[1]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[2]
|
Livshits, M.A., Khomyakova, E., Evtushenko, E.G., Lazarev, V.N., Kulemin, N.A., Semina, S.E., et al. (2015) Isolation of Exosomes by Differential Centrifugation: Theoretical Analysis of a Commonly Used Protocol. Scientific Reports, 5, Article No. 17319. https://doi.org/10.1038/srep17319
|
[3]
|
Ford, T., Graham, J. and Rickwood, D. (1994) Iodixanol: A Nonionic Iso-Osmotic Centrifugation Medium for the Formation of Self-Generated Gradients. Analytical Biochemistry, 220, 360-366. https://doi.org/10.1006/abio.1994.1350
|
[4]
|
Rider, M.A., Hurwitz, S.N. and Meckes, D.G. (2016) ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports, 6, Article No. 23978. https://doi.org/10.1038/srep23978
|
[5]
|
Böing, A.N., van der Pol, E., Grootemaat, A.E., Coumans, F.A.W., Sturk, A. and Nieuwland, R. (2014) Single‐Step Isolation of Extracellular Vesicles by Size‐Exclusion Chromatography. Journal of Extracellular Vesicles, 3, Article No. 23430. https://doi.org/10.3402/jev.v3.23430
|
[6]
|
Zarovni, N., Corrado, A., Guazzi, P., Zocco, D., Lari, E., Radano, G., et al. (2015) Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods, 87, 46-58. https://doi.org/10.1016/j.ymeth.2015.05.028
|
[7]
|
Bülow, R.D. and Boor, P. (2019) Extracellular Matrix in Kidney Fibrosis: More than Just a Scaffold. Journal of Histochemistry & Cytochemistry, 67, 643-661. https://doi.org/10.1369/0022155419849388
|
[8]
|
Lv, L., Cao, Y., Ni, H., Xu, M., Liu, D., Liu, H., et al. (2013) MicroRNA-29c in Urinary Exosome/Microvesicle as a Biomarker of Renal Fibrosis. American Journal of Physiology-Renal Physiology, 305, F1220-F1227. https://doi.org/10.1152/ajprenal.00148.2013
|
[9]
|
Chun-yan, L., Zi-yi, Z., Tian-lin, Y., Yi-li, W., Bao, L., Jiao, L., et al. (2018) Liquid Biopsy Biomarkers of Renal Interstitial Fibrosis Based on Urinary Exosome. Experimental and Molecular Pathology, 105, 223-228. https://doi.org/10.1016/j.yexmp.2018.08.004
|
[10]
|
Wang, B., Yao, K., Huuskes, B.M., Shen, H., Zhuang, J., Godson, C., et al. (2016) Mesenchymal Stem Cells Deliver Exogenous MicroRNA-Let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 24, 1290-1301. https://doi.org/10.1038/mt.2016.90
|
[11]
|
Zhao, S., Li, W., Yu, W., Rao, T., Li, H., Ruan, Y., et al. (2021) Exosomal miR-21 from Tubular Cells Contributes to Renal Fibrosis by Activating Fibroblasts via Targeting PTEN in Obstructed Kidneys. Theranostics, 11, 8660-8673. https://doi.org/10.7150/thno.62820
|
[12]
|
Zhang, A., Wang, H., Wang, B., Yuan, Y., Klein, J.D. and Wang, X.H. (2019) Exogenous Mir‐26a Suppresses Muscle Wasting and Renal Fibrosis in Obstructive Kidney Disease. The FASEB Journal, 33, 13590-13601. https://doi.org/10.1096/fj.201900884r
|
[13]
|
Burgess, J.K., Mauad, T., Tjin, G., Karlsson, J.C. and Westergren‐Thorsson, G. (2016) The Extracellular Matrix—The Under‐Recognized Element in Lung Disease? The Journal of Pathology, 240, 397-409. https://doi.org/10.1002/path.4808
|
[14]
|
Kaur, G., Maremanda, K.P., Campos, M., Chand, H.S., Li, F., Hirani, N., et al. (2021) Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. International Journal of Molecular Sciences, 22, Article No. 11830. https://doi.org/10.3390/ijms222111830
|
[15]
|
Njock, M., Guiot, J., Henket, M.A., Nivelles, O., Thiry, M., Dequiedt, F., et al. (2018) Sputum Exosomes: Promising Biomarkers for Idiopathic Pulmonary Fibrosis. Thorax, 74, 309-312. https://doi.org/10.1136/thoraxjnl-2018-211897
|
[16]
|
Lacedonia, D., Scioscia, G., Soccio, P., Conese, M., Catucci, L., Palladino, G.P., et al. (2021) Downregulation of Exosomal Let-7d and miR-16 in Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 21, Article No. 188. https://doi.org/10.1186/s12890-021-01550-2
|
[17]
|
Xie, H., Gao, Y., Zhang, Y., Jia, M., Peng, F., Meng, Q., et al. (2020) Low Let‐7d Exosomes from Pulmonary Vascular Endothelial Cells Drive Lung Pericyte Fibrosis through the TGFβRI/FoxM1/Smad/β-Catenin Pathway. Journal of Cellular and Molecular Medicine, 24, 13913-13926. https://doi.org/10.1111/jcmm.15989
|
[18]
|
Zhang, Q., Ban, J., Chang, S., Qu, H., Chen, J. and Liu, F. (2023) The Aggravate Role of Exosomal circRNA11: 120406118|12040782 on Macrophage Pyroptosis through miR-30b-5p/NLRP3 Axis in Silica-Induced Lung Fibrosis. International Immunopharmacology, 114, Article ID: 109476. https://doi.org/10.1016/j.intimp.2022.109476
|
[19]
|
Chen, L., Yang, Y., Yue, R., Peng, X., Yu, H. and Huang, X. (2022) Exosomes Derived from Hypoxia-Induced Alveolar Epithelial Cells Stimulate Interstitial Pulmonary Fibrosis through a HOTAIRM1-Dependent Mechanism. Laboratory Investigation, 102, 935-944. https://doi.org/10.1038/s41374-022-00782-y
|
[20]
|
Zhu, Z., Lian, X., Su, X., Wu, W., Zeng, Y. and Chen, X. (2022) Exosomes Derived from Adipose-Derived Stem Cells Alleviate Cigarette Smoke-Induced Lung Inflammation and Injury by Inhibiting Alveolar Macrophages Pyroptosis. Respiratory Research, 23, Article No. 5. https://doi.org/10.1186/s12931-022-01926-w
|
[21]
|
Zou, Y., Bhat, O.M., Yuan, X., Li, G., Huang, D., Guo, Y., et al. (2021) Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture. Journal of Inflammation Research, 14, 3501-3521. https://doi.org/10.2147/jir.s312385
|
[22]
|
Makiguchi, T., Yamada, M., Yoshioka, Y., Sugiura, H., Koarai, A., Chiba, S., et al. (2016) Serum Extracellular Vesicular miR-21-5p Is a Predictor of the Prognosis in Idiopathic Pulmonary Fibrosis. Respiratory Research, 17, Article No. 110. https://doi.org/10.1186/s12931-016-0427-3
|
[23]
|
Myllärniemi, M. and Kaarteenaho, R. (2015) Pharmacological Treatment of Idiopathic Pulmonary Fibrosis—Preclinical and Clinical Studies of Pirfenidone, Nintedanib, and N-Acetylcysteine. European Clinical Respiratory Journal, 2, Article No. 26385. https://doi.org/10.3402/ecrj.v2.26385
|
[24]
|
Guiot, J., Cambier, M., Boeckx, A., Henket, M., Nivelles, O., Gester, F., et al. (2020) Macrophage-Derived Exosomes Attenuate Fibrosis in Airway Epithelial Cells through Delivery of Antifibrotic miR-142-3p. Thorax, 75, 870-881. https://doi.org/10.1136/thoraxjnl-2019-214077
|
[25]
|
Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., et al. (2019) Mesenchymal Stromal Cell Exosomes Prevent and Revert Experimental Pulmonary Fibrosis through Modulation of Monocyte Phenotypes. JCI Insight, 4, e128060. https://doi.org/10.1172/jci.insight.128060
|
[26]
|
Wan, X., Chen, S., Fang, Y., Zuo, W., Cui, J. and Xie, S. (2020) Mesenchymal Stem Cell‐Derived Extracellular Vesicles Suppress the Fibroblast Proliferation by Downregulating FZD6 Expression in Fibroblasts via micrRNA-29b-3p in Idiopathic Pulmonary Fibrosis. Journal of Cellular Physiology, 235, 8613-8625. https://doi.org/10.1002/jcp.29706
|
[27]
|
Dinh, P.C., Paudel, D., Brochu, H., Popowski, K.D., Gracieux, M.C., Cores, J., et al. (2020) Inhalation of Lung Spheroid Cell Secretome and Exosomes Promotes Lung Repair in Pulmonary Fibrosis. Nature Communications, 11, Article No. 1064. https://doi.org/10.1038/s41467-020-14344-7
|
[28]
|
Mortensen, J., Lindholm, M., Langholm, L., Kjeldsen, J., Bay-Jensen, A., Karsdal, M., et al. (2019) The Intestinal Tissue Homeostasis—The Role of Extracellular Matrix Remodeling in Inflammatory Bowel Disease. Expert Review of Gastroenterology & Hepatology, 13, 977-993. https://doi.org/10.1080/17474124.2019.1673729
|
[29]
|
Domislovic, V., Høg Mortensen, J., Lindholm, M., Kaarsdal, M.A., Brinar, M., Barisic, A., et al. (2022) Inflammatory Biomarkers of Extracellular Matrix Remodeling and Disease Activity in Crohn’s Disease and Ulcerative Colitis. Journal of Clinical Medicine, 11, Article No. 5907. https://doi.org/10.3390/jcm11195907
|
[30]
|
Lawrance, I.C., Rogler, G., Bamias, G., et al. (2017) Cellular and Molecular Mediators of Intestinal Fibrosis. Journal of Crohn’s & Colitis, 11, 1491-1503.
|
[31]
|
Rieder, F., Latella, G., Magro, F., Yuksel, E.S., Higgins, P.D.R., Di Sabatino, A., et al. (2016) European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. Journal of Crohn’s and Colitis, 10, 873-885. https://doi.org/10.1093/ecco-jcc/jjw055
|
[32]
|
Navaneethan, U. and Lourdusamy, D. (2022) Endoscopic Stricturotomy and Strictureplasty. Gastrointestinal Endoscopy Clinics of North America, 32, 687-697. https://doi.org/10.1016/j.giec.2022.05.002
|
[33]
|
Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., et al. (2017) Salivary Exosomal PSMA7: A Promising Biomarker of Inflammatory Bowel Disease. Protein & Cell, 8, 686-695. https://doi.org/10.1007/s13238-017-0413-7
|
[34]
|
Shao, J., Jin, Y., Shao, C., Fan, H., Wang, X. and Yang, G. (2021) Serum Exosomal Pregnancy Zone Protein as a Promising Biomarker in Inflammatory Bowel Disease. Cellular & Molecular Biology Letters, 26, Article No. 36. https://doi.org/10.1186/s11658-021-00280-x
|
[35]
|
Gómez-Ferrer, M., Amaro-Prellezo, E., Dorronsoro, A., Sánchez-Sánchez, R., Vicente, Á., Cosín-Roger, J., et al. (2021) HIF-Overexpression and Pro-Inflammatory Priming in Human Mesenchymal Stromal Cells Improves the Healing Properties of Extracellular Vesicles in Experimental Crohn’s Disease. International Journal of Molecular Sciences, 22, Article No. 11269. https://doi.org/10.3390/ijms222011269
|
[36]
|
Zhu, Z., Liao, L., Gao, M. and Liu, Q. (2023) Garlic-derived Exosome-Like Nanovesicles Alleviate Dextran Sulphate Sodium-Induced Mouse Colitis via the TLR4/MyD88/NF-κB Pathway and Gut Microbiota Modulation. Food & Function, 14, 7520-7534. https://doi.org/10.1039/d3fo01094e
|
[37]
|
Yan, Y., Li, K., Jiang, J., Jiang, L., Ma, X., Ai, F., et al. (2023) Perinatal Tissue-Derived Exosomes Ameliorate Colitis in Mice by Regulating the Foxp3+ Treg Cells and Gut Microbiota. Stem Cell Research & Therapy, 14, Article No. 43. https://doi.org/10.1186/s13287-023-03263-1
|
[38]
|
Heidari, N., Abbasi-Kenarsari, H., Namaki, S., Baghaei, K., Zali, M.R., Mirsanei, Z., et al. (2022) Regulation of the Th17/Treg Balance by Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protects against Acute Experimental Colitis. Experimental Cell Research, 419, Article ID: 113296. https://doi.org/10.1016/j.yexcr.2022.113296
|
[39]
|
Tian, J., Zhu, Q., Zhang, Y., Bian, Q., Hong, Y., Shen, Z., et al. (2020) Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 11, Article ID: 598322. https://doi.org/10.3389/fimmu.2020.598322
|
[40]
|
Zhang, Y., Chen, J., Fu, H., Kuang, S., He, F., Zhang, M., et al. (2021) Exosomes Derived from 3D-Cultured MSCs Improve Therapeutic Effects in Periodontitis and Experimental Colitis and Restore the Th17 Cell/Treg Balance in Inflamed Periodontium. International Journal of Oral Science, 13, Article No. 43. https://doi.org/10.1038/s41368-021-00150-4
|
[41]
|
Sarohi, V., Chakraborty, S. and Basak, T. (2022) Exploring the Cardiac ECM during Fibrosis: A New Era with Next-Gen Proteomics. Frontiers in Molecular Biosciences, 9, Article ID: 1030226. https://doi.org/10.3389/fmolb.2022.1030226
|
[42]
|
Dziki, J.L. and Badylak, S.F. (2018) Extracellular Matrix for Myocardial Repair. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 151-171. https://doi.org/10.1007/978-3-319-97421-7_8
|
[43]
|
Li, Z., Hu, S. and Cheng, K. (2019) Chemical Engineering of Cell Therapy for Heart Diseases. Accounts of Chemical Research, 52, 1687-1696. https://doi.org/10.1021/acs.accounts.9b00137
|
[44]
|
Ke, X., Yang, D., Liang, J., Wang, X., Wu, S., Wang, X., et al. (2017) Human Endothelial Progenitor Cell-Derived Exosomes Increase Proliferation and Angiogenesis in Cardiac Fibroblasts by Promoting the Mesenchymal-Endothelial Transition and Reducing High Mobility Group Box 1 Protein B1 Expression. DNA and Cell Biology, 36, 1018-1028. https://doi.org/10.1089/dna.2017.3836
|
[45]
|
Hu, H., Jiang, C., Li, R., et al. (2019) Comparison of Endothelial Cell-and Endothelial Progenitor Cell-Derived Exosomes in Promoting Vascular Endothelial Cell Repair. International Journal of Clinical and Experimental Pathology, 12, 2793-2800.
|
[46]
|
Yue, Y., Wang, C., Benedict, C., Huang, G., Truongcao, M., Roy, R., et al. (2020) Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circulation Research, 126, 315-329. https://doi.org/10.1161/circresaha.119.315829
|
[47]
|
Yuan, J., Liu, H., Gao, W., Zhang, L., Ye, Y., Yuan, L., et al. (2018) MicroRNA-378 Suppresses Myocardial Fibrosis through a Paracrine Mechanism at the Early Stage of Cardiac Hypertrophy Following Mechanical Stress. Theranostics, 8, 2565-2582. https://doi.org/10.7150/thno.22878
|
[48]
|
Kuo, H., Hsieh, C., Wang, S., Chang, C., Hung, C., Kuo, P., et al. (2019) Simvastatin Attenuates Cardiac Fibrosis via Regulation of Cardiomyocyte-Derived Exosome Secretion. Journal of Clinical Medicine, 8, Article No. 794. https://doi.org/10.3390/jcm8060794
|
[49]
|
Bai, S., Yin, Q., Dong, T., Dai, F., Qin, Y., Ye, L., et al. (2020) Endothelial Progenitor Cell-Derived Exosomes Ameliorate Endothelial Dysfunction in a Mouse Model of Diabetes. Biomedicine & Pharmacotherapy, 131, Article ID: 110756. https://doi.org/10.1016/j.biopha.2020.110756
|
[50]
|
Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A. and Tyagi, S.C. (2015) Cardiosome Mediated Regulation of MMP9 in Diabetic Heart: Role of mir29b and mir455 in Exercise. Journal of Cellular and Molecular Medicine, 19, 2153-2161. https://doi.org/10.1111/jcmm.12589
|
[51]
|
Govindappa, P.K., Patil, M., Garikipati, V.N.S., Verma, S.K., Saheera, S., Narasimhan, G., et al. (2019) Targeting Exosome‐Associated Human Antigen R Attenuates Fibrosis and Inflammation in Diabetic Heart. The FASEB Journal, 34, 2238-2251. https://doi.org/10.1096/fj.201901995r
|
[52]
|
Zimmermann, D.R. and Dours-Zimmermann, M.T. (2008) Extracellular Matrix of the Central Nervous System: From Neglect to Challenge. Histochemistry and Cell Biology, 130, 635-653. https://doi.org/10.1007/s00418-008-0485-9
|
[53]
|
Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185. https://doi.org/10.1124/pr.57.2.4
|
[54]
|
Nguyen, B., Bix, G. and Yao, Y. (2021) Basal Lamina Changes in Neurodegenerative Disorders. Molecular Neurodegeneration, 16, Article No. 81. https://doi.org/10.1186/s13024-021-00502-y
|
[55]
|
Dar, G.H., Badierah, R., Nathan, E.G., Bhat, M.A., Dar, A.H. and Redwan, E.M. (2022) Extracellular Vesicles: A New Paradigm in Understanding, Diagnosing and Treating Neurodegenerative Disease. Frontiers in Aging Neuroscience, 14, Article ID: 967231. https://doi.org/10.3389/fnagi.2022.967231
|
[56]
|
Younas, N., Fernandez Flores, L.C., Hopfner, F., Höglinger, G.U. and Zerr, I. (2022) A New Paradigm for Diagnosis of Neurodegenerative Diseases: Peripheral Exosomes of Brain Origin. Translational Neurodegeneration, 11, Article No. 28. https://doi.org/10.1186/s40035-022-00301-5
|
[57]
|
Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., et al. (2014) Identification of Preclinical Alzheimer’s Disease by a Profile of Pathogenic Proteins in Neurally Derived Blood Exosomes: A Case‐control Study. Alzheimer’s & Dementia, 11, 600-607.e1. https://doi.org/10.1016/j.jalz.2014.06.008
|
[58]
|
Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., et al. (2014) Plasma Exosomal Α-Synuclein Is Likely CNS-Derived and Increased in Parkinson’s Disease. Acta Neuropathologica, 128, 639-650. https://doi.org/10.1007/s00401-014-1314-y
|
[59]
|
Wang, S., Kojima, K., Mobley, J.A. and West, A.B. (2019) Proteomic Analysis of Urinary Extracellular Vesicles Reveal Biomarkers for Neurologic Disease. EBioMedicine, 45, 351-361. https://doi.org/10.1016/j.ebiom.2019.06.021
|
[60]
|
Fraser, K.B., Rawlins, A.B., Clark, R.G., Alcalay, R.N., Standaert, D.G., Liu, N., et al. (2016) Ser(p)‐1292 LRRK2 in Urinary Exosomes Is Elevated in Idiopathic Parkinson’s Disease. Movement Disorders, 31, 1543-1550. https://doi.org/10.1002/mds.26686
|
[61]
|
Jiang, C., Hopfner, F., Katsikoudi, A., Hein, R., Catli, C., Evetts, S., et al. (2020) Serum Neuronal Exosomes Predict and Differentiate Parkinson’s Disease from Atypical Parkinsonism. Journal of Neurology, Neurosurgery & Psychiatry, 91, 720-729. https://doi.org/10.1136/jnnp-2019-322588
|
[62]
|
Mattingly, J., Li, Y., Bihl, J.C. and Wang, J. (2021) The Promise of Exosome Applications in Treating Central Nervous System Diseases. CNS Neuroscience & Therapeutics, 27, 1437-1445. https://doi.org/10.1111/cns.13743
|
[63]
|
Yan, Y., Gao, Y., Kumar, G., Fang, Q., Yan, H., Zhang, N., et al. (2024) Exosomal MicroRNAs Modulate the Cognitive Function in Fasudil Treated APPswe/PSEN1dE9 Transgenic (APP/PS1) Mice Model of Alzheimer’s Disease. Metabolic Brain Disease, 39, 1335-1351. https://doi.org/10.1007/s11011-024-01395-8
|
[64]
|
Guilak, F., Nims, R.J., Dicks, A., Wu, C. and Meulenbelt, I. (2018) Osteoarthritis as a Disease of the Cartilage Pericellular Matrix. Matrix Biology, 71, 40-50. https://doi.org/10.1016/j.matbio.2018.05.008
|
[65]
|
Kato, T., Miyaki, S., Ishitobi, H., Nakamura, Y., Nakasa, T., Lotz, M.K., et al. (2014) Exosomes from Il-1β Stimulated Synovial Fibroblasts Induce Osteoarthritic Changes in Articular Chondrocytes. Arthritis Research & Therapy, 16, R163. https://doi.org/10.1186/ar4679
|
[66]
|
Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438. https://doi.org/10.1039/c7nr00352h
|
[67]
|
Shen, K., Duan, A., Cheng, J., Yuan, T., Zhou, J., Song, H., et al. (2022) Exosomes Derived from Hypoxia Preconditioned Mesenchymal Stem Cells Laden in a Silk Hydrogel Promote Cartilage Regeneration via the miR-205-5p/PTEN/AKT Pathway. Acta Biomaterialia, 143, 173-188. https://doi.org/10.1016/j.actbio.2022.02.026
|
[68]
|
Sang, X., Zhao, X., Yan, L., Jin, X., Wang, X., Wang, J., et al. (2022) Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Engineering and Regenerative Medicine, 19, 629-642. https://doi.org/10.1007/s13770-022-00437-5
|
[69]
|
Tao, S., Yuan, T., Zhang, Y., Yin, W., Guo, S. and Zhang, C. (2017) Exosomes Derived from miR-140-5p-Overexpressing Human Synovial Mesenchymal Stem Cells Enhance Cartilage Tissue Regeneration and Prevent Osteoarthritis of the Knee in a Rat Model. Theranostics, 7, 180-195. https://doi.org/10.7150/thno.17133
|
[70]
|
Wang, Z., Yan, K., Ge, G., Zhang, D., Bai, J., Guo, X., et al. (2020) Exosomes Derived from miR-155-5p-Overexpressing Synovial Mesenchymal Stem Cells Prevent Osteoarthritis via Enhancing Proliferation and Migration, Attenuating Apoptosis, and Modulating Extracellular Matrix Secretion in Chondrocytes. Cell Biology and Toxicology, 37, 85-96. https://doi.org/10.1007/s10565-020-09559-9
|
[71]
|
Mao, G., Hu, S., Zhang, Z., Wu, P., Zhao, X., Lin, R., et al. (2018) Exosomal miR-95-5p Regulates Chondrogenesis and Cartilage Degradation via Histone Deacetylase 2/8. Journal of Cellular and Molecular Medicine, 22, 5354-5366. https://doi.org/10.1111/jcmm.13808
|
[72]
|
Zhou, Q., Cai, Y. and Lin, X. (2020) The Dual Character of Exosomes in Osteoarthritis: Antagonists and Therapeutic Agents. Acta Biomaterialia, 105, 15-25. https://doi.org/10.1016/j.actbio.2020.01.040
|
[73]
|
Andrews, J.P., Marttala, J., Macarak, E., Rosenbloom, J. and Uitto, J. (2016) Keloids: The Paradigm of Skin Fibrosis—Pathomechanisms and Treatment. Matrix Biology, 51, 37-46. https://doi.org/10.1016/j.matbio.2016.01.013
|
[74]
|
Lee, H. and Jang, Y. (2018) Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. International Journal of Molecular Sciences, 19, Article No. 711. https://doi.org/10.3390/ijms19030711
|
[75]
|
Zhao, W., Zhang, R., Zang, C., Zhang, L., Zhao, R., Li, Q., et al. (2022) Exosome Derived from Mesenchymal Stem Cells Alleviates Pathological Scars by Inhibiting the Proliferation, Migration and Protein Expression of Fibroblasts via Delivering miR-138-5p to Target SIRT1. International Journal of Nanomedicine, 17, 4023-4038. https://doi.org/10.2147/ijn.s377317
|
[76]
|
Li, Y., Zhang, J., Shi, J., Liu, K., Wang, X., Jia, Y., et al. (2021) Exosomes Derived from Human Adipose Mesenchymal Stem Cells Attenuate Hypertrophic Scar Fibrosis by miR-192-5p/IL-17RA/Smad Axis. Stem Cell Research & Therapy, 12, Article No. 221. https://doi.org/10.1186/s13287-021-02290-0
|
[77]
|
Li, Q., Fang, L., Chen, J., Zhou, S., Zhou, K., Cheng, F., et al. (2021) Exosomal MicroRNA-21 Promotes Keloid Fibroblast Proliferation and Collagen Production by Inhibiting Smad7. Journal of Burn Care & Research, 42, 1266-1274. https://doi.org/10.1093/jbcr/irab116
|
[78]
|
Shen, Z., Shao, J., Sun, J. and Xu, J. (2022) Exosomes Released by Melanocytes Modulate Fibroblasts to Promote Keloid Formation: A Pilot Study. Journal of Zhejiang University-SCIENCE B, 23, 699-704. https://doi.org/10.1631/jzus.b2200036
|
[79]
|
Yuan, R., Dai, X., Li, Y., Li, C. and Liu, L. (2021) Exosomes from miR-29a-Modified Adipose-Derived Mesenchymal Stem Cells Reduce Excessive Scar Formation by Inhibiting TGF-β2/Smad3 Signaling. Molecular Medicine Reports, 24, Article No. 758. https://doi.org/10.3892/mmr.2021.12398
|
[80]
|
Kim, S.Y. and Nair, M.G. (2019) Macrophages in Wound Healing: Activation and Plasticity. Immunology & Cell Biology, 97, 258-267. https://doi.org/10.1111/imcb.12236
|
[81]
|
Louiselle, A.E., Niemiec, S.M., Zgheib, C. and Liechty, K.W. (2021) Macrophage Polarization and Diabetic Wound Healing. Translational Research, 236, 109-116. https://doi.org/10.1016/j.trsl.2021.05.006
|
[82]
|
Zhu, Z., Chen, B., Peng, L., Gao, S., Guo, J. and Zhu, X. (2021) Blockade of LINC01605-Enriched Exosome Generation in M2 Macrophages Impairs M2 Macrophage-Induced Proliferation, Migration, and Invasion of Human Dermal Fibroblasts. International Journal of Immunopathology and Pharmacology, 35, No. 13. https://doi.org/10.1177/20587384211016724
|
[83]
|
Chen, J., Zhou, R., Liang, Y., Fu, X., Wang, D. and Wang, C. (2019) Blockade of lncRNA-ASLNCS5088-Enriched Exosome Generation in M2 Macrophages by GW4869 Dampens the Effect of M2 Macrophages on Orchestrating Fibroblast Activation. The FASEB Journal, 33, 12200-12212. https://doi.org/10.1096/fj.201901610
|
[84]
|
Shin, J., Kwon, S., Choi, J., Na, J., Huh, C., Choi, H., et al. (2019) Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20, Article No. 2126. https://doi.org/10.3390/ijms20092126
|
[85]
|
Lee, D.H., Oh, J. and Chung, J.H. (2016) Glycosaminoglycan and Proteoglycan in Skin Aging. Journal of Dermatological Science, 83, 174-181. https://doi.org/10.1016/j.jdermsci.2016.05.016
|
[86]
|
Proffer, S.L., Paradise, C.R., DeGrazia, E., Halaas, Y., Durairaj, K.K., Somenek, M., et al. (2022) Efficacy and Tolerability of Topical Platelet Exosomes for Skin Rejuvenation: Six-Week Results. Aesthetic Surgery Journal, 42, 1185-1193. https://doi.org/10.1093/asj/sjac149
|
[87]
|
Liu, S., Meng, M., Han, S., Gao, H., Zhao, Y., Yang, Y., et al. (2021) Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Ameliorate Hacat Cell Photo-Aging. Rejuvenation Research, 24, 283-293. https://doi.org/10.1089/rej.2020.2313
|
[88]
|
Wu, P., Zhang, B., Han, X., Sun, Y., Sun, Z., Li, L., et al. (2021) Hucmsc Exosome-Delivered 14-3-3ζ Alleviates Ultraviolet Radiation-Induced Photodamage via SIRT1 Pathway Modulation. Aging, 13, 11542-11563. https://doi.org/10.18632/aging.202851
|
[89]
|
Oh, M., Lee, J., Kim, Y.J., Rhee, W.J. and Park, J.H. (2018) Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. International Journal of Molecular Sciences, 19, Article No. 1715. https://doi.org/10.3390/ijms19061715
|
[90]
|
Gao, W., Wang, X., Si, Y., Pang, J., Liu, H., Li, S., et al. (2021) Exosome Derived from ADSCs Attenuates Ultraviolet B‐Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 97, 795-804. https://doi.org/10.1111/php.13370
|
[91]
|
Shen, X., Song, S., Chen, N., Liao, J. and Zeng, L. (2021) Stem Cell-Derived Exosomes: A Supernova in Cosmetic Dermatology. Journal of Cosmetic Dermatology, 20, 3812-3817. https://doi.org/10.1111/jocd.14438
|