度和预后存在显著差异,但临床上区分和诊断不同NDs疾病是困难的,主要因为这些疾病在早期症状上的重叠、临床异质性大以及缺乏特异性的生物标志物,为此,Jiang等[61]对NDs患者血清样本进行横断面研究,证实了血清神经元外泌体在区分PD与AD、多系统萎缩等其他NDs疾病中具有临床效用。

外泌体不仅加深了对DNs的认识和诊断,而且大多数药物难以通过血脑屏障,这是中枢神经系统疾病治疗的难题[62]。法舒地尔作为一种Rho相关激酶的小分子抑制剂,最初被批准用于治疗蛛网膜下腔出血,近来多项临床前研究表明法舒地尔在NDs中具有治疗作用,但其作用机制仍在探索中。Yan等[63]通过给小鼠腹腔注射法舒地尔,证实了法舒地尔通过调节外泌体miRNA (特别是mmu-miR-451a和mmu-miR-19a-3p)增强认知功能,为法舒地尔在DNs治疗中的应用提供了重要的科学依据。

3.4. ECM代谢异常疾病

除纤维化疾病中ECM的过度沉积和炎症性疾病中ECM的继发性损伤外,ECM成分的合成与降解失衡(如胶原代谢紊乱、蛋白聚糖丢失等)同样是病理性重塑的核心机制。此类代谢异常常见于退行性(如骨关节炎)和异常修复(如瘢痕疙瘩)等疾病,外泌体可通过调控基质降解酶(如MMPs)或关键信号通路(如TGF-β/Smad)参与这一过程。下文以骨关节炎和瘢痕疙瘩为例,探讨外泌体在ECM代谢异常疾病中的作用。

3.4.1. 骨关节炎(Osteoarthritis, OA)

关节软骨ECM的化学变化与OA的病理进展密切相关,软骨ECM包含一个独特的蛋白多糖家族,嵌入在高度水合的胶原纤维网络中[64],软骨由于缺乏血管形成和神经支配,损伤后缺乏自愈能力,基于这样一个事实,迫切需要有效的治疗方法。滑膜成纤维细胞和软骨细胞在OA中通过炎症介质和外泌体相互作用,共同推动疾病进展。Kato等[65]探讨了在IL-1β炎症刺激下的滑膜成纤维细胞来源的外泌体(SFB-Exos)对关节软骨细胞的影响,研究发现,SFB-Exos能够上调软骨细胞中MMP-13的表达,并下调COL2A1的表达,提示其在软骨基质降解中发挥作用,这些结果表明,炎症条件下滑膜成纤维细胞分泌的外泌体可能通过传递特定的miRNA,促进软骨细胞的退行性变化,在OA的发病机制中起重要作用,因此,靶向滑膜成纤维细胞外泌体的分泌或功能,可能为OA的治疗提供新的策略。

外泌体在疾病治疗中的效果,可以通过材料修饰来增强。Liu等[66]构建了兔全层关节软骨缺损模型,将MSC来源的外泌体与原位水凝胶粘合剂相结合,制备了一种新型组织贴片,并通过实验模型,验证了该贴片在软骨再生中的效果。与一般外泌体不同,Shen等[67]指出,低氧条件下产生的外泌体(H-Exos)中miR-205-5p的上调通过激活PTEN/AKT通路,在关节软骨细胞的增殖、迁移、代谢和抗炎方面更为有效。同时制备了一种可注射的、生物学性能优越的丝素蛋白水凝胶,并用于负载H-Exos,在软骨再生的应用研究中显示出可行性。Sang等[68]的研究中,OA大鼠模型注射了嵌入热敏水凝胶的PC-Exos,结果显示其能调节巨噬细胞向M2型转变,减轻炎症,促进软骨修复。除了材料修饰,外泌体的效果还可以通过基因干预来提高。Tao等[69]使人滑膜间充质干细胞(hSMSCs)过表达miR-140-5p,能在体外促进软骨细胞增殖和基质合成,并抑制炎症;在膝骨关节炎大鼠模型中,这种外泌体减轻了软骨损伤,促进了软骨再生,并预防了膝关节炎。根据Wang [70]和Mao [71]的研究,通过外泌体递送miR-155-5p和miR-95-5p能够调节软骨ECM的代谢,不仅证实了外泌体在OA治疗中的潜力,还因其具有的双重特性而被认为是治疗骨关节炎的新途径[72]

3.4.2. 瘢痕疙瘩

伤口愈合的经典模式是炎症期、增殖期和重塑期三阶段,涉及许多细胞和细胞因子,以及许多风险混杂因素,如果达到适当的平衡,如ECM的重塑和降解,否则伤口愈合可能发生延迟愈合或纤维化事件,包括瘢痕疙瘩和疤痕增生[73],属于异常愈合事件或皮肤炎症性疾病[74]。全球范围内,众多个体正遭受着身心问题的困扰。

成纤维细胞是理解瘢痕疙瘩病理机制和开发治疗策略的关键。研究[75]发现人脂肪MSC (hADSCs)来源的外泌体富含miR-138-5p,能够通过下调SIRT1的表达,抑制瘢痕疙瘩成纤维细胞(KFs)的增殖、迁移和胶原蛋白的合成,从而减轻瘢痕疙瘩的纤维化程度。研究[76]还发现hADSCs来源的外泌体富含miR-192-5p,通过miR-192-5p/IL-17RA/Smad轴在抑制瘢痕疙瘩纤维化中发挥重要作用。瘢痕疙瘩中,KFs的异常活跃引起胶原蛋白的过量合成和紊乱排列,这是其硬结和隆起特征的主要成因。Li等[77]通过体外实验观察到KFs分泌的外泌体中miR-21表达增高,通过抑制外泌体miR-21可以下调胶原蛋白I和胶原蛋白III的表达,增加凋亡细胞的比例,减少胶原蛋白沉积是预防瘢痕的关键步骤。在皮肤中,黑色素细胞位于表皮的基底层,而KFs则存在于真皮和筋膜中,当伤口出现时,基底膜被破坏,使得从筋膜迁移到伤口边缘的KFs能够与黑色素细胞交流。Shen等[78]研究发现,人黑色素细胞释放的外泌体能够促进KFs的增殖和胶原蛋白的合成,并上调纤维化相关基因的表达,提示其在瘢痕疙瘩的形成中发挥促进作用,因此,靶向黑色素细胞外泌体的分泌或功能,可能为瘢痕疙瘩的治疗提供新的策略。烫伤和烧伤是导致疤痕形成的重要临床危险因素,为此,Yuan等[79]通过皮下注射过表达miR-29a的hADSCs分泌的外泌体,沸水热损伤小鼠的瘢痕面积和厚度减少。

巨噬细胞在伤口愈合的不同阶段表现出高度的可塑性,能够根据微环境信号在促炎(M1)和抗炎/促修复(M2)状态之间转换。在伤口早期,巨噬细胞主要呈现促炎表型,清除病原体和细胞碎片;随着愈合进程,巨噬细胞转变为抗炎/促修复表型,分泌抗炎因子和生长因子,促进组织再生[80]。功能失调的巨噬细胞是衰老和伤口愈合延迟或纤维化的特征[81],因此,调控巨噬细胞的激活状态和功能,能够为促进伤口愈合和治疗慢性伤口提供新的思路。Zhu等[82]发现源自M2衍生的外泌体lncRNA-LINC01605促进伤口纤维化,Chen等[83]体外细胞实验发现外泌体生成抑制剂GW4869处理M2型巨噬细胞,或敲降lncRNA-ASLNCS5088的表达,均可减弱外泌体对KFs的促活化作用。

皮肤老化主要表现为活性氧(ROS)驱动MMP导致ECM成分减少,包括弹性纤维、胶原纤维和各种聚糖[84] [85]。一项由Proffer等[86]进行的研究显示,32名中青年女性通过六周血小板外泌体治疗改善了面部亮度和肤色,面部光损伤和老化有所减轻。来自脐带MSC和诱导性多能干细胞的外泌体也显示出治疗效果[87]-[90]。各种信号表明,外泌体在美容皮肤病学中会变得非常活跃[91]

4. 展望

尽管外泌体在ECM相关疾病的早期诊断和治疗中展现出了潜力,其临床应用仍面临多重挑战:1) 提取标准化问题:不同实验室的方法差异导致数据可比性差,亟需国际细胞外囊泡学会(ISEV)指南的广泛采纳;2) 作用机制模糊性:外泌体在体内的靶向性、半衰期及剂量效应尚不明确,例如miRNA可能通过旁分泌或内分泌途径发挥远距离作用;3) 安全性争议:外泌体可能携带促肿瘤或促炎物质,需严格评估其长期安全性。未来研究需结合类器官等模型,以解析外泌体-ECM相互作用的动态性。

NOTES

*通讯作者。

参考文献

[1] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[2] Livshits, M.A., Khomyakova, E., Evtushenko, E.G., Lazarev, V.N., Kulemin, N.A., Semina, S.E., et al. (2015) Isolation of Exosomes by Differential Centrifugation: Theoretical Analysis of a Commonly Used Protocol. Scientific Reports, 5, Article No. 17319.
https://doi.org/10.1038/srep17319
[3] Ford, T., Graham, J. and Rickwood, D. (1994) Iodixanol: A Nonionic Iso-Osmotic Centrifugation Medium for the Formation of Self-Generated Gradients. Analytical Biochemistry, 220, 360-366.
https://doi.org/10.1006/abio.1994.1350
[4] Rider, M.A., Hurwitz, S.N. and Meckes, D.G. (2016) ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports, 6, Article No. 23978.
https://doi.org/10.1038/srep23978
[5] Böing, A.N., van der Pol, E., Grootemaat, A.E., Coumans, F.A.W., Sturk, A. and Nieuwland, R. (2014) Single‐Step Isolation of Extracellular Vesicles by Size‐Exclusion Chromatography. Journal of Extracellular Vesicles, 3, Article No. 23430.
https://doi.org/10.3402/jev.v3.23430
[6] Zarovni, N., Corrado, A., Guazzi, P., Zocco, D., Lari, E., Radano, G., et al. (2015) Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods, 87, 46-58.
https://doi.org/10.1016/j.ymeth.2015.05.028
[7] Bülow, R.D. and Boor, P. (2019) Extracellular Matrix in Kidney Fibrosis: More than Just a Scaffold. Journal of Histochemistry & Cytochemistry, 67, 643-661.
https://doi.org/10.1369/0022155419849388
[8] Lv, L., Cao, Y., Ni, H., Xu, M., Liu, D., Liu, H., et al. (2013) MicroRNA-29c in Urinary Exosome/Microvesicle as a Biomarker of Renal Fibrosis. American Journal of Physiology-Renal Physiology, 305, F1220-F1227.
https://doi.org/10.1152/ajprenal.00148.2013
[9] Chun-yan, L., Zi-yi, Z., Tian-lin, Y., Yi-li, W., Bao, L., Jiao, L., et al. (2018) Liquid Biopsy Biomarkers of Renal Interstitial Fibrosis Based on Urinary Exosome. Experimental and Molecular Pathology, 105, 223-228.
https://doi.org/10.1016/j.yexmp.2018.08.004
[10] Wang, B., Yao, K., Huuskes, B.M., Shen, H., Zhuang, J., Godson, C., et al. (2016) Mesenchymal Stem Cells Deliver Exogenous MicroRNA-Let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 24, 1290-1301.
https://doi.org/10.1038/mt.2016.90
[11] Zhao, S., Li, W., Yu, W., Rao, T., Li, H., Ruan, Y., et al. (2021) Exosomal miR-21 from Tubular Cells Contributes to Renal Fibrosis by Activating Fibroblasts via Targeting PTEN in Obstructed Kidneys. Theranostics, 11, 8660-8673.
https://doi.org/10.7150/thno.62820
[12] Zhang, A., Wang, H., Wang, B., Yuan, Y., Klein, J.D. and Wang, X.H. (2019) Exogenous Mir‐26a Suppresses Muscle Wasting and Renal Fibrosis in Obstructive Kidney Disease. The FASEB Journal, 33, 13590-13601.
https://doi.org/10.1096/fj.201900884r
[13] Burgess, J.K., Mauad, T., Tjin, G., Karlsson, J.C. and Westergren‐Thorsson, G. (2016) The Extracellular Matrix—The Under‐Recognized Element in Lung Disease? The Journal of Pathology, 240, 397-409.
https://doi.org/10.1002/path.4808
[14] Kaur, G., Maremanda, K.P., Campos, M., Chand, H.S., Li, F., Hirani, N., et al. (2021) Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. International Journal of Molecular Sciences, 22, Article No. 11830.
https://doi.org/10.3390/ijms222111830
[15] Njock, M., Guiot, J., Henket, M.A., Nivelles, O., Thiry, M., Dequiedt, F., et al. (2018) Sputum Exosomes: Promising Biomarkers for Idiopathic Pulmonary Fibrosis. Thorax, 74, 309-312.
https://doi.org/10.1136/thoraxjnl-2018-211897
[16] Lacedonia, D., Scioscia, G., Soccio, P., Conese, M., Catucci, L., Palladino, G.P., et al. (2021) Downregulation of Exosomal Let-7d and miR-16 in Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 21, Article No. 188.
https://doi.org/10.1186/s12890-021-01550-2
[17] Xie, H., Gao, Y., Zhang, Y., Jia, M., Peng, F., Meng, Q., et al. (2020) Low Let‐7d Exosomes from Pulmonary Vascular Endothelial Cells Drive Lung Pericyte Fibrosis through the TGFβRI/FoxM1/Smad/β-Catenin Pathway. Journal of Cellular and Molecular Medicine, 24, 13913-13926.
https://doi.org/10.1111/jcmm.15989
[18] Zhang, Q., Ban, J., Chang, S., Qu, H., Chen, J. and Liu, F. (2023) The Aggravate Role of Exosomal circRNA11: 120406118|12040782 on Macrophage Pyroptosis through miR-30b-5p/NLRP3 Axis in Silica-Induced Lung Fibrosis. International Immunopharmacology, 114, Article ID: 109476.
https://doi.org/10.1016/j.intimp.2022.109476
[19] Chen, L., Yang, Y., Yue, R., Peng, X., Yu, H. and Huang, X. (2022) Exosomes Derived from Hypoxia-Induced Alveolar Epithelial Cells Stimulate Interstitial Pulmonary Fibrosis through a HOTAIRM1-Dependent Mechanism. Laboratory Investigation, 102, 935-944.
https://doi.org/10.1038/s41374-022-00782-y
[20] Zhu, Z., Lian, X., Su, X., Wu, W., Zeng, Y. and Chen, X. (2022) Exosomes Derived from Adipose-Derived Stem Cells Alleviate Cigarette Smoke-Induced Lung Inflammation and Injury by Inhibiting Alveolar Macrophages Pyroptosis. Respiratory Research, 23, Article No. 5.
https://doi.org/10.1186/s12931-022-01926-w
[21] Zou, Y., Bhat, O.M., Yuan, X., Li, G., Huang, D., Guo, Y., et al. (2021) Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture. Journal of Inflammation Research, 14, 3501-3521.
https://doi.org/10.2147/jir.s312385
[22] Makiguchi, T., Yamada, M., Yoshioka, Y., Sugiura, H., Koarai, A., Chiba, S., et al. (2016) Serum Extracellular Vesicular miR-21-5p Is a Predictor of the Prognosis in Idiopathic Pulmonary Fibrosis. Respiratory Research, 17, Article No. 110.
https://doi.org/10.1186/s12931-016-0427-3
[23] Myllärniemi, M. and Kaarteenaho, R. (2015) Pharmacological Treatment of Idiopathic Pulmonary Fibrosis—Preclinical and Clinical Studies of Pirfenidone, Nintedanib, and N-Acetylcysteine. European Clinical Respiratory Journal, 2, Article No. 26385.
https://doi.org/10.3402/ecrj.v2.26385
[24] Guiot, J., Cambier, M., Boeckx, A., Henket, M., Nivelles, O., Gester, F., et al. (2020) Macrophage-Derived Exosomes Attenuate Fibrosis in Airway Epithelial Cells through Delivery of Antifibrotic miR-142-3p. Thorax, 75, 870-881.
https://doi.org/10.1136/thoraxjnl-2019-214077
[25] Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., et al. (2019) Mesenchymal Stromal Cell Exosomes Prevent and Revert Experimental Pulmonary Fibrosis through Modulation of Monocyte Phenotypes. JCI Insight, 4, e128060.
https://doi.org/10.1172/jci.insight.128060
[26] Wan, X., Chen, S., Fang, Y., Zuo, W., Cui, J. and Xie, S. (2020) Mesenchymal Stem Cell‐Derived Extracellular Vesicles Suppress the Fibroblast Proliferation by Downregulating FZD6 Expression in Fibroblasts via micrRNA-29b-3p in Idiopathic Pulmonary Fibrosis. Journal of Cellular Physiology, 235, 8613-8625.
https://doi.org/10.1002/jcp.29706
[27] Dinh, P.C., Paudel, D., Brochu, H., Popowski, K.D., Gracieux, M.C., Cores, J., et al. (2020) Inhalation of Lung Spheroid Cell Secretome and Exosomes Promotes Lung Repair in Pulmonary Fibrosis. Nature Communications, 11, Article No. 1064.
https://doi.org/10.1038/s41467-020-14344-7
[28] Mortensen, J., Lindholm, M., Langholm, L., Kjeldsen, J., Bay-Jensen, A., Karsdal, M., et al. (2019) The Intestinal Tissue Homeostasis—The Role of Extracellular Matrix Remodeling in Inflammatory Bowel Disease. Expert Review of Gastroenterology & Hepatology, 13, 977-993.
https://doi.org/10.1080/17474124.2019.1673729
[29] Domislovic, V., Høg Mortensen, J., Lindholm, M., Kaarsdal, M.A., Brinar, M., Barisic, A., et al. (2022) Inflammatory Biomarkers of Extracellular Matrix Remodeling and Disease Activity in Crohn’s Disease and Ulcerative Colitis. Journal of Clinical Medicine, 11, Article No. 5907.
https://doi.org/10.3390/jcm11195907
[30] Lawrance, I.C., Rogler, G., Bamias, G., et al. (2017) Cellular and Molecular Mediators of Intestinal Fibrosis. Journal of Crohns & Colitis, 11, 1491-1503.
[31] Rieder, F., Latella, G., Magro, F., Yuksel, E.S., Higgins, P.D.R., Di Sabatino, A., et al. (2016) European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. Journal of Crohns and Colitis, 10, 873-885.
https://doi.org/10.1093/ecco-jcc/jjw055
[32] Navaneethan, U. and Lourdusamy, D. (2022) Endoscopic Stricturotomy and Strictureplasty. Gastrointestinal Endoscopy Clinics of North America, 32, 687-697.
https://doi.org/10.1016/j.giec.2022.05.002
[33] Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., et al. (2017) Salivary Exosomal PSMA7: A Promising Biomarker of Inflammatory Bowel Disease. Protein & Cell, 8, 686-695.
https://doi.org/10.1007/s13238-017-0413-7
[34] Shao, J., Jin, Y., Shao, C., Fan, H., Wang, X. and Yang, G. (2021) Serum Exosomal Pregnancy Zone Protein as a Promising Biomarker in Inflammatory Bowel Disease. Cellular & Molecular Biology Letters, 26, Article No. 36.
https://doi.org/10.1186/s11658-021-00280-x
[35] Gómez-Ferrer, M., Amaro-Prellezo, E., Dorronsoro, A., Sánchez-Sánchez, R., Vicente, Á., Cosín-Roger, J., et al. (2021) HIF-Overexpression and Pro-Inflammatory Priming in Human Mesenchymal Stromal Cells Improves the Healing Properties of Extracellular Vesicles in Experimental Crohn’s Disease. International Journal of Molecular Sciences, 22, Article No. 11269.
https://doi.org/10.3390/ijms222011269
[36] Zhu, Z., Liao, L., Gao, M. and Liu, Q. (2023) Garlic-derived Exosome-Like Nanovesicles Alleviate Dextran Sulphate Sodium-Induced Mouse Colitis via the TLR4/MyD88/NF-κB Pathway and Gut Microbiota Modulation. Food & Function, 14, 7520-7534.
https://doi.org/10.1039/d3fo01094e
[37] Yan, Y., Li, K., Jiang, J., Jiang, L., Ma, X., Ai, F., et al. (2023) Perinatal Tissue-Derived Exosomes Ameliorate Colitis in Mice by Regulating the Foxp3+ Treg Cells and Gut Microbiota. Stem Cell Research & Therapy, 14, Article No. 43.
https://doi.org/10.1186/s13287-023-03263-1
[38] Heidari, N., Abbasi-Kenarsari, H., Namaki, S., Baghaei, K., Zali, M.R., Mirsanei, Z., et al. (2022) Regulation of the Th17/Treg Balance by Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protects against Acute Experimental Colitis. Experimental Cell Research, 419, Article ID: 113296.
https://doi.org/10.1016/j.yexcr.2022.113296
[39] Tian, J., Zhu, Q., Zhang, Y., Bian, Q., Hong, Y., Shen, Z., et al. (2020) Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 11, Article ID: 598322.
https://doi.org/10.3389/fimmu.2020.598322
[40] Zhang, Y., Chen, J., Fu, H., Kuang, S., He, F., Zhang, M., et al. (2021) Exosomes Derived from 3D-Cultured MSCs Improve Therapeutic Effects in Periodontitis and Experimental Colitis and Restore the Th17 Cell/Treg Balance in Inflamed Periodontium. International Journal of Oral Science, 13, Article No. 43.
https://doi.org/10.1038/s41368-021-00150-4
[41] Sarohi, V., Chakraborty, S. and Basak, T. (2022) Exploring the Cardiac ECM during Fibrosis: A New Era with Next-Gen Proteomics. Frontiers in Molecular Biosciences, 9, Article ID: 1030226.
https://doi.org/10.3389/fmolb.2022.1030226
[42] Dziki, J.L. and Badylak, S.F. (2018) Extracellular Matrix for Myocardial Repair. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 151-171.
https://doi.org/10.1007/978-3-319-97421-7_8
[43] Li, Z., Hu, S. and Cheng, K. (2019) Chemical Engineering of Cell Therapy for Heart Diseases. Accounts of Chemical Research, 52, 1687-1696.
https://doi.org/10.1021/acs.accounts.9b00137
[44] Ke, X., Yang, D., Liang, J., Wang, X., Wu, S., Wang, X., et al. (2017) Human Endothelial Progenitor Cell-Derived Exosomes Increase Proliferation and Angiogenesis in Cardiac Fibroblasts by Promoting the Mesenchymal-Endothelial Transition and Reducing High Mobility Group Box 1 Protein B1 Expression. DNA and Cell Biology, 36, 1018-1028.
https://doi.org/10.1089/dna.2017.3836
[45] Hu, H., Jiang, C., Li, R., et al. (2019) Comparison of Endothelial Cell-and Endothelial Progenitor Cell-Derived Exosomes in Promoting Vascular Endothelial Cell Repair. International Journal of Clinical and Experimental Pathology, 12, 2793-2800.
[46] Yue, Y., Wang, C., Benedict, C., Huang, G., Truongcao, M., Roy, R., et al. (2020) Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circulation Research, 126, 315-329.
https://doi.org/10.1161/circresaha.119.315829
[47] Yuan, J., Liu, H., Gao, W., Zhang, L., Ye, Y., Yuan, L., et al. (2018) MicroRNA-378 Suppresses Myocardial Fibrosis through a Paracrine Mechanism at the Early Stage of Cardiac Hypertrophy Following Mechanical Stress. Theranostics, 8, 2565-2582.
https://doi.org/10.7150/thno.22878
[48] Kuo, H., Hsieh, C., Wang, S., Chang, C., Hung, C., Kuo, P., et al. (2019) Simvastatin Attenuates Cardiac Fibrosis via Regulation of Cardiomyocyte-Derived Exosome Secretion. Journal of Clinical Medicine, 8, Article No. 794.
https://doi.org/10.3390/jcm8060794
[49] Bai, S., Yin, Q., Dong, T., Dai, F., Qin, Y., Ye, L., et al. (2020) Endothelial Progenitor Cell-Derived Exosomes Ameliorate Endothelial Dysfunction in a Mouse Model of Diabetes. Biomedicine & Pharmacotherapy, 131, Article ID: 110756.
https://doi.org/10.1016/j.biopha.2020.110756
[50] Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A. and Tyagi, S.C. (2015) Cardiosome Mediated Regulation of MMP9 in Diabetic Heart: Role of mir29b and mir455 in Exercise. Journal of Cellular and Molecular Medicine, 19, 2153-2161.
https://doi.org/10.1111/jcmm.12589
[51] Govindappa, P.K., Patil, M., Garikipati, V.N.S., Verma, S.K., Saheera, S., Narasimhan, G., et al. (2019) Targeting Exosome‐Associated Human Antigen R Attenuates Fibrosis and Inflammation in Diabetic Heart. The FASEB Journal, 34, 2238-2251.
https://doi.org/10.1096/fj.201901995r
[52] Zimmermann, D.R. and Dours-Zimmermann, M.T. (2008) Extracellular Matrix of the Central Nervous System: From Neglect to Challenge. Histochemistry and Cell Biology, 130, 635-653.
https://doi.org/10.1007/s00418-008-0485-9
[53] Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185.
https://doi.org/10.1124/pr.57.2.4
[54] Nguyen, B., Bix, G. and Yao, Y. (2021) Basal Lamina Changes in Neurodegenerative Disorders. Molecular Neurodegeneration, 16, Article No. 81.
https://doi.org/10.1186/s13024-021-00502-y
[55] Dar, G.H., Badierah, R., Nathan, E.G., Bhat, M.A., Dar, A.H. and Redwan, E.M. (2022) Extracellular Vesicles: A New Paradigm in Understanding, Diagnosing and Treating Neurodegenerative Disease. Frontiers in Aging Neuroscience, 14, Article ID: 967231.
https://doi.org/10.3389/fnagi.2022.967231
[56] Younas, N., Fernandez Flores, L.C., Hopfner, F., Höglinger, G.U. and Zerr, I. (2022) A New Paradigm for Diagnosis of Neurodegenerative Diseases: Peripheral Exosomes of Brain Origin. Translational Neurodegeneration, 11, Article No. 28.
https://doi.org/10.1186/s40035-022-00301-5
[57] Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., et al. (2014) Identification of Preclinical Alzheimer’s Disease by a Profile of Pathogenic Proteins in Neurally Derived Blood Exosomes: A Case‐control Study. Alzheimers & Dementia, 11, 600-607.e1.
https://doi.org/10.1016/j.jalz.2014.06.008
[58] Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., et al. (2014) Plasma Exosomal Α-Synuclein Is Likely CNS-Derived and Increased in Parkinson’s Disease. Acta Neuropathologica, 128, 639-650.
https://doi.org/10.1007/s00401-014-1314-y
[59] Wang, S., Kojima, K., Mobley, J.A. and West, A.B. (2019) Proteomic Analysis of Urinary Extracellular Vesicles Reveal Biomarkers for Neurologic Disease. EBioMedicine, 45, 351-361.
https://doi.org/10.1016/j.ebiom.2019.06.021
[60] Fraser, K.B., Rawlins, A.B., Clark, R.G., Alcalay, R.N., Standaert, D.G., Liu, N., et al. (2016) Ser(p)‐1292 LRRK2 in Urinary Exosomes Is Elevated in Idiopathic Parkinson’s Disease. Movement Disorders, 31, 1543-1550.
https://doi.org/10.1002/mds.26686
[61] Jiang, C., Hopfner, F., Katsikoudi, A., Hein, R., Catli, C., Evetts, S., et al. (2020) Serum Neuronal Exosomes Predict and Differentiate Parkinson’s Disease from Atypical Parkinsonism. Journal of Neurology, Neurosurgery & Psychiatry, 91, 720-729.
https://doi.org/10.1136/jnnp-2019-322588
[62] Mattingly, J., Li, Y., Bihl, J.C. and Wang, J. (2021) The Promise of Exosome Applications in Treating Central Nervous System Diseases. CNS Neuroscience & Therapeutics, 27, 1437-1445.
https://doi.org/10.1111/cns.13743
[63] Yan, Y., Gao, Y., Kumar, G., Fang, Q., Yan, H., Zhang, N., et al. (2024) Exosomal MicroRNAs Modulate the Cognitive Function in Fasudil Treated APPswe/PSEN1dE9 Transgenic (APP/PS1) Mice Model of Alzheimer’s Disease. Metabolic Brain Disease, 39, 1335-1351.
https://doi.org/10.1007/s11011-024-01395-8
[64] Guilak, F., Nims, R.J., Dicks, A., Wu, C. and Meulenbelt, I. (2018) Osteoarthritis as a Disease of the Cartilage Pericellular Matrix. Matrix Biology, 71, 40-50.
https://doi.org/10.1016/j.matbio.2018.05.008
[65] Kato, T., Miyaki, S., Ishitobi, H., Nakamura, Y., Nakasa, T., Lotz, M.K., et al. (2014) Exosomes from Il-1β Stimulated Synovial Fibroblasts Induce Osteoarthritic Changes in Articular Chondrocytes. Arthritis Research & Therapy, 16, R163.
https://doi.org/10.1186/ar4679
[66] Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438.
https://doi.org/10.1039/c7nr00352h
[67] Shen, K., Duan, A., Cheng, J., Yuan, T., Zhou, J., Song, H., et al. (2022) Exosomes Derived from Hypoxia Preconditioned Mesenchymal Stem Cells Laden in a Silk Hydrogel Promote Cartilage Regeneration via the miR-205-5p/PTEN/AKT Pathway. Acta Biomaterialia, 143, 173-188.
https://doi.org/10.1016/j.actbio.2022.02.026
[68] Sang, X., Zhao, X., Yan, L., Jin, X., Wang, X., Wang, J., et al. (2022) Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Engineering and Regenerative Medicine, 19, 629-642.
https://doi.org/10.1007/s13770-022-00437-5
[69] Tao, S., Yuan, T., Zhang, Y., Yin, W., Guo, S. and Zhang, C. (2017) Exosomes Derived from miR-140-5p-Overexpressing Human Synovial Mesenchymal Stem Cells Enhance Cartilage Tissue Regeneration and Prevent Osteoarthritis of the Knee in a Rat Model. Theranostics, 7, 180-195.
https://doi.org/10.7150/thno.17133
[70] Wang, Z., Yan, K., Ge, G., Zhang, D., Bai, J., Guo, X., et al. (2020) Exosomes Derived from miR-155-5p-Overexpressing Synovial Mesenchymal Stem Cells Prevent Osteoarthritis via Enhancing Proliferation and Migration, Attenuating Apoptosis, and Modulating Extracellular Matrix Secretion in Chondrocytes. Cell Biology and Toxicology, 37, 85-96.
https://doi.org/10.1007/s10565-020-09559-9
[71] Mao, G., Hu, S., Zhang, Z., Wu, P., Zhao, X., Lin, R., et al. (2018) Exosomal miR-95-5p Regulates Chondrogenesis and Cartilage Degradation via Histone Deacetylase 2/8. Journal of Cellular and Molecular Medicine, 22, 5354-5366.
https://doi.org/10.1111/jcmm.13808
[72] Zhou, Q., Cai, Y. and Lin, X. (2020) The Dual Character of Exosomes in Osteoarthritis: Antagonists and Therapeutic Agents. Acta Biomaterialia, 105, 15-25.
https://doi.org/10.1016/j.actbio.2020.01.040
[73] Andrews, J.P., Marttala, J., Macarak, E., Rosenbloom, J. and Uitto, J. (2016) Keloids: The Paradigm of Skin Fibrosis—Pathomechanisms and Treatment. Matrix Biology, 51, 37-46.
https://doi.org/10.1016/j.matbio.2016.01.013
[74] Lee, H. and Jang, Y. (2018) Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. International Journal of Molecular Sciences, 19, Article No. 711.
https://doi.org/10.3390/ijms19030711
[75] Zhao, W., Zhang, R., Zang, C., Zhang, L., Zhao, R., Li, Q., et al. (2022) Exosome Derived from Mesenchymal Stem Cells Alleviates Pathological Scars by Inhibiting the Proliferation, Migration and Protein Expression of Fibroblasts via Delivering miR-138-5p to Target SIRT1. International Journal of Nanomedicine, 17, 4023-4038.
https://doi.org/10.2147/ijn.s377317
[76] Li, Y., Zhang, J., Shi, J., Liu, K., Wang, X., Jia, Y., et al. (2021) Exosomes Derived from Human Adipose Mesenchymal Stem Cells Attenuate Hypertrophic Scar Fibrosis by miR-192-5p/IL-17RA/Smad Axis. Stem Cell Research & Therapy, 12, Article No. 221.
https://doi.org/10.1186/s13287-021-02290-0
[77] Li, Q., Fang, L., Chen, J., Zhou, S., Zhou, K., Cheng, F., et al. (2021) Exosomal MicroRNA-21 Promotes Keloid Fibroblast Proliferation and Collagen Production by Inhibiting Smad7. Journal of Burn Care & Research, 42, 1266-1274.
https://doi.org/10.1093/jbcr/irab116
[78] Shen, Z., Shao, J., Sun, J. and Xu, J. (2022) Exosomes Released by Melanocytes Modulate Fibroblasts to Promote Keloid Formation: A Pilot Study. Journal of Zhejiang University-SCIENCE B, 23, 699-704.
https://doi.org/10.1631/jzus.b2200036
[79] Yuan, R., Dai, X., Li, Y., Li, C. and Liu, L. (2021) Exosomes from miR-29a-Modified Adipose-Derived Mesenchymal Stem Cells Reduce Excessive Scar Formation by Inhibiting TGF-β2/Smad3 Signaling. Molecular Medicine Reports, 24, Article No. 758.
https://doi.org/10.3892/mmr.2021.12398
[80] Kim, S.Y. and Nair, M.G. (2019) Macrophages in Wound Healing: Activation and Plasticity. Immunology & Cell Biology, 97, 258-267.
https://doi.org/10.1111/imcb.12236
[81] Louiselle, A.E., Niemiec, S.M., Zgheib, C. and Liechty, K.W. (2021) Macrophage Polarization and Diabetic Wound Healing. Translational Research, 236, 109-116.
https://doi.org/10.1016/j.trsl.2021.05.006
[82] Zhu, Z., Chen, B., Peng, L., Gao, S., Guo, J. and Zhu, X. (2021) Blockade of LINC01605-Enriched Exosome Generation in M2 Macrophages Impairs M2 Macrophage-Induced Proliferation, Migration, and Invasion of Human Dermal Fibroblasts. International Journal of Immunopathology and Pharmacology, 35, No. 13.
https://doi.org/10.1177/20587384211016724
[83] Chen, J., Zhou, R., Liang, Y., Fu, X., Wang, D. and Wang, C. (2019) Blockade of lncRNA-ASLNCS5088-Enriched Exosome Generation in M2 Macrophages by GW4869 Dampens the Effect of M2 Macrophages on Orchestrating Fibroblast Activation. The FASEB Journal, 33, 12200-12212.
https://doi.org/10.1096/fj.201901610
[84] Shin, J., Kwon, S., Choi, J., Na, J., Huh, C., Choi, H., et al. (2019) Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20, Article No. 2126.
https://doi.org/10.3390/ijms20092126
[85] Lee, D.H., Oh, J. and Chung, J.H. (2016) Glycosaminoglycan and Proteoglycan in Skin Aging. Journal of Dermatological Science, 83, 174-181.
https://doi.org/10.1016/j.jdermsci.2016.05.016
[86] Proffer, S.L., Paradise, C.R., DeGrazia, E., Halaas, Y., Durairaj, K.K., Somenek, M., et al. (2022) Efficacy and Tolerability of Topical Platelet Exosomes for Skin Rejuvenation: Six-Week Results. Aesthetic Surgery Journal, 42, 1185-1193.
https://doi.org/10.1093/asj/sjac149
[87] Liu, S., Meng, M., Han, S., Gao, H., Zhao, Y., Yang, Y., et al. (2021) Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Ameliorate Hacat Cell Photo-Aging. Rejuvenation Research, 24, 283-293.
https://doi.org/10.1089/rej.2020.2313
[88] Wu, P., Zhang, B., Han, X., Sun, Y., Sun, Z., Li, L., et al. (2021) Hucmsc Exosome-Delivered 14-3-3ζ Alleviates Ultraviolet Radiation-Induced Photodamage via SIRT1 Pathway Modulation. Aging, 13, 11542-11563.
https://doi.org/10.18632/aging.202851
[89] Oh, M., Lee, J., Kim, Y.J., Rhee, W.J. and Park, J.H. (2018) Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. International Journal of Molecular Sciences, 19, Article No. 1715.
https://doi.org/10.3390/ijms19061715
[90] Gao, W., Wang, X., Si, Y., Pang, J., Liu, H., Li, S., et al. (2021) Exosome Derived from ADSCs Attenuates Ultraviolet B‐Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 97, 795-804.
https://doi.org/10.1111/php.13370
[91] Shen, X., Song, S., Chen, N., Liao, J. and Zeng, L. (2021) Stem Cell-Derived Exosomes: A Supernova in Cosmetic Dermatology. Journal of Cosmetic Dermatology, 20, 3812-3817.
https://doi.org/10.1111/jocd.14438