近年高级别胶质瘤治疗的研究进展
Research Progress in the Treatment of High-Grade Glioma in Recent Years
DOI: 10.12677/acm.2025.1541259, PDF, HTML, XML,   
作者: 董禹伯:内蒙古医科大学,第一临床医学院,内蒙古 呼和浩特;闫文明*:内蒙古医科大学附属医院,放疗科,内蒙古 呼和浩特
关键词: 高级别胶质瘤治疗进展免疫治疗靶向治疗磁场治疗High Grade Glioma Treatment Progress Immunotherapy Targeted Therapy Magnetic Field Therapy
摘要: 高级别胶质瘤(HGG)是中枢神经系统最具侵袭性的恶性肿瘤之一,其治疗因肿瘤异质性高、血脑屏障(BBB)限制及免疫抑制微环境而面临巨大挑战。传统治疗以手术切除联合放化疗为主,但疗效有限。近年来,分子分型与精准医学的引入显著改变了HGG的诊疗范式。WHO CNS5分类整合分子标志物(如IDH突变、1p/19q共缺失)为预后评估和治疗分层提供了依据,而术中荧光导航、清醒开颅及多模态影像技术提升了手术全切率与安全性。放疗领域通过剂量优化(如大分割立体定向放疗)和新技术(质子治疗、图像引导放疗)改善局部控制,但剂量提升因正常组织耐受性受限。化疗药物替莫唑胺(TMZ)仍是基石,但其疗效受限于MGMT启动子甲基化状态,PARP抑制剂与HDAC抑制剂等新型增敏策略正在探索中。靶向治疗基于分子特征实现个体化用药,如伯瑞替尼通过抑制PTPRZ1-MET融合基因显著延长IDH突变型患者生存期(中位OS达29.3个月),贝伐珠单抗虽未改善总生存,但可缓解血管源性水肿。免疫治疗成为近年热点,CAR-T细胞疗法在早期试验中展现持久抗肿瘤活性,双联给药模式(瘤内 + 脑室内)使中位OS延长至10.2个月;溶瘤病毒(如Ad-TD-nsIL12)通过重塑肿瘤微环境激活免疫应答,部分患者生存期超3年;树突状细胞疫苗(DCVax-L)联合标准治疗使新诊断患者中位OS提升至19.3个月。然而,免疫检查点抑制剂(如PD-1/PD-L1单抗)在HGG中疗效有限,可能与中枢免疫抑制特性及异质性相关。新兴疗法如近红外光基诊疗(PDT/PTT协同)和低频磁场(LF-MFs)通过非侵入方式克服耐药,初步临床数据显示肿瘤体积缩小及生存获益。本文综述近五年HGG治疗领域的重要进展,以期为临床实践与研究提供参考。
Abstract: High grade glioma (HGG) is one of the most aggressive malignant tumors of the central nervous system. Its treatment faces great challenges due to high tumor heterogeneity, blood-brain barrier (BBB) limitations and immunosuppressive microenvironment. The traditional treatment is mainly surgical resection combined with chemoradiotherapy, but the curative effect is limited. In recent years, the introduction of molecular typing and precision medicine has significantly changed the diagnosis and treatment paradigm of HGG. The WHO CNS5 classification integrates molecular markers (such as IDH mutation and 1p/19q co deletion) to provide a basis for prognosis assessment and treatment stratification, while intraoperative fluorescence navigation, awake craniotomy and multimodal imaging technology improve the total resection rate and safety. In the field of radiotherapy, local control is improved through dose optimization (such as hypofractionated stereotactic radiotherapy) and new technologies (proton therapy, image-guided radiotherapy), but dose escalation is limited due to normal tissue tolerance. The chemotherapy drug temozolomide (TMZ) is still the cornerstone, but its efficacy is limited by the methylation status of MGMT promoter. New sensitization strategies such as PARP inhibitors and HDAC inhibitors are being explored. Targeted therapy realizes individualized drug use based on molecular characteristics. For example, beretinib significantly prolongs the survival of IDH mutant patients (median OS 29.3 months) by inhibiting the ptprz1-met fusion gene. Although bevacizumab does not improve the overall survival, it can alleviate angiogenic edema. Immunotherapy has become a hot spot in recent years. CAR-T cell therapy showed long-lasting anti-tumor activity in early trials. The dual administration mode (intratumoral + intraventricular) extended the median OS to 10.2 months; Oncolytic viruses (such as Ad-TD-nsIL12) activate immune responses by remodeling the tumor microenvironment, and some patients survive for more than 3 years; Dendritic cell vaccine (DCVax-L) combined with standard treatment improved the median OS of newly diagnosed patients to 19.3 months. However, immune checkpoint inhibitors (such as PD-1/PD-L1 mAb) have limited efficacy in HGG, which may be related to the central immunosuppressive properties and heterogeneity. Emerging therapies such as near-infrared light-based diagnosis and treatment and low-frequency magnetic fields (LF-MFS) overcome drug resistance through non-invasive methods. Preliminary clinical data showed that tumor volume reduced and survival benefit. This article reviews the important progress in the field of HGG treatment in the past five years, in order to provide reference for clinical practice and research.
文章引用:董禹伯, 闫文明. 近年高级别胶质瘤治疗的研究进展[J]. 临床医学进展, 2025, 15(4): 2936-2946. https://doi.org/10.12677/acm.2025.1541259

1. 引言

胶质瘤作为中枢神经系统最常见的原发性恶性肿瘤,其病理基础源于神经胶质细胞及前体细胞的异常增殖。流行病学数据显示,胶质瘤在原发性颅内肿瘤中占比超过半数(约50%~60%),在中枢神经系统的恶性病变中占比约81%。根据WHO CNS5,胶质瘤分为以下6类:1) 成人弥漫性胶质瘤;2) 儿童弥漫性低级别胶质瘤;3) 儿童弥漫性高级别胶质瘤;4) 局限性星形细胞胶质瘤;5) 胶质神经源性和神经源性肿瘤(一组不同的肿瘤,以神经元分化为特征);6) 室管膜瘤[1]。国际卫生组织制定的分级体系将胶质瘤划分为四个等级:其中具有较强侵袭性特征的III~IV级则被定义为高级别胶质瘤(High-Grade Glioma, HGG),包括间变星形胶质瘤(3级),间变性少突胶质细胞瘤(3级),胶质母细胞瘤(4级)和伴H3-K27M突变的弥漫性中线胶质瘤。通常来说,高级别胶质瘤较低级别胶质瘤有恶性程度高、术后复发率高、治愈率低的特点[2]。低级别胶质瘤的10年生存率为47%,中位生存时间为11.6年。对于高级别胶质瘤,3级胶质瘤患者的中位总生存期(OS)约为3年,而4级胶质瘤的中位OS时间更差,仅为4个月。部分低级别胶质瘤可以通过手术联合放化疗等综合治疗,高级别胶质瘤仍因其治疗选择有限成为脑胶质瘤中最致命的肿瘤类型。

传统治疗模式以手术切除为基础,辅以放疗和化疗。然而,HGG的生物学特性——包括弥漫性浸润生长、肿瘤异质性高、血脑屏障(BBB)限制药物渗透及快速获得性耐药——严重限制了传统疗法的效果。手术虽能快速降低肿瘤负荷,但受限于功能区保护与肿瘤边界的模糊性,全切率较低,术后残留细胞仍是复发的根源之一。放疗通过诱导DNA损伤杀灭肿瘤细胞,但正常脑组织对辐射的耐受性限制了剂量提升。化疗药物如替莫唑胺(TMZ)虽能穿透血脑屏障,但耐药问题(尤其是MGMT蛋白介导的修复机制)仍有可能导致患者在治疗初期即出现疾病进展[3] [4]。因此,探索新型治疗策略以克服传统手段的局限性,成为近年来研究的核心方向。本文综述近五年HGG治疗领域的重要进展,以期为临床实践与研究提供参考。

2. 手术治疗

手术仍是HGG的一线治疗手段,目标是最大限度切除肿瘤并保留神经功能,但由于脑胶质瘤的高度浸润性和增殖性,即使完全切除原发肿瘤,仍可见复发肿瘤病灶,且患者的预后欠佳、生存期较短。近年来,术中辅助技术的进步为限制神经功能缺陷并实现切除范围(Extent of Resection, EOR)的最大化提供了提升全切率与安全性的可能。高分辨率影像技术如功能性MRI和术中导航等可以帮助医生更精准地定位肿瘤边界,保护患者的神经功能。清醒手术与术中MRI可以让医生在手术中实时评估切除范围,同时确保不损伤语言和运动等重要脑功能区域[5]

此外,术中荧光引导技术也逐步应用于临床治疗中。5-氨基酮戊酸(5-Aminolevulinic Acid, 5-ALA)是一种天然的非蛋白氨基酸,5-ALA通过一系列酶促反应生成原卟啉IX (PpIX),并在病变细胞内大量蓄积[6]。光敏物质PpIX能发射出区别病变组织和正常组织的荧光,从而提高肿瘤切除的完整性,极大地改善神经胶质瘤患者的无进展生存期。同时,2024年《Lancet Oncology》发表的RANO切除组研究证实,基于分子病理特征的标准化手术评价体系也显著延长了患者生存期[7]

3. 放射治疗

放射治疗可以诱导肿瘤细胞的程序性坏死,从而消灭残存的肿瘤细胞,在高级别胶质瘤(HGG)治疗中占据核心地位,是术后综合治疗的关键组成部分。近些年学者们在放疗时机与剂量优化方面进行了大量尝试,研究表明术后早期放疗(2~6周内)可显著延长生存期,延迟1天放疗死亡风险增加2%。标准剂量仍为54~60 Gy/30~33次,但研究显示60 Gy/30次较45 Gy/20次可提升中位生存期(12个月 vs 9个月)。部分研究尝试提升剂量至75 Gy/30次,但未显著改善生存。大分割立体定向放疗(IG-hSRT)通过高剂量(如40 Gy/5次)缩短疗程,联合贝伐单抗可降低放射性坏死风险,中位生存期达13~18个月,优于传统化疗。新诊断患者中,5次分割方案(如40 Gy)同步替莫唑胺显示生存获益,且毒性可控。RTOG与EORTC勾画原则均建议以MRI T1增强或T2-FLAIR异常信号为GTV,外扩形成CTV,并强调在保证安全性的前提下尽可能覆盖肿瘤剂量。同时,图像引导放疗(IGRT)和容积调强(VMAT)技术广泛应用,结合PET/CT代谢显像优化靶区,使局部控制率提升[8] [9]。近年来,质子治疗因物理优势被推荐用于预后相对较好的IDH突变的二级/三级胶质瘤,但对推迟认知功能下降的方面无显著优势。肽受体放射性核素治疗(PRRT)等新兴疗法也可作为治疗高表达生长抑素受体的难治性胶质母细胞瘤的新选择[10]

4. 化学治疗

4.1. 替莫唑胺

替莫唑胺(Temozolomide, TMZ)是一种烷化剂类化疗药物,其活性代谢产物通过甲基化DNA分子中的鸟嘌呤(O6位点),形成DNA加合物,干扰DNA复制和转录,导致肿瘤细胞周期停滞和凋亡。其具有较高的脂溶性,可有效穿透血脑屏障(BBB),在中枢神经系统中达到治疗浓度。这些特点使其成为高级别胶质瘤化疗方案中的基石药物。TMZ联合放疗(RT)是GBM的一线治疗方案(Stupp方案)。与单独放疗相比,联合治疗可显著延长中位总生存期(OS)达2.5个月(从12.1个月增至14.6个月),2年OS率从10.4%提升至26.5%。多项研究表明MGMT启动子甲基化的患者对TMZ更敏感,中位OS几乎翻倍(13.5个月 vs. 7.7个月),IDH突变型患者也可在药物应用中获益,而无MGMT甲基化的患者可能因DNA修复机制导致耐药,IDH野生型患者的生存率获益也十分有限[11] [12]。为解决TMZ耐药性问题,提高TMZ抗胶质瘤的治疗效果,目前已经开展多项临床研究。多聚腺苷二磷酸核糖聚合酶(Poly ADP-Ribosepolymerase, PARP)抑制剂作为一种很有前景的放疗增敏剂,在细胞实验中已初步显示出对GBM增殖的抑制效果。Dinu Sfetan和Bénédicte Clarisse的研究团队首次评估了在未完全切除的GBM患者中PARP抑制剂奥拉帕利(Olaparib)联合Stupp治疗方案的安全性。在纳入研究的30名患者中,联合方案具有良好的安全性,患者的中位无进展生存期(mPFS)和总生存期(mOS)分别为6.2个月和19.8个月,初步显示出患者获益的可能性[13]。组蛋白去乙酰化酶(Histone Deacetylase, HDAC)是一类蛋白酶,负责染色体的结构修饰和基因表达调控。HDAC在各种实体瘤中过表达或过度活跃导致去乙酰化作用的增强,从而增加DNA与组蛋白之间的引力,使松弛的核小体变得十分紧密,抑制肿瘤抑制基因的表达。从而导致增殖不受控制以及对细胞修复机制和细胞凋亡不敏感。组蛋白去乙酰化酶抑制剂(Histone Deacetylase Inhibitor, HDACI)通过表观遗传调控机制(如染色质结构开放、β-catenin降解等)降低MGMT蛋白表达,并逆转未甲基化患者的化疗耐药性,为对TMZ耐药的患者提供了新的治疗策略[14]

4.2. 亚硝脲类单药方案

亚硝脲类药物是一类重要的抗肿瘤药物,具有广谱的抗癌活性,临床研究已证实对多种恶性肿瘤有效,包括卡莫司汀(carmustine, BCNU)、洛莫司汀(lomustine, CCNU)、尼莫司汀(nimustine, ACNU)等[15]。BCNU和CCNU脂溶性强,可通过血脑屏障。BCNU可通过晶片植入术腔局部缓释给药,进入人体后可在OH-离子的作用下形成异氰酸盐和重氮氢氧化物。异氰酸盐使蛋白质氨甲酰化,并抑制DNA聚合酶,抑制DNA修复和RNA合成,重氮氢氧化物生成正碳离子使生物大分子烷化。CCNU通过烷化DNA碱基,使DNA和RNA烷基化并交联DNA,干扰DNA复制与转录,导致肿瘤细胞凋亡。ACNU为水溶性,其体内的活性代谢产物具有脂溶性,也可通过血脑屏障作用于肿瘤。该类药物的副作用为消化道反应及迟发的骨髓抑制[16]

5. 靶向治疗

针对高级别胶质瘤面临的手术全切率低、术后复发率高以及化疗耐药性强等临床挑战,学者们提出了以同步放化疗为基础,联合分子分型指导的精准靶向治疗的综合治疗方案,通过对分子标志物检测实现个体化用药,显著提升治疗应答率并延长无进展生存期。

5.1. 伯瑞替尼

PTPRZ1-MET融合基因(ZM)会导致MET激酶异常激活,促进肿瘤增殖和侵袭。伯瑞替尼是全球首个获批用于胶质瘤的Met抑制剂,通过特异性结合MET的Y1230残基,抑制下游STAT3等致癌信号通路,阻断肿瘤生长,同时其具有优异的中枢渗透性,其细胞透过率高且外排率低,确保药物有效到达颅内病灶,针对既往治疗失败的具有ZM融合基因的IDH突变型星形细胞瘤(WHO 4级)或有低级别病史的胶质母细胞瘤成人患者,使中位生存期延长至29.3个月(较传统方案提升67%)。常见不良反应为外周水肿、肝功能异常等,暂无严重事件或治疗导致死亡事件的报道[17] [18]

5.2. 贝伐珠单抗

贝伐珠单抗(Bevacizumab, BEV)是一种可以特异性结合血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)的人源化单克隆抗体,尤其是与促血管活性最强的VEGF-A亚型结合,阻断其与受体(VEGFR)结合,从而抑制下游信号转导通路,以达到降低脑瘤内血管的通透性,减轻血管性水肿,降低肾上腺皮质激素类药物的用量,控制患者的症状的效果。虽然在复发性胶质母细胞瘤(Recurrent Glioblastoma, rGBM)患者中的研究均未证实OS可得到改善,但作为单一药物显示出增加的无进展生存期[19],在目前尚无有效治疗手段的情况下,美国食品药品监督管理局(Food and Drug Administration, FDA)基于PFS 的改善(2.25个月 vs 3.3个月)批准BEV用于治疗rGMB [20]。同时,针对BEV治疗后可能出现的增强效应减少但肿瘤实际仍在进展的“假性进展”现象,需结合神经肿瘤影像RANO标准评估疗效。据Mayo Clinic团队的单中心回顾性分析发现,与低剂量贝伐珠单抗(<5毫克/千克/周)治疗相比,脑胶质瘤患者接受常规剂量贝伐珠单抗治疗(5毫克/千克/周)的颅内出血发生率更高。而低剂量组与常规剂量组在疾病进展后的生存期方面无显著差异[21]

6. 免疫治疗

胶质瘤的肿瘤微环境中存在多重免疫逃逸机制,作为中枢神经系统最常见的原发性恶性肿瘤,脑胶质瘤具有显著的免疫抑制特性。由于GBM的高异质性、低突变负荷、强大的免疫抑制性肿瘤微环境及中枢神经系统特有的天然防御系统——血脑屏障(BBB)使免疫治疗在GBM的研究中仍处于起步阶段。目前对GBM的治疗研究方向分为主动免疫治疗与被动免疫治疗两种体系。主动免疫治疗通过外源性抗原激活特异性免疫应答,目前以疫苗技术为主导。早期自体肿瘤细胞疫苗因疗效短暂逐渐被淘汰,第二代多肽疫苗如靶向EGFRv III位点的Rindopepimut疫苗联合应用TMZ治疗EGFRv III表达阳性的nGBM患者,其Ⅲ期临床试验宣告失败:与单药TMZ相比并未延长患者的生存期[22]。被动免疫治疗并不直接激活机体免疫系统,而是通过注射外源性免疫物质(如抗体)以达到杀伤肿瘤细胞的目的,包括抗体治疗和过继免疫治疗等。另外,对免疫相关通路和免疫抑制机制的研究也是肿瘤免疫治疗的新方向。

6.1. 肿瘤疫苗

6.1.1. 肽类疫苗

存活素(Survivin)是凋亡抑制蛋白家族的一员,是一种在恶性神经胶质瘤中高度表达的胎儿抗原。研究表明,存活素具有免疫抑制作用,能帮助肿瘤逃避机体的免疫监视,并且与化疗反应不佳及癌症复发风险增加有关[23]。靶向存活素(SurvaxM)是一种针对GBM的新型免疫疫苗。SurVaxM能够诱导生存素特异性的CD8+ T细胞反应,将表达存活素的癌细胞识别为外来细胞,同时产生针对生存素的特异性抗体,以控制肿瘤的生长和复发。一项针对SurvaxM的I期研究显示,每2周给药4剂的9名复发性高级别胶质瘤患者mOS为20个月,其中7名在进入研究后存活超过1年,无报告的严重不良事件[24]。鉴于以上结果,随后又进行了更大型的针对nGBM患者的II期队列研究。这些患者在完成放化疗后4周内接受第1剂SurVaxM,随后每2周接受3剂,在之后的维持阶段每12周接受一次额外给药,直到疾病进展或不耐受治疗,该组患者的mPFS和mOS分别为14.4个月和28.4个月。此外,6个月PFS为95.2%,显著长于对照组的54% (P < 0.0001) [25]

6.1.2. 树突状细胞疫苗

树突状细胞疫苗(Dendritic Cell Vaccine, DCV)使树突状细胞暴露于肿瘤抗原,从而触发适应性免疫系统T细胞攻击肿瘤细胞并防止其生长复发[26]。pp65蛋白又称人巨细胞病毒磷酸化糖蛋白(phosphorylated glycoprotein 65, pp65),该蛋白在正常组织中极少表达,但在脑胶质瘤中的表达水平明显升高。针对此特点,研究人员将pp56与DC结合制成了pp56-DC疫苗。一项研究表示,接受pp65-DC并使用剂量强化替莫唑胺(DI-TMZ)和佐剂粒细胞巨噬细胞集落刺激因子(GM-CSF)增强胶质母细胞瘤患者的肿瘤特异性免疫反应的患者表现出长期的PFS和OS [27]。另一项针对DCV的III期试验招募了nGBM和rGBM患者,并将载有自体肿瘤裂解物的树突状细胞疫苗DCVax-L联合标准护理(Standard Of Care, SOC)与仅接受SOC的历史对照组进行了比较。nGBM组DCVax-L的mOS为试验随机化后19.3个月,显著高于对照组的16.5个月(P = 0.02),并显现出随着时间推移而增加的相对益处。DCVax-L组随机分组后60个月的生存率为13.0%,而标准护理对照组为5.7%。rGBM组反映了相似的结果,DCVax-L组复发后mOS为13.2个月,而标准护理组为7.8个月(P < 0.001) [28]

6.2. 溶瘤病毒

肿瘤靶向复制溶瘤病毒(TOV)是一种野生型或转基因病毒,可在肿瘤细胞中选择性复制。它可以通过靶向感染肿瘤细胞、激活免疫系统抗原呈递等方式,最终导致抑制性肿瘤微环境(TME)重塑,以产生强大的抗肿瘤免疫反应[29]。而复制溶瘤腺病毒(AdV)因为易于生产、易于遗传和良好的安全性成为受欢迎的TOV候选者,其中Oncorine (H101)已被用于治疗头颈癌[30]。但第一代AdV对多种肿瘤类型的临床疗效尚未得到证实。Ad-TD-nsIL12 (一种表达非分泌白细胞介素12的溶瘤腺病毒)通过修饰细胞因子的信号肽以产生非分泌性IL-12分子,在TME内实现持久、低水平的IL-12表达,克服与IL-12表达相关的毒性的同时利用其强大的抗肿瘤活性。据一项I期剂量递增的单臂试验(ChiCTR2000032402)报道,Ad-TD-nsIL12治疗后,患者肿瘤组织中CD4+和CD8+ T细胞浸润显著增加,证实其在复发性高级别胶质瘤患者中的安全性和初步疗效[31]。但其仍因BBB的限制以及剂量毒性不明确具有局限性,一些针对递送方式如预置Ommaya囊技术的研究正在逐步展开[32]

6.3. CAR-T

嵌合抗原受体(Chimeric Antigen Receptor, CAR)T是一种基因工程改造的患者自体免疫球蛋白T细胞受体,其能够特异性识别并攻击肿瘤细胞,直接引发肿瘤细胞裂解或通过激活其他免疫细胞协同抗肿瘤[33]。目前研究已经证实CAR-T在血液系统肿瘤中有效[34],一些针对高级别胶质瘤的治疗研究正在开展。一项纳入92例高级别胶质瘤患者的I期试验对比了通过瘤内、脑室内和双重瘤内、脑室内给药方式进行白细胞介素(IL)-13Rα2靶向CAR T细胞输注。所有组均未观察到剂量限制性毒性,其中双联治疗组的mOS显著长于其他对照组(10.2 vs. 6.1个月,P = 0.02) [35]。一项融合T细胞结合抗体分子(TEAM)技术的新型EGFRvIII抗原特异性CAR T细胞(CARv3-TEAM-E T)人体I期试验(NCT05660369)显示,3例患者总体耐受性良好,其中两例患者在输注后初期病灶影像增强迅速下降,几个月内增强增加,考虑与CARv3-TEAM-E T细胞的持久性相关。最后一例患者在输注5个月后最后一次随访观察到稳定的影像学上的疾病消退,这显示出有希望的预期疗效[36]

6.4. 免疫检查点抑制剂

程序性死亡受体配体1 (Programmed cell Death 1 Ligand 1, PD-L1)通过与T细胞表面的PD-1结合,抑制T细胞活性,在肿瘤免疫逃逸中发挥作用[37]。PD-1/PD-L1抑制剂通过选择性阻断T淋巴细胞表面PD-1受体,解除肿瘤微环境的免疫抑制状态,激活T细胞对肿瘤的杀伤功能。尽管PD-1/PD-L1疗法在其他肿瘤类型中效果显著,但在高级别胶质瘤中的进展却有限。与其他实体瘤不同,胶质瘤所处的中枢神经系统的免疫原性反应更低,这与其独特的免疫抑制微环境密切相关[38]。血脑屏障的存在限制了大分子药物(如PD-1单抗)的渗透,即使在PD-1/PD-L1抑制剂阻断免疫检查点后,CD8+T细胞数量虽短暂增加,但其功能很快被多重抑制网络抵消:例如间质中Treg细胞通过CTLA-4介导的抑制信号、肿瘤相关巨噬细胞(TAM)分泌的TGF-β和IL-10,以及胶质瘤细胞通过IDO酶降解色氨酸诱导T细胞耗竭[39]。胶质瘤的异质性进一步加剧治疗难度。肿瘤内异质性表现为同一病灶内同时存在神经元型、前神经元型、经典型和间充质型等不同转录亚群的恶性细胞,而肿瘤间异质性则体现在IDH突变状态(野生型vs突变型)和表观遗传特征(如H3K27me3修饰)的显著差异[40]。以间充质型胶质瘤为例,其微环境以VEGF驱动的异常血管生成、CXCL1/CXCL5趋化的中性粒细胞浸润,以及M2型巨噬细胞通过PD-L1和精氨酸酶-1介导的免疫抑制为特征,这与神经元型中少突胶质细胞祖细胞主导的微环境形成鲜明对比[41]。单细胞测序显示,间充质型肿瘤中CD4+T细胞表面TIM-3和LAG-3等共抑制分子表达上调,导致T细胞活化阈值显著升高[42]。开放标签III期试验Checkmate 143 (NCT02017717)显示,纳武利尤单抗组和贝伐珠单抗组的mOS相似(9.8个月 vs 10.0个月,HR = 1.04),无显著性差异[43]。另一项多队列1期试验Keynote-028评估帕博利珠单抗在20种晚期实体瘤患者中的安全性和疗效,其中包括26例复发性胶质母细胞瘤患者,中位随访14个月后结果显示总体反应率为8%,6个月时的无进展生存期(中位2.8个月)率为37.7%,12个月总生存率(中位13.1个月)率为58%,未能改善mOS [44]

7. 其他疗法

近红外(NIR)光基诊疗技术,包括荧光成像(FLI)、光动力治疗(PDT)和光热治疗(PTT),凭借深度组织穿透性和对耐药机制的规避能力,已成为对抗难治性胶质瘤的新兴非侵入诊疗方案[45]。光响应材料吸收并转换光子能量,产生有毒的活性氧(ROS)诱导肿瘤细胞死亡或高温直接消融肿瘤组织。然而,单一疗法在肿瘤根除方面仍面临一些挑战,PDT受限于肿瘤区低氧环境,而PTT导致热休克蛋白过表达引起耐受。因此,将PDT和PTT相结合,协同治疗成为了新选择[46]。研究发现,含有苯并[c]噻吩的AIEgen (聚集诱导发射发光体) BT-NS具有可接受的NIR-II荧光发射强度、高效的活性氧生成和高光热转换效率。最终,通过使用BT-NS纳米颗粒,在NIR-II荧光/光声/光热成像引导的协同光动力/光热消除肿瘤方面表现出优秀的性能。这为开发用于临床试验的多功能光疗诊断系统提供了新的思路[47]

TTFields (肿瘤电场治疗)作为一种重要的肿瘤治疗手段,已被广泛应用于各类肿瘤治疗的临床研究中。2004年开展的一项对10名新诊断的GBM患者进行TTFields治疗的单中心临床试验表明,从初始诊断到最后一次随访,10名患者的mOS超过40个月,而历史对照组为14.7个月,表明TTFields能有效延长患者的生存期,该实验报道的主要治疗的主要副作用是由传感器阵列引起的轻度至中度头皮刺激[48]。另一项TMZ联合TTFields治疗nGBM的研究显示,TTFieldS联合TMZ组的mPFS为7.1个月,显著高于单TMZ组的4.0个月;TTFields联合TMZ治疗组(n = 210)的mOS为20.9个月,显著高于单TMZ组(n = 105)的16.0个月,研究并未报道相关毒性增加[49]。研究表明,低频磁场疗法(LF-MFs)可以通过多种分子机制抑制神经胶质瘤细胞的增殖,并且在与肿瘤化疗药物一起使用时具有协同或增敏作用[50]-[52]。这些生物学特性为临床应用提供了支持。研究人员发现LF-MFs可以减轻rGBM周围区域的瘤周水肿,并改善rGBM患者的生活质量[53]。同时,1例复发性间变性星形细胞瘤患者经脉冲磁场干预6~36个月后,肿瘤体积缩小,临床症状得到缓解[54]。此外,有研究显示一名使用振荡MF治疗31天的rGBM患者,肿瘤体积减少了31%,没有明显的副作用[55]。最新研究发现,化疗药物的特定超低射频能量(u/RFE®)信号可以被超导量子干涉器件(SQUID)记录。特定的u/RFE®信号可以被放大并转化为MF能量,它可以对GBM细胞产生与抗癌药物类似的作用[56] [57]。基于这一发现进行了两项使用两种独特的同源物治疗26例复发性GBM患者的随机对照临床试验,16例用A1A治疗(A1A是一种u/RFE®同源物,通过抑制微管功能来模拟紫杉醇的作用);10例用A2HU治疗(A2HU是一种u/RFE®同源物,来源于已知抑制CTLA-4和PD-1表达的siRNA序列[58])。在开始治疗后12个月患者生存率达30%~50%,证实了基于u/RFE®信号的设备对治疗GBM有效[59]。虽然LF-MFs在GBM中的治疗效果已被广泛报道,但其机制未完全探究清楚。

8. 总结与展望

本文对HGG的治疗方法(手术、放疗、化疗、免疫治疗、靶向治疗、近红外技术、低频磁场疗法)进行了综述。尽管目前的治疗手段众多,仍有各自众多攻克的难题,例如因HGG多呈浸润性生长,对位于功能区的肿瘤手术难以完全切除,存在术后复发风险,同时可能引发神经功能损伤;TMZ对MGMT未甲基化患者疗效差,且长期使用易导致骨髓抑制,容易出现恶心、呕吐、肝功能异常等副反应;肿瘤疫苗受限于胶质瘤的异质性,且需要个体化定制,制备时间长,成本高,尚未大规模临床应用;溶瘤病毒受免疫微环境影响,疗效可能欠佳,且部分载体穿透血脑屏障能力有限;TTFields治疗设备佩戴时间较长,患者依从性较差等。HGG的治疗正迈向精准化与多学科整合的新阶段,未来的研究可能聚焦多学科、多手段联合治疗策略,基于纳米技术或新型载体以突破BBB的高效递送系统,针对分子分型、个人免疫分型的个体化治疗等,为患者提供最佳诊疗手段。

NOTES

*通讯作者。

参考文献

[1] 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777.
[2] Chen, X., Cui, Y. and Zou, L. (2024) Treatment Advances in High-Grade Gliomas. Frontiers in Oncology, 14, Article ID: 1287725.
https://doi.org/10.3389/fonc.2024.1287725
[3] Liu, S., Zhao, Q., Shi, W., Zheng, Z., Liu, Z., Meng, L., et al. (2021) Advances in Radiotherapy and Comprehensive Treatment of High-Grade Glioma: Immunotherapy and Tumor-Treating Fields. Journal of Cancer, 12, 1094-1104.
https://doi.org/10.7150/jca.51107
[4] Fisher, J.P. and Adamson, D.C. (2021) Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines, 9, Article No. 324.
https://doi.org/10.3390/biomedicines9030324
[5] Eatz, T.A., Eichberg, D.G., Lu, V.M., Di, L., Komotar, R.J. and Ivan, M.E. (2022) Intraoperative 5-ALA Fluorescence-Guided Resection of High-Grade Glioma Leads to Greater Extent of Resection with Better Outcomes: A Systematic Review. Journal of Neuro-Oncology, 156, 233-256.
https://doi.org/10.1007/s11060-021-03901-9
[6] Golub, D., Hyde, J., Dogra, S., Nicholson, J., Kirkwood, K.A., Gohel, P., et al. (2021) Intraoperative MRI versus 5-ALA in High-Grade Glioma Resection: A Network Meta-Analysis. Journal of Neurosurgery, 134, 484-498.
https://doi.org/10.3171/2019.12.jns191203
[7] Karschnia, P., Young, J.S., Dono, A., et al. (2023) Prognostic Validation of a New Classification System for Extent of Resection in Glioblastoma: A Report of the RANO Resect Group. Neuro-Oncology, 25, 940-954.
[8] Walshaw, R.C., Hoskin, P.J. and Choudhury, A. (2021) Can Hypofractionation and Immune Modulation Coexist? International Journal of Radiation Oncology, Biology, Physics, 110, 742-744.
[9] Bleehen, N. and Stenning, S. (1991) A Medical Research Council Trial of Two Radiotherapy Doses in the Treatment of Grades 3 and 4 Astrocytoma. British Journal of Cancer, 64, 769-774.
https://doi.org/10.1038/bjc.1991.396
[10] Nemati, R., Shooli, H., Rekabpour, S.J., Ahmadzadehfar, H., Jafari, E., Ravanbod, M.R., et al. (2021) Feasibility and Therapeutic Potential of Peptide Receptor Radionuclide Therapy for High-Grade Gliomas. Clinical Nuclear Medicine, 46, 389-395.
https://doi.org/10.1097/rlu.0000000000003599
[11] Wait, S.D., Prabhu, R.S., Burri, S.H., Atkins, T.G. and Asher, A.L. (2015) Polymeric Drug Delivery for the Treatment of Glioblastoma. Neuro-Oncology, 17, ii9-ii23.
https://doi.org/10.1093/neuonc/nou360
[12] Jezierzański, M., Nafalska, N., Stopyra, M., Furgoł, T., Miciak, M., Kabut, J., et al. (2024) Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme—A Literature Review and Clinical Outcomes. Current Oncology, 31, 3994-4002.
https://doi.org/10.3390/curroncol31070296
[13] Stefan, D., Lesueur, P., Lequesne, J., et al. (2025) Olaparib, Temozolomide and Concomitant Radiotherapy for Partially or Biopsy-Only Glioblastoma First-Line Treatment: Results from the OLA-TMZ-RTE-01 Phase 1 Study. Clinical Cancer Research.
[14] Bai, P., Fan, T., Wang, X., Zhao, L., Zhong, R. and Sun, G. (2023) Modulating MGMT Expression through Interfering with Cell Signaling Pathways. Biochemical Pharmacology, 215, Article ID: 115726.
https://doi.org/10.1016/j.bcp.2023.115726
[15] 张伟, 王政. 中国抗癌协会脑胶质瘤整合诊治指南(精简版) [J]. 中国肿瘤临床, 2022, 49(16): 811-818.
[16] 初曙光, 郭琤琤, 赫振炎, 等. 胶质瘤化疗中国专家共识[J]. 中国神经精神疾病杂志, 2024, 50(8): 449-462.
[17] Bao, Z., Li, S., Wang, L., Zhang, B., Zhang, P., Shi, H., et al. (2023) PTPRZ1-METFUsion GENe (ZM-FUGEN) Trial: Study Protocol for a Multicentric, Randomized, Open-Label Phase II/III Trial. Chinese Neurosurgical Journal, 9, Article No. 21.
https://doi.org/10.1186/s41016-023-00329-0
[18] Huang, R., Liu, Y., Wang, K., Wang, Z., Zhang, C., Zhang, W., et al. (2021) High‐Sensitive Clinical Diagnostic Method for PTPRZ1‐MET and the Characteristic Protein Structure Contributing to Ligand‐Independent MET Activation. CNS Neuroscience & Therapeutics, 27, 617-628.
https://doi.org/10.1111/cns.13627
[19] McBain, C., Lawrie, T.A., Rogozińska, E., Kernohan, A., Robinson, T. and Jefferies, S. (2021) Treatment Options for Progression or Recurrence of Glioblastoma: A Network Meta-Analysis. Cochrane Database of Systematic Reviews, 5, CD013579.
https://doi.org/10.1002/14651858.cd013579.pub2
[20] 颜成睿, 张梦雨, 马文斌. 应用贝伐珠单抗治疗高级别胶质瘤的研究进展[J]. 中华神经外科杂志, 2016, 32(1): 88-90.
[21] Lim, S., Clarke, N.H., Maloney, S.L., Sener, U.T., Caron, S.J., Kizilbash, S.H., et al. (2025) Bevacizumab Exerts Dose-Dependent Risk for Intracranial Hemorrhage in Patients with Malignant Gliomas. Journal of Neuro-Oncology, 172, 273-280.
https://doi.org/10.1007/s11060-024-04916-8
[22] 王镔, 赵刚. 脑胶质瘤免疫治疗的进展与展望[J]. 中国微侵袭神经外科杂志, 2018, 23(11): 523-526.
[23] Siragusa, G., Tomasello, L., Giordano, C. and Pizzolanti, G. (2024) Survivin (BIRC5): Implications in Cancer Therapy. Life Sciences, 350, Article ID: 122788.
https://doi.org/10.1016/j.lfs.2024.122788
[24] Fenstermaker, R.A., Ciesielski, M.J., Qiu, J., Yang, N., Frank, C.L., Lee, K.P., et al. (2016) Clinical Study of a Survivin Long Peptide Vaccine (SurVaxM) in Patients with Recurrent Malignant Glioma. Cancer Immunology, Immunotherapy, 65, 1339-1352.
https://doi.org/10.1007/s00262-016-1890-x
[25] Ahluwalia, M.S., Reardon, D.A., Abad, A.P., Curry, W.T., Wong, E.T., Figel, S.A., et al. (2023) Phase IIa Study of SurVaxM plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. Journal of Clinical Oncology, 41, 1453-1465.
https://doi.org/10.1200/jco.22.00996
[26] Hotchkiss, K.M., Batich, K.A., Mohan, A., Rahman, R., Piantadosi, S. and Khasraw, M. (2023) Dendritic Cell Vaccine Trials in Gliomas: Untangling the Lines. Neuro-Oncology, 25, 1752-1762.
https://doi.org/10.1093/neuonc/noad088
[27] Batich, K.A., Reap, E.A., Archer, G.E., Sanchez-Perez, L., Nair, S.K., Schmittling, R.J., et al. (2017) Long-Term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clinical Cancer Research, 23, 1898-1909.
https://doi.org/10.1158/1078-0432.ccr-16-2057
[28] Liau, L.M., Ashkan, K., Brem, S., et al. (2023) Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination with Extension of Survival among Patients with Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncology, 9, 112-121.
[29] Macedo, N., Miller, D.M., Haq, R. and Kaufman, H.L. (2020) Clinical Landscape of Oncolytic Virus Research in 2020. Journal for ImmunoTherapy of Cancer, 8, e001486.
https://doi.org/10.1136/jitc-2020-001486
[30] Cheng, G., Dong, H., Yang, C., Liu, Y., Wu, Y., Zhu, L., et al. (2021) A Review on the Advances and Challenges of Immunotherapy for Head and Neck Cancer. Cancer Cell International, 21, Article No. 406.
https://doi.org/10.1186/s12935-021-02024-5
[31] Ning, W., Qian, X., Dunmall, L.C., Liu, F., Guo, Y., Li, S., et al. (2024) Non-Secreting IL12 Expressing Oncolytic Adenovirus Ad-TD-nsIL12 in Recurrent High-Grade Glioma: A Phase I Trial. Nature Communications, 15, Article No. 9299.
https://doi.org/10.1038/s41467-024-53041-7
[32] Zubair, A. and De Jesus, O. (2023) Ommaya Reservoir. StatPearls Publishing.
[33] Tudor, T., Binder, Z.A. and O’Rourke, D.M. (2021) CAR T Cells. Neurosurgery Clinics of North America, 32, 249-263.
https://doi.org/10.1016/j.nec.2020.12.005
[34] Zhang, X., Zhu, L., Zhang, H., Chen, S. and Xiao, Y. (2022) CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Frontiers in Immunology, 13, Article ID: 927153.
https://doi.org/10.3389/fimmu.2022.927153
[35] Brown, C.E., Hibbard, J.C., Alizadeh, D., et al. (2024) Locoregional Delivery of IL-13Rα2-Targeting CAR-T Cells in Recurrent High-Grade Glioma: A Phase 1 Trial. Nature Medicine, 30, 1001-1012.
[36] Choi, B.D., Gerstner, E.R., Frigault, M.J., Leick, M.B., Mount, C.W., Balaj, L., et al. (2024) Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma. New England Journal of Medicine, 390, 1290-1298.
https://doi.org/10.1056/nejmoa2314390
[37] Daassi, D., Mahoney, K.M. and Freeman, G.J. (2020) The Importance of Exosomal PDL1 in Tumour Immune Evasion. Nature Reviews Immunology, 20, 209-215.
https://doi.org/10.1038/s41577-019-0264-y
[38] Yang, T., Kong, Z. and Ma, W. (2020) PD-1/PD-L1 Immune Checkpoint Inhibitors in Glioblastoma: Clinical Studies, Challenges and Potential. Human Vaccines & Immunotherapeutics, 17, 546-553.
https://doi.org/10.1080/21645515.2020.1782692
[39] DeCordova, S., Shastri, A., Tsolaki, A.G., Yasmin, H., Klein, L., Singh, S.K., et al. (2020) Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Frontiers in Immunology, 11, Article No. 1402.
https://doi.org/10.3389/fimmu.2020.01402
[40] Ammendola, S., Caldonazzi, N., Simbolo, M., Piredda, M.L., Brunelli, M., Poliani, P.L., et al. (2021) H3k27me3 Immunostaining Is Diagnostic and Prognostic in Diffuse Gliomas with Oligodendroglial or Mixed Oligoastrocytic Morphology. Virchows Archiv, 479, 987-996.
https://doi.org/10.1007/s00428-021-03134-1
[41] Spinelli, C., Adnani, L., Meehan, B., Montermini, L., Huang, S., Kim, M., et al. (2024) Mesenchymal Glioma Stem Cells Trigger Vasectasia-Distinct Neovascularization Process Stimulated by Extracellular Vesicles Carrying EGFR. Nature Communications, 15, Article No. 2865.
https://doi.org/10.1038/s41467-024-46597-x
[42] Johnson, A.L., Khela, H.S., Korleski, J., et al. (2025) TGFBR2 High Mesenchymal Glioma Stem Cells Phenocopy Regulatory T Cells to Suppress CD4+ and CD8+ T Cell Function.
[43] Reardon, D.A., Brandes, A.A., Omuro, A., Mulholland, P., Lim, M., Wick, A., et al. (2020) Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology, 6, 1003-1010.
https://doi.org/10.1001/jamaoncol.2020.1024
[44] Ott, P.A., Bang, Y., Piha-Paul, S.A., Razak, A.R.A., Bennouna, J., Soria, J., et al. (2019) T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated with Pembrolizumab across 20 Cancers: KEYNOTE-028. Journal of Clinical Oncology, 37, 318-327.
https://doi.org/10.1200/jco.2018.78.2276
[45] Tan, Y., Liu, P., Li, D., Wang, D. and Tang, B.Z. (2022) NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 12, Article No. 46.
https://doi.org/10.3390/bios12010046
[46] Su, X., Liu, Y., Zhong, Y., Shangguan, P., Liu, J., Luo, Z., et al. (2025) A Brain-Targeting NIR-II Polymeric Phototheranostic Nanoplatform toward Orthotopic Drug-Resistant Glioblastoma. Nano Letters, 25, 3445-3454.
https://doi.org/10.1021/acs.nanolett.4c05470
[47] Gui, Y., Wang, Y., Wang, D., Qin, Y., Song, G., Yan, D., et al. (2024) Thiophene π-Bridge Manipulation of NIR‐II AIEgens for Multimodal Tumor Phototheranostics. Angewandte Chemie International Edition, 63, e202318609.
https://doi.org/10.1002/anie.202318609
[48] Liu, S., Shi, W., Zhao, Q., Zheng, Z., Liu, Z., Meng, L., et al. (2021) Progress and Prospect in Tumor Treating Fields Treatment of Glioblastoma. Biomedicine & Pharmacotherapy, 141, Article ID: 111810.
https://doi.org/10.1016/j.biopha.2021.111810
[49] Ballo, M.T., Conlon, P., Lavy-Shahaf, G., Kinzel, A., Vymazal, J. and Rulseh, A.M. (2023) Association of Tumor Treating Fields (TTFields) Therapy with Survival in Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Journal of Neuro-Oncology, 164, 1-9.
https://doi.org/10.1007/s11060-023-04348-w
[50] Akbarnejad, Z., Eskandary, H., Dini, L., Vergallo, C., Nematollahi-Mahani, S.N., Farsinejad, A., et al. (2017) Cytotoxicity of Temozolomide on Human Glioblastoma Cells Is Enhanced by the Concomitant Exposure to an Extremely Low-Frequency Electromagnetic Field (100 Hz, 100 G). Biomedicine & Pharmacotherapy, 92, 254-264.
https://doi.org/10.1016/j.biopha.2017.05.050
[51] Ashta, A., Motalleb, G. and Ahmadi-Zeidabadi, M. (2020) Evaluation of Frequency Magnetic Field, Static Field, and Temozolomide on Viability, Free Radical Production and Gene Expression (p53) in the Human Glioblastoma Cell Line (A172). Electromagnetic Biology and Medicine, 39, 298-309.
https://doi.org/10.1080/15368378.2020.1793171
[52] Dehghani-Soltani, S., Eftekhar-Vaghefi, S.H., Babaee, A., Basiri, M., Mohammadipoor-Ghasemabad, L., Vosough, P., et al. (2021) Pulsed and Discontinuous Electromagnetic Field Exposure Decreases Temozolomide Resistance in Glioblastoma by Modulating the Expression of O6-Methylguanine-DNA Methyltransferase, Cyclin-D1, and P53. Cancer Biotherapy and Radiopharmaceuticals, 36, 579-587.
https://doi.org/10.1089/cbr.2020.3851
[53] 林方家, 李骜, 刘文博, 等. 中频交变磁场对大鼠F98胶质瘤细胞的体外生物效应[J]. 现代生物医学进展, 2018, 18(13): 2424-2430.
[54] Vasishta, V.G. (2010) Sequentially Programmed Magnetic Field Therapy in the Management of Recurrent Anaplastic Astrocytoma: A Case Report and Literature Review. Case Reports in Oncology, 3, 189-194.
https://doi.org/10.1159/000316358
[55] Baskin, D.S., Sharpe, M.A., Nguyen, L. and Helekar, S.A. (2021) Case Report: End-Stage Recurrent Glioblastoma Treated with a New Noninvasive Non-Contact Oncomagnetic Device. Frontiers in Oncology, 11, Article ID: 708017.
https://doi.org/10.3389/fonc.2021.708017
[56] Cobbs, C., McClay, E., Duic, J.P., Nabors, L.B., Morgan Murray, D. and Kesari, S. (2018) An Early Feasibility Study of the Nativis Voyager® Device in Patients with Recurrent Glioblastoma: First Cohort in Us. CNS Oncology, 8, CNS30.
https://doi.org/10.2217/cns-2018-0013
[57] Butters, J.T., Figueroa, X.A. and Butters, B.M. (2014) Non-Thermal Radio Frequency Stimulation of Tubulin Polymerization in Vitro: A Potential Therapy for Cancer Treatment. Open Journal of Biophysics, 4, 147-168.
https://doi.org/10.4236/ojbiphy.2014.44015
[58] Ulasov, I.V., Foster, H., Butters, M., Yoon, J., Ozawa, T., Nicolaides, T., et al. (2017) Precision Knockdown of EGFR Gene Expression Using Radio Frequency Electromagnetic Energy. Journal of Neuro-Oncology, 133, 257-264.
https://doi.org/10.1007/s11060-017-2440-x
[59] Murphy, M., Dowling, A., Thien, C., Priest, E., Morgan Murray, D. and Kesari, S. (2019) A Feasibility Study of the Nativis Voyager® Device in Patients with Recurrent Glioblastoma in Australia. CNS Oncology, 8, CNS31.
https://doi.org/10.2217/cns-2018-0017