|
[1]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Livshits, M.A., Khomyakova, E., Evtushenko, E.G., Lazarev, V.N., Kulemin, N.A., Semina, S.E., et al. (2015) Isolation of Exosomes by Differential Centrifugation: Theoretical Analysis of a Commonly Used Protocol. Scientific Reports, 5, Article No. 17319. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ford, T., Graham, J. and Rickwood, D. (1994) Iodixanol: A Nonionic Iso-Osmotic Centrifugation Medium for the Formation of Self-Generated Gradients. Analytical Biochemistry, 220, 360-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Rider, M.A., Hurwitz, S.N. and Meckes, D.G. (2016) ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports, 6, Article No. 23978. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Böing, A.N., van der Pol, E., Grootemaat, A.E., Coumans, F.A.W., Sturk, A. and Nieuwland, R. (2014) Single‐Step Isolation of Extracellular Vesicles by Size‐Exclusion Chromatography. Journal of Extracellular Vesicles, 3, Article No. 23430. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zarovni, N., Corrado, A., Guazzi, P., Zocco, D., Lari, E., Radano, G., et al. (2015) Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods, 87, 46-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bülow, R.D. and Boor, P. (2019) Extracellular Matrix in Kidney Fibrosis: More than Just a Scaffold. Journal of Histochemistry & Cytochemistry, 67, 643-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lv, L., Cao, Y., Ni, H., Xu, M., Liu, D., Liu, H., et al. (2013) MicroRNA-29c in Urinary Exosome/Microvesicle as a Biomarker of Renal Fibrosis. American Journal of Physiology-Renal Physiology, 305, F1220-F1227. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chun-yan, L., Zi-yi, Z., Tian-lin, Y., Yi-li, W., Bao, L., Jiao, L., et al. (2018) Liquid Biopsy Biomarkers of Renal Interstitial Fibrosis Based on Urinary Exosome. Experimental and Molecular Pathology, 105, 223-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, B., Yao, K., Huuskes, B.M., Shen, H., Zhuang, J., Godson, C., et al. (2016) Mesenchymal Stem Cells Deliver Exogenous MicroRNA-Let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 24, 1290-1301. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, S., Li, W., Yu, W., Rao, T., Li, H., Ruan, Y., et al. (2021) Exosomal miR-21 from Tubular Cells Contributes to Renal Fibrosis by Activating Fibroblasts via Targeting PTEN in Obstructed Kidneys. Theranostics, 11, 8660-8673. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, A., Wang, H., Wang, B., Yuan, Y., Klein, J.D. and Wang, X.H. (2019) Exogenous Mir‐26a Suppresses Muscle Wasting and Renal Fibrosis in Obstructive Kidney Disease. The FASEB Journal, 33, 13590-13601. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Burgess, J.K., Mauad, T., Tjin, G., Karlsson, J.C. and Westergren‐Thorsson, G. (2016) The Extracellular Matrix—The Under‐Recognized Element in Lung Disease? The Journal of Pathology, 240, 397-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kaur, G., Maremanda, K.P., Campos, M., Chand, H.S., Li, F., Hirani, N., et al. (2021) Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. International Journal of Molecular Sciences, 22, Article No. 11830. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Njock, M., Guiot, J., Henket, M.A., Nivelles, O., Thiry, M., Dequiedt, F., et al. (2018) Sputum Exosomes: Promising Biomarkers for Idiopathic Pulmonary Fibrosis. Thorax, 74, 309-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lacedonia, D., Scioscia, G., Soccio, P., Conese, M., Catucci, L., Palladino, G.P., et al. (2021) Downregulation of Exosomal Let-7d and miR-16 in Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 21, Article No. 188. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xie, H., Gao, Y., Zhang, Y., Jia, M., Peng, F., Meng, Q., et al. (2020) Low Let‐7d Exosomes from Pulmonary Vascular Endothelial Cells Drive Lung Pericyte Fibrosis through the TGFβRI/FoxM1/Smad/β-Catenin Pathway. Journal of Cellular and Molecular Medicine, 24, 13913-13926. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, Q., Ban, J., Chang, S., Qu, H., Chen, J. and Liu, F. (2023) The Aggravate Role of Exosomal circRNA11: 120406118|12040782 on Macrophage Pyroptosis through miR-30b-5p/NLRP3 Axis in Silica-Induced Lung Fibrosis. International Immunopharmacology, 114, Article ID: 109476. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, L., Yang, Y., Yue, R., Peng, X., Yu, H. and Huang, X. (2022) Exosomes Derived from Hypoxia-Induced Alveolar Epithelial Cells Stimulate Interstitial Pulmonary Fibrosis through a HOTAIRM1-Dependent Mechanism. Laboratory Investigation, 102, 935-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhu, Z., Lian, X., Su, X., Wu, W., Zeng, Y. and Chen, X. (2022) Exosomes Derived from Adipose-Derived Stem Cells Alleviate Cigarette Smoke-Induced Lung Inflammation and Injury by Inhibiting Alveolar Macrophages Pyroptosis. Respiratory Research, 23, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zou, Y., Bhat, O.M., Yuan, X., Li, G., Huang, D., Guo, Y., et al. (2021) Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture. Journal of Inflammation Research, 14, 3501-3521. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Makiguchi, T., Yamada, M., Yoshioka, Y., Sugiura, H., Koarai, A., Chiba, S., et al. (2016) Serum Extracellular Vesicular miR-21-5p Is a Predictor of the Prognosis in Idiopathic Pulmonary Fibrosis. Respiratory Research, 17, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Myllärniemi, M. and Kaarteenaho, R. (2015) Pharmacological Treatment of Idiopathic Pulmonary Fibrosis—Preclinical and Clinical Studies of Pirfenidone, Nintedanib, and N-Acetylcysteine. European Clinical Respiratory Journal, 2, Article No. 26385. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Guiot, J., Cambier, M., Boeckx, A., Henket, M., Nivelles, O., Gester, F., et al. (2020) Macrophage-Derived Exosomes Attenuate Fibrosis in Airway Epithelial Cells through Delivery of Antifibrotic miR-142-3p. Thorax, 75, 870-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., et al. (2019) Mesenchymal Stromal Cell Exosomes Prevent and Revert Experimental Pulmonary Fibrosis through Modulation of Monocyte Phenotypes. JCI Insight, 4, e128060. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wan, X., Chen, S., Fang, Y., Zuo, W., Cui, J. and Xie, S. (2020) Mesenchymal Stem Cell‐Derived Extracellular Vesicles Suppress the Fibroblast Proliferation by Downregulating FZD6 Expression in Fibroblasts via micrRNA-29b-3p in Idiopathic Pulmonary Fibrosis. Journal of Cellular Physiology, 235, 8613-8625. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dinh, P.C., Paudel, D., Brochu, H., Popowski, K.D., Gracieux, M.C., Cores, J., et al. (2020) Inhalation of Lung Spheroid Cell Secretome and Exosomes Promotes Lung Repair in Pulmonary Fibrosis. Nature Communications, 11, Article No. 1064. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mortensen, J., Lindholm, M., Langholm, L., Kjeldsen, J., Bay-Jensen, A., Karsdal, M., et al. (2019) The Intestinal Tissue Homeostasis—The Role of Extracellular Matrix Remodeling in Inflammatory Bowel Disease. Expert Review of Gastroenterology & Hepatology, 13, 977-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Domislovic, V., Høg Mortensen, J., Lindholm, M., Kaarsdal, M.A., Brinar, M., Barisic, A., et al. (2022) Inflammatory Biomarkers of Extracellular Matrix Remodeling and Disease Activity in Crohn’s Disease and Ulcerative Colitis. Journal of Clinical Medicine, 11, Article No. 5907. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lawrance, I.C., Rogler, G., Bamias, G., et al. (2017) Cellular and Molecular Mediators of Intestinal Fibrosis. Journal of Crohn’s & Colitis, 11, 1491-1503.
|
|
[31]
|
Rieder, F., Latella, G., Magro, F., Yuksel, E.S., Higgins, P.D.R., Di Sabatino, A., et al. (2016) European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. Journal of Crohn’s and Colitis, 10, 873-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Navaneethan, U. and Lourdusamy, D. (2022) Endoscopic Stricturotomy and Strictureplasty. Gastrointestinal Endoscopy Clinics of North America, 32, 687-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., et al. (2017) Salivary Exosomal PSMA7: A Promising Biomarker of Inflammatory Bowel Disease. Protein & Cell, 8, 686-695. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shao, J., Jin, Y., Shao, C., Fan, H., Wang, X. and Yang, G. (2021) Serum Exosomal Pregnancy Zone Protein as a Promising Biomarker in Inflammatory Bowel Disease. Cellular & Molecular Biology Letters, 26, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gómez-Ferrer, M., Amaro-Prellezo, E., Dorronsoro, A., Sánchez-Sánchez, R., Vicente, Á., Cosín-Roger, J., et al. (2021) HIF-Overexpression and Pro-Inflammatory Priming in Human Mesenchymal Stromal Cells Improves the Healing Properties of Extracellular Vesicles in Experimental Crohn’s Disease. International Journal of Molecular Sciences, 22, Article No. 11269. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhu, Z., Liao, L., Gao, M. and Liu, Q. (2023) Garlic-derived Exosome-Like Nanovesicles Alleviate Dextran Sulphate Sodium-Induced Mouse Colitis via the TLR4/MyD88/NF-κB Pathway and Gut Microbiota Modulation. Food & Function, 14, 7520-7534. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yan, Y., Li, K., Jiang, J., Jiang, L., Ma, X., Ai, F., et al. (2023) Perinatal Tissue-Derived Exosomes Ameliorate Colitis in Mice by Regulating the Foxp3+ Treg Cells and Gut Microbiota. Stem Cell Research & Therapy, 14, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Heidari, N., Abbasi-Kenarsari, H., Namaki, S., Baghaei, K., Zali, M.R., Mirsanei, Z., et al. (2022) Regulation of the Th17/Treg Balance by Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protects against Acute Experimental Colitis. Experimental Cell Research, 419, Article ID: 113296. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tian, J., Zhu, Q., Zhang, Y., Bian, Q., Hong, Y., Shen, Z., et al. (2020) Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 11, Article ID: 598322. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, Y., Chen, J., Fu, H., Kuang, S., He, F., Zhang, M., et al. (2021) Exosomes Derived from 3D-Cultured MSCs Improve Therapeutic Effects in Periodontitis and Experimental Colitis and Restore the Th17 Cell/Treg Balance in Inflamed Periodontium. International Journal of Oral Science, 13, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sarohi, V., Chakraborty, S. and Basak, T. (2022) Exploring the Cardiac ECM during Fibrosis: A New Era with Next-Gen Proteomics. Frontiers in Molecular Biosciences, 9, Article ID: 1030226. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Dziki, J.L. and Badylak, S.F. (2018) Extracellular Matrix for Myocardial Repair. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, Z., Hu, S. and Cheng, K. (2019) Chemical Engineering of Cell Therapy for Heart Diseases. Accounts of Chemical Research, 52, 1687-1696. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ke, X., Yang, D., Liang, J., Wang, X., Wu, S., Wang, X., et al. (2017) Human Endothelial Progenitor Cell-Derived Exosomes Increase Proliferation and Angiogenesis in Cardiac Fibroblasts by Promoting the Mesenchymal-Endothelial Transition and Reducing High Mobility Group Box 1 Protein B1 Expression. DNA and Cell Biology, 36, 1018-1028. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Hu, H., Jiang, C., Li, R., et al. (2019) Comparison of Endothelial Cell-and Endothelial Progenitor Cell-Derived Exosomes in Promoting Vascular Endothelial Cell Repair. International Journal of Clinical and Experimental Pathology, 12, 2793-2800.
|
|
[46]
|
Yue, Y., Wang, C., Benedict, C., Huang, G., Truongcao, M., Roy, R., et al. (2020) Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circulation Research, 126, 315-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yuan, J., Liu, H., Gao, W., Zhang, L., Ye, Y., Yuan, L., et al. (2018) MicroRNA-378 Suppresses Myocardial Fibrosis through a Paracrine Mechanism at the Early Stage of Cardiac Hypertrophy Following Mechanical Stress. Theranostics, 8, 2565-2582. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kuo, H., Hsieh, C., Wang, S., Chang, C., Hung, C., Kuo, P., et al. (2019) Simvastatin Attenuates Cardiac Fibrosis via Regulation of Cardiomyocyte-Derived Exosome Secretion. Journal of Clinical Medicine, 8, Article No. 794. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bai, S., Yin, Q., Dong, T., Dai, F., Qin, Y., Ye, L., et al. (2020) Endothelial Progenitor Cell-Derived Exosomes Ameliorate Endothelial Dysfunction in a Mouse Model of Diabetes. Biomedicine & Pharmacotherapy, 131, Article ID: 110756. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A. and Tyagi, S.C. (2015) Cardiosome Mediated Regulation of MMP9 in Diabetic Heart: Role of mir29b and mir455 in Exercise. Journal of Cellular and Molecular Medicine, 19, 2153-2161. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Govindappa, P.K., Patil, M., Garikipati, V.N.S., Verma, S.K., Saheera, S., Narasimhan, G., et al. (2019) Targeting Exosome‐Associated Human Antigen R Attenuates Fibrosis and Inflammation in Diabetic Heart. The FASEB Journal, 34, 2238-2251. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zimmermann, D.R. and Dours-Zimmermann, M.T. (2008) Extracellular Matrix of the Central Nervous System: From Neglect to Challenge. Histochemistry and Cell Biology, 130, 635-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Nguyen, B., Bix, G. and Yao, Y. (2021) Basal Lamina Changes in Neurodegenerative Disorders. Molecular Neurodegeneration, 16, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Dar, G.H., Badierah, R., Nathan, E.G., Bhat, M.A., Dar, A.H. and Redwan, E.M. (2022) Extracellular Vesicles: A New Paradigm in Understanding, Diagnosing and Treating Neurodegenerative Disease. Frontiers in Aging Neuroscience, 14, Article ID: 967231. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Younas, N., Fernandez Flores, L.C., Hopfner, F., Höglinger, G.U. and Zerr, I. (2022) A New Paradigm for Diagnosis of Neurodegenerative Diseases: Peripheral Exosomes of Brain Origin. Translational Neurodegeneration, 11, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., et al. (2014) Identification of Preclinical Alzheimer’s Disease by a Profile of Pathogenic Proteins in Neurally Derived Blood Exosomes: A Case‐control Study. Alzheimer’s & Dementia, 11, 600-607.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., et al. (2014) Plasma Exosomal Α-Synuclein Is Likely CNS-Derived and Increased in Parkinson’s Disease. Acta Neuropathologica, 128, 639-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wang, S., Kojima, K., Mobley, J.A. and West, A.B. (2019) Proteomic Analysis of Urinary Extracellular Vesicles Reveal Biomarkers for Neurologic Disease. EBioMedicine, 45, 351-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Fraser, K.B., Rawlins, A.B., Clark, R.G., Alcalay, R.N., Standaert, D.G., Liu, N., et al. (2016) Ser(p)‐1292 LRRK2 in Urinary Exosomes Is Elevated in Idiopathic Parkinson’s Disease. Movement Disorders, 31, 1543-1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Jiang, C., Hopfner, F., Katsikoudi, A., Hein, R., Catli, C., Evetts, S., et al. (2020) Serum Neuronal Exosomes Predict and Differentiate Parkinson’s Disease from Atypical Parkinsonism. Journal of Neurology, Neurosurgery & Psychiatry, 91, 720-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Mattingly, J., Li, Y., Bihl, J.C. and Wang, J. (2021) The Promise of Exosome Applications in Treating Central Nervous System Diseases. CNS Neuroscience & Therapeutics, 27, 1437-1445. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yan, Y., Gao, Y., Kumar, G., Fang, Q., Yan, H., Zhang, N., et al. (2024) Exosomal MicroRNAs Modulate the Cognitive Function in Fasudil Treated APPswe/PSEN1dE9 Transgenic (APP/PS1) Mice Model of Alzheimer’s Disease. Metabolic Brain Disease, 39, 1335-1351. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Guilak, F., Nims, R.J., Dicks, A., Wu, C. and Meulenbelt, I. (2018) Osteoarthritis as a Disease of the Cartilage Pericellular Matrix. Matrix Biology, 71, 40-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Kato, T., Miyaki, S., Ishitobi, H., Nakamura, Y., Nakasa, T., Lotz, M.K., et al. (2014) Exosomes from Il-1β Stimulated Synovial Fibroblasts Induce Osteoarthritic Changes in Articular Chondrocytes. Arthritis Research & Therapy, 16, R163. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Shen, K., Duan, A., Cheng, J., Yuan, T., Zhou, J., Song, H., et al. (2022) Exosomes Derived from Hypoxia Preconditioned Mesenchymal Stem Cells Laden in a Silk Hydrogel Promote Cartilage Regeneration via the miR-205-5p/PTEN/AKT Pathway. Acta Biomaterialia, 143, 173-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sang, X., Zhao, X., Yan, L., Jin, X., Wang, X., Wang, J., et al. (2022) Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Engineering and Regenerative Medicine, 19, 629-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Tao, S., Yuan, T., Zhang, Y., Yin, W., Guo, S. and Zhang, C. (2017) Exosomes Derived from miR-140-5p-Overexpressing Human Synovial Mesenchymal Stem Cells Enhance Cartilage Tissue Regeneration and Prevent Osteoarthritis of the Knee in a Rat Model. Theranostics, 7, 180-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Wang, Z., Yan, K., Ge, G., Zhang, D., Bai, J., Guo, X., et al. (2020) Exosomes Derived from miR-155-5p-Overexpressing Synovial Mesenchymal Stem Cells Prevent Osteoarthritis via Enhancing Proliferation and Migration, Attenuating Apoptosis, and Modulating Extracellular Matrix Secretion in Chondrocytes. Cell Biology and Toxicology, 37, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Mao, G., Hu, S., Zhang, Z., Wu, P., Zhao, X., Lin, R., et al. (2018) Exosomal miR-95-5p Regulates Chondrogenesis and Cartilage Degradation via Histone Deacetylase 2/8. Journal of Cellular and Molecular Medicine, 22, 5354-5366. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Zhou, Q., Cai, Y. and Lin, X. (2020) The Dual Character of Exosomes in Osteoarthritis: Antagonists and Therapeutic Agents. Acta Biomaterialia, 105, 15-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Andrews, J.P., Marttala, J., Macarak, E., Rosenbloom, J. and Uitto, J. (2016) Keloids: The Paradigm of Skin Fibrosis—Pathomechanisms and Treatment. Matrix Biology, 51, 37-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Lee, H. and Jang, Y. (2018) Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. International Journal of Molecular Sciences, 19, Article No. 711. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Zhao, W., Zhang, R., Zang, C., Zhang, L., Zhao, R., Li, Q., et al. (2022) Exosome Derived from Mesenchymal Stem Cells Alleviates Pathological Scars by Inhibiting the Proliferation, Migration and Protein Expression of Fibroblasts via Delivering miR-138-5p to Target SIRT1. International Journal of Nanomedicine, 17, 4023-4038. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Li, Y., Zhang, J., Shi, J., Liu, K., Wang, X., Jia, Y., et al. (2021) Exosomes Derived from Human Adipose Mesenchymal Stem Cells Attenuate Hypertrophic Scar Fibrosis by miR-192-5p/IL-17RA/Smad Axis. Stem Cell Research & Therapy, 12, Article No. 221. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Li, Q., Fang, L., Chen, J., Zhou, S., Zhou, K., Cheng, F., et al. (2021) Exosomal MicroRNA-21 Promotes Keloid Fibroblast Proliferation and Collagen Production by Inhibiting Smad7. Journal of Burn Care & Research, 42, 1266-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Shen, Z., Shao, J., Sun, J. and Xu, J. (2022) Exosomes Released by Melanocytes Modulate Fibroblasts to Promote Keloid Formation: A Pilot Study. Journal of Zhejiang University-SCIENCE B, 23, 699-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Yuan, R., Dai, X., Li, Y., Li, C. and Liu, L. (2021) Exosomes from miR-29a-Modified Adipose-Derived Mesenchymal Stem Cells Reduce Excessive Scar Formation by Inhibiting TGF-β2/Smad3 Signaling. Molecular Medicine Reports, 24, Article No. 758. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Kim, S.Y. and Nair, M.G. (2019) Macrophages in Wound Healing: Activation and Plasticity. Immunology & Cell Biology, 97, 258-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Louiselle, A.E., Niemiec, S.M., Zgheib, C. and Liechty, K.W. (2021) Macrophage Polarization and Diabetic Wound Healing. Translational Research, 236, 109-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Zhu, Z., Chen, B., Peng, L., Gao, S., Guo, J. and Zhu, X. (2021) Blockade of LINC01605-Enriched Exosome Generation in M2 Macrophages Impairs M2 Macrophage-Induced Proliferation, Migration, and Invasion of Human Dermal Fibroblasts. International Journal of Immunopathology and Pharmacology, 35, No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Chen, J., Zhou, R., Liang, Y., Fu, X., Wang, D. and Wang, C. (2019) Blockade of lncRNA-ASLNCS5088-Enriched Exosome Generation in M2 Macrophages by GW4869 Dampens the Effect of M2 Macrophages on Orchestrating Fibroblast Activation. The FASEB Journal, 33, 12200-12212. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Shin, J., Kwon, S., Choi, J., Na, J., Huh, C., Choi, H., et al. (2019) Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20, Article No. 2126. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Lee, D.H., Oh, J. and Chung, J.H. (2016) Glycosaminoglycan and Proteoglycan in Skin Aging. Journal of Dermatological Science, 83, 174-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Proffer, S.L., Paradise, C.R., DeGrazia, E., Halaas, Y., Durairaj, K.K., Somenek, M., et al. (2022) Efficacy and Tolerability of Topical Platelet Exosomes for Skin Rejuvenation: Six-Week Results. Aesthetic Surgery Journal, 42, 1185-1193. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Liu, S., Meng, M., Han, S., Gao, H., Zhao, Y., Yang, Y., et al. (2021) Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Ameliorate Hacat Cell Photo-Aging. Rejuvenation Research, 24, 283-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Wu, P., Zhang, B., Han, X., Sun, Y., Sun, Z., Li, L., et al. (2021) Hucmsc Exosome-Delivered 14-3-3ζ Alleviates Ultraviolet Radiation-Induced Photodamage via SIRT1 Pathway Modulation. Aging, 13, 11542-11563. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Oh, M., Lee, J., Kim, Y.J., Rhee, W.J. and Park, J.H. (2018) Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. International Journal of Molecular Sciences, 19, Article No. 1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Gao, W., Wang, X., Si, Y., Pang, J., Liu, H., Li, S., et al. (2021) Exosome Derived from ADSCs Attenuates Ultraviolet B‐Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 97, 795-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Shen, X., Song, S., Chen, N., Liao, J. and Zeng, L. (2021) Stem Cell-Derived Exosomes: A Supernova in Cosmetic Dermatology. Journal of Cosmetic Dermatology, 20, 3812-3817. [Google Scholar] [CrossRef] [PubMed]
|