[1]
|
国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777.
|
[2]
|
Chen, X., Cui, Y. and Zou, L. (2024) Treatment Advances in High-Grade Gliomas. Frontiers in Oncology, 14, Article ID: 1287725. https://doi.org/10.3389/fonc.2024.1287725
|
[3]
|
Liu, S., Zhao, Q., Shi, W., Zheng, Z., Liu, Z., Meng, L., et al. (2021) Advances in Radiotherapy and Comprehensive Treatment of High-Grade Glioma: Immunotherapy and Tumor-Treating Fields. Journal of Cancer, 12, 1094-1104. https://doi.org/10.7150/jca.51107
|
[4]
|
Fisher, J.P. and Adamson, D.C. (2021) Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines, 9, Article No. 324. https://doi.org/10.3390/biomedicines9030324
|
[5]
|
Eatz, T.A., Eichberg, D.G., Lu, V.M., Di, L., Komotar, R.J. and Ivan, M.E. (2022) Intraoperative 5-ALA Fluorescence-Guided Resection of High-Grade Glioma Leads to Greater Extent of Resection with Better Outcomes: A Systematic Review. Journal of Neuro-Oncology, 156, 233-256. https://doi.org/10.1007/s11060-021-03901-9
|
[6]
|
Golub, D., Hyde, J., Dogra, S., Nicholson, J., Kirkwood, K.A., Gohel, P., et al. (2021) Intraoperative MRI versus 5-ALA in High-Grade Glioma Resection: A Network Meta-Analysis. Journal of Neurosurgery, 134, 484-498. https://doi.org/10.3171/2019.12.jns191203
|
[7]
|
Karschnia, P., Young, J.S., Dono, A., et al. (2023) Prognostic Validation of a New Classification System for Extent of Resection in Glioblastoma: A Report of the RANO Resect Group. Neuro-Oncology, 25, 940-954.
|
[8]
|
Walshaw, R.C., Hoskin, P.J. and Choudhury, A. (2021) Can Hypofractionation and Immune Modulation Coexist? International Journal of Radiation Oncology, Biology, Physics, 110, 742-744.
|
[9]
|
Bleehen, N. and Stenning, S. (1991) A Medical Research Council Trial of Two Radiotherapy Doses in the Treatment of Grades 3 and 4 Astrocytoma. British Journal of Cancer, 64, 769-774. https://doi.org/10.1038/bjc.1991.396
|
[10]
|
Nemati, R., Shooli, H., Rekabpour, S.J., Ahmadzadehfar, H., Jafari, E., Ravanbod, M.R., et al. (2021) Feasibility and Therapeutic Potential of Peptide Receptor Radionuclide Therapy for High-Grade Gliomas. Clinical Nuclear Medicine, 46, 389-395. https://doi.org/10.1097/rlu.0000000000003599
|
[11]
|
Wait, S.D., Prabhu, R.S., Burri, S.H., Atkins, T.G. and Asher, A.L. (2015) Polymeric Drug Delivery for the Treatment of Glioblastoma. Neuro-Oncology, 17, ii9-ii23. https://doi.org/10.1093/neuonc/nou360
|
[12]
|
Jezierzański, M., Nafalska, N., Stopyra, M., Furgoł, T., Miciak, M., Kabut, J., et al. (2024) Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme—A Literature Review and Clinical Outcomes. Current Oncology, 31, 3994-4002. https://doi.org/10.3390/curroncol31070296
|
[13]
|
Stefan, D., Lesueur, P., Lequesne, J., et al. (2025) Olaparib, Temozolomide and Concomitant Radiotherapy for Partially or Biopsy-Only Glioblastoma First-Line Treatment: Results from the OLA-TMZ-RTE-01 Phase 1 Study. Clinical Cancer Research.
|
[14]
|
Bai, P., Fan, T., Wang, X., Zhao, L., Zhong, R. and Sun, G. (2023) Modulating MGMT Expression through Interfering with Cell Signaling Pathways. Biochemical Pharmacology, 215, Article ID: 115726. https://doi.org/10.1016/j.bcp.2023.115726
|
[15]
|
张伟, 王政. 中国抗癌协会脑胶质瘤整合诊治指南(精简版) [J]. 中国肿瘤临床, 2022, 49(16): 811-818.
|
[16]
|
初曙光, 郭琤琤, 赫振炎, 等. 胶质瘤化疗中国专家共识[J]. 中国神经精神疾病杂志, 2024, 50(8): 449-462.
|
[17]
|
Bao, Z., Li, S., Wang, L., Zhang, B., Zhang, P., Shi, H., et al. (2023) PTPRZ1-METFUsion GENe (ZM-FUGEN) Trial: Study Protocol for a Multicentric, Randomized, Open-Label Phase II/III Trial. Chinese Neurosurgical Journal, 9, Article No. 21. https://doi.org/10.1186/s41016-023-00329-0
|
[18]
|
Huang, R., Liu, Y., Wang, K., Wang, Z., Zhang, C., Zhang, W., et al. (2021) High‐Sensitive Clinical Diagnostic Method for PTPRZ1‐MET and the Characteristic Protein Structure Contributing to Ligand‐Independent MET Activation. CNS Neuroscience & Therapeutics, 27, 617-628. https://doi.org/10.1111/cns.13627
|
[19]
|
McBain, C., Lawrie, T.A., Rogozińska, E., Kernohan, A., Robinson, T. and Jefferies, S. (2021) Treatment Options for Progression or Recurrence of Glioblastoma: A Network Meta-Analysis. Cochrane Database of Systematic Reviews, 5, CD013579. https://doi.org/10.1002/14651858.cd013579.pub2
|
[20]
|
颜成睿, 张梦雨, 马文斌. 应用贝伐珠单抗治疗高级别胶质瘤的研究进展[J]. 中华神经外科杂志, 2016, 32(1): 88-90.
|
[21]
|
Lim, S., Clarke, N.H., Maloney, S.L., Sener, U.T., Caron, S.J., Kizilbash, S.H., et al. (2025) Bevacizumab Exerts Dose-Dependent Risk for Intracranial Hemorrhage in Patients with Malignant Gliomas. Journal of Neuro-Oncology, 172, 273-280. https://doi.org/10.1007/s11060-024-04916-8
|
[22]
|
王镔, 赵刚. 脑胶质瘤免疫治疗的进展与展望[J]. 中国微侵袭神经外科杂志, 2018, 23(11): 523-526.
|
[23]
|
Siragusa, G., Tomasello, L., Giordano, C. and Pizzolanti, G. (2024) Survivin (BIRC5): Implications in Cancer Therapy. Life Sciences, 350, Article ID: 122788. https://doi.org/10.1016/j.lfs.2024.122788
|
[24]
|
Fenstermaker, R.A., Ciesielski, M.J., Qiu, J., Yang, N., Frank, C.L., Lee, K.P., et al. (2016) Clinical Study of a Survivin Long Peptide Vaccine (SurVaxM) in Patients with Recurrent Malignant Glioma. Cancer Immunology, Immunotherapy, 65, 1339-1352. https://doi.org/10.1007/s00262-016-1890-x
|
[25]
|
Ahluwalia, M.S., Reardon, D.A., Abad, A.P., Curry, W.T., Wong, E.T., Figel, S.A., et al. (2023) Phase IIa Study of SurVaxM plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. Journal of Clinical Oncology, 41, 1453-1465. https://doi.org/10.1200/jco.22.00996
|
[26]
|
Hotchkiss, K.M., Batich, K.A., Mohan, A., Rahman, R., Piantadosi, S. and Khasraw, M. (2023) Dendritic Cell Vaccine Trials in Gliomas: Untangling the Lines. Neuro-Oncology, 25, 1752-1762. https://doi.org/10.1093/neuonc/noad088
|
[27]
|
Batich, K.A., Reap, E.A., Archer, G.E., Sanchez-Perez, L., Nair, S.K., Schmittling, R.J., et al. (2017) Long-Term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clinical Cancer Research, 23, 1898-1909. https://doi.org/10.1158/1078-0432.ccr-16-2057
|
[28]
|
Liau, L.M., Ashkan, K., Brem, S., et al. (2023) Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination with Extension of Survival among Patients with Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncology, 9, 112-121.
|
[29]
|
Macedo, N., Miller, D.M., Haq, R. and Kaufman, H.L. (2020) Clinical Landscape of Oncolytic Virus Research in 2020. Journal for ImmunoTherapy of Cancer, 8, e001486. https://doi.org/10.1136/jitc-2020-001486
|
[30]
|
Cheng, G., Dong, H., Yang, C., Liu, Y., Wu, Y., Zhu, L., et al. (2021) A Review on the Advances and Challenges of Immunotherapy for Head and Neck Cancer. Cancer Cell International, 21, Article No. 406. https://doi.org/10.1186/s12935-021-02024-5
|
[31]
|
Ning, W., Qian, X., Dunmall, L.C., Liu, F., Guo, Y., Li, S., et al. (2024) Non-Secreting IL12 Expressing Oncolytic Adenovirus Ad-TD-nsIL12 in Recurrent High-Grade Glioma: A Phase I Trial. Nature Communications, 15, Article No. 9299. https://doi.org/10.1038/s41467-024-53041-7
|
[32]
|
Zubair, A. and De Jesus, O. (2023) Ommaya Reservoir. StatPearls Publishing.
|
[33]
|
Tudor, T., Binder, Z.A. and O’Rourke, D.M. (2021) CAR T Cells. Neurosurgery Clinics of North America, 32, 249-263. https://doi.org/10.1016/j.nec.2020.12.005
|
[34]
|
Zhang, X., Zhu, L., Zhang, H., Chen, S. and Xiao, Y. (2022) CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Frontiers in Immunology, 13, Article ID: 927153. https://doi.org/10.3389/fimmu.2022.927153
|
[35]
|
Brown, C.E., Hibbard, J.C., Alizadeh, D., et al. (2024) Locoregional Delivery of IL-13Rα2-Targeting CAR-T Cells in Recurrent High-Grade Glioma: A Phase 1 Trial. Nature Medicine, 30, 1001-1012.
|
[36]
|
Choi, B.D., Gerstner, E.R., Frigault, M.J., Leick, M.B., Mount, C.W., Balaj, L., et al. (2024) Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma. New England Journal of Medicine, 390, 1290-1298. https://doi.org/10.1056/nejmoa2314390
|
[37]
|
Daassi, D., Mahoney, K.M. and Freeman, G.J. (2020) The Importance of Exosomal PDL1 in Tumour Immune Evasion. Nature Reviews Immunology, 20, 209-215. https://doi.org/10.1038/s41577-019-0264-y
|
[38]
|
Yang, T., Kong, Z. and Ma, W. (2020) PD-1/PD-L1 Immune Checkpoint Inhibitors in Glioblastoma: Clinical Studies, Challenges and Potential. Human Vaccines & Immunotherapeutics, 17, 546-553. https://doi.org/10.1080/21645515.2020.1782692
|
[39]
|
DeCordova, S., Shastri, A., Tsolaki, A.G., Yasmin, H., Klein, L., Singh, S.K., et al. (2020) Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Frontiers in Immunology, 11, Article No. 1402. https://doi.org/10.3389/fimmu.2020.01402
|
[40]
|
Ammendola, S., Caldonazzi, N., Simbolo, M., Piredda, M.L., Brunelli, M., Poliani, P.L., et al. (2021) H3k27me3 Immunostaining Is Diagnostic and Prognostic in Diffuse Gliomas with Oligodendroglial or Mixed Oligoastrocytic Morphology. Virchows Archiv, 479, 987-996. https://doi.org/10.1007/s00428-021-03134-1
|
[41]
|
Spinelli, C., Adnani, L., Meehan, B., Montermini, L., Huang, S., Kim, M., et al. (2024) Mesenchymal Glioma Stem Cells Trigger Vasectasia-Distinct Neovascularization Process Stimulated by Extracellular Vesicles Carrying EGFR. Nature Communications, 15, Article No. 2865. https://doi.org/10.1038/s41467-024-46597-x
|
[42]
|
Johnson, A.L., Khela, H.S., Korleski, J., et al. (2025) TGFBR2 High Mesenchymal Glioma Stem Cells Phenocopy Regulatory T Cells to Suppress CD4+ and CD8+ T Cell Function.
|
[43]
|
Reardon, D.A., Brandes, A.A., Omuro, A., Mulholland, P., Lim, M., Wick, A., et al. (2020) Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology, 6, 1003-1010. https://doi.org/10.1001/jamaoncol.2020.1024
|
[44]
|
Ott, P.A., Bang, Y., Piha-Paul, S.A., Razak, A.R.A., Bennouna, J., Soria, J., et al. (2019) T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated with Pembrolizumab across 20 Cancers: KEYNOTE-028. Journal of Clinical Oncology, 37, 318-327. https://doi.org/10.1200/jco.2018.78.2276
|
[45]
|
Tan, Y., Liu, P., Li, D., Wang, D. and Tang, B.Z. (2022) NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 12, Article No. 46. https://doi.org/10.3390/bios12010046
|
[46]
|
Su, X., Liu, Y., Zhong, Y., Shangguan, P., Liu, J., Luo, Z., et al. (2025) A Brain-Targeting NIR-II Polymeric Phototheranostic Nanoplatform toward Orthotopic Drug-Resistant Glioblastoma. Nano Letters, 25, 3445-3454. https://doi.org/10.1021/acs.nanolett.4c05470
|
[47]
|
Gui, Y., Wang, Y., Wang, D., Qin, Y., Song, G., Yan, D., et al. (2024) Thiophene π-Bridge Manipulation of NIR‐II AIEgens for Multimodal Tumor Phototheranostics. Angewandte Chemie International Edition, 63, e202318609. https://doi.org/10.1002/anie.202318609
|
[48]
|
Liu, S., Shi, W., Zhao, Q., Zheng, Z., Liu, Z., Meng, L., et al. (2021) Progress and Prospect in Tumor Treating Fields Treatment of Glioblastoma. Biomedicine & Pharmacotherapy, 141, Article ID: 111810. https://doi.org/10.1016/j.biopha.2021.111810
|
[49]
|
Ballo, M.T., Conlon, P., Lavy-Shahaf, G., Kinzel, A., Vymazal, J. and Rulseh, A.M. (2023) Association of Tumor Treating Fields (TTFields) Therapy with Survival in Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Journal of Neuro-Oncology, 164, 1-9. https://doi.org/10.1007/s11060-023-04348-w
|
[50]
|
Akbarnejad, Z., Eskandary, H., Dini, L., Vergallo, C., Nematollahi-Mahani, S.N., Farsinejad, A., et al. (2017) Cytotoxicity of Temozolomide on Human Glioblastoma Cells Is Enhanced by the Concomitant Exposure to an Extremely Low-Frequency Electromagnetic Field (100 Hz, 100 G). Biomedicine & Pharmacotherapy, 92, 254-264. https://doi.org/10.1016/j.biopha.2017.05.050
|
[51]
|
Ashta, A., Motalleb, G. and Ahmadi-Zeidabadi, M. (2020) Evaluation of Frequency Magnetic Field, Static Field, and Temozolomide on Viability, Free Radical Production and Gene Expression (p53) in the Human Glioblastoma Cell Line (A172). Electromagnetic Biology and Medicine, 39, 298-309. https://doi.org/10.1080/15368378.2020.1793171
|
[52]
|
Dehghani-Soltani, S., Eftekhar-Vaghefi, S.H., Babaee, A., Basiri, M., Mohammadipoor-Ghasemabad, L., Vosough, P., et al. (2021) Pulsed and Discontinuous Electromagnetic Field Exposure Decreases Temozolomide Resistance in Glioblastoma by Modulating the Expression of O6-Methylguanine-DNA Methyltransferase, Cyclin-D1, and P53. Cancer Biotherapy and Radiopharmaceuticals, 36, 579-587. https://doi.org/10.1089/cbr.2020.3851
|
[53]
|
林方家, 李骜, 刘文博, 等. 中频交变磁场对大鼠F98胶质瘤细胞的体外生物效应[J]. 现代生物医学进展, 2018, 18(13): 2424-2430.
|
[54]
|
Vasishta, V.G. (2010) Sequentially Programmed Magnetic Field Therapy in the Management of Recurrent Anaplastic Astrocytoma: A Case Report and Literature Review. Case Reports in Oncology, 3, 189-194. https://doi.org/10.1159/000316358
|
[55]
|
Baskin, D.S., Sharpe, M.A., Nguyen, L. and Helekar, S.A. (2021) Case Report: End-Stage Recurrent Glioblastoma Treated with a New Noninvasive Non-Contact Oncomagnetic Device. Frontiers in Oncology, 11, Article ID: 708017. https://doi.org/10.3389/fonc.2021.708017
|
[56]
|
Cobbs, C., McClay, E., Duic, J.P., Nabors, L.B., Morgan Murray, D. and Kesari, S. (2018) An Early Feasibility Study of the Nativis Voyager® Device in Patients with Recurrent Glioblastoma: First Cohort in Us. CNS Oncology, 8, CNS30. https://doi.org/10.2217/cns-2018-0013
|
[57]
|
Butters, J.T., Figueroa, X.A. and Butters, B.M. (2014) Non-Thermal Radio Frequency Stimulation of Tubulin Polymerization in Vitro: A Potential Therapy for Cancer Treatment. Open Journal of Biophysics, 4, 147-168. https://doi.org/10.4236/ojbiphy.2014.44015
|
[58]
|
Ulasov, I.V., Foster, H., Butters, M., Yoon, J., Ozawa, T., Nicolaides, T., et al. (2017) Precision Knockdown of EGFR Gene Expression Using Radio Frequency Electromagnetic Energy. Journal of Neuro-Oncology, 133, 257-264. https://doi.org/10.1007/s11060-017-2440-x
|
[59]
|
Murphy, M., Dowling, A., Thien, C., Priest, E., Morgan Murray, D. and Kesari, S. (2019) A Feasibility Study of the Nativis Voyager® Device in Patients with Recurrent Glioblastoma in Australia. CNS Oncology, 8, CNS31. https://doi.org/10.2217/cns-2018-0017
|