[1]
|
Yasuda, I.W. (1977) Electrical Callus and Callus Formation by Electret. Clinical Orthopaedics and Related Research, 124, 53-56. https://doi.org/10.1097/00003086-197705000-00007
|
[2]
|
Sun, Y., Zeng, K. and Li, T. (2020) Piezo-/Ferroelectric Phenomena in Biomaterials: A Brief Review of Recent Progress and Perspectives. Science China Physics, Mechanics & Astronomy, 63, Article No. 278701. https://doi.org/10.1007/s11433-019-1500-y
|
[3]
|
Wieland, D.C.F., Krywka, C., Mick, E., Willumeit-Römer, R., Bader, R. and Kluess, D. (2015) Investigation of the Inverse Piezoelectric Effect of Trabecular Bone on a Micrometer Length Scale Using Synchrotron Radiation. Acta Biomaterialia, 25, 339-346. https://doi.org/10.1016/j.actbio.2015.07.021
|
[4]
|
Lanyon, L.E. (1993) Skeletal Responses to Physical Loading. In: Lanyon, L.E., Ed., Physiology and Pharmacology of Bone, Springer, 485-505. https://doi.org/10.1007/978-3-642-77991-6_14
|
[5]
|
Salhotra, A., Shah, H.N., Levi, B. and Longaker, M.T. (2020) Mechanisms of Bone Development and Repair. Nature Reviews Molecular Cell Biology, 21, 696-711. https://doi.org/10.1038/s41580-020-00279-w
|
[6]
|
da Silva, L.P., Kundu, S.C., Reis, R.L. and Correlo, V.M. (2020) Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends in Biotechnology, 38, 24-49. https://doi.org/10.1016/j.tibtech.2019.07.002
|
[7]
|
Bab, I., Ashton, B.A., Gazit, D., Marx, G., Williamson, M.C. and Owen, M.E. (1986) Kinetics and Differentiation of Marrow Stromal Cells in Diffusion Chambers in Vivo. Journal of Cell Science, 84, 139-151. https://doi.org/10.1242/jcs.84.1.139
|
[8]
|
Keynes, R.D. (1975) The Ionic Channels in Excitable Membranes. Ciba Foundation Symposium, No. 31, 191-203.
|
[9]
|
Crowder, S.W., Prasai, D., Rath, R., Balikov, D.A., Bae, H., Bolotin, K.I., et al. (2013) Three-Dimensional Graphene Foams Promote Osteogenic Differentiation of Human Mesenchymal Stem Cells. Nanoscale, 5, 4171-4176. https://doi.org/10.1039/c3nr00803g
|
[10]
|
Lee, W.C., Lim, C.H., Kenry, Su, C., Loh, K.P. and Lim, C.T. (2014) Cell-Assembled Graphene Biocomposite for Enhanced Chondrogenic Differentiation. Small, 11, 963-969. https://doi.org/10.1002/smll.201401635
|
[11]
|
Jang, J., Castano, O. and Kim, H. (2009) Electrospun Materials as Potential Platforms for Bone Tissue Engineering. Advanced Drug Delivery Reviews, 61, 1065-1083. https://doi.org/10.1016/j.addr.2009.07.008
|
[12]
|
Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195. https://doi.org/10.1021/nn901479w
|
[13]
|
McCaig, C.D. and Zhao, M. (1997) Physiological Electrical Fields Modify Cell Behaviour. BioEssays, 19, 819-826. https://doi.org/10.1002/bies.950190912
|
[14]
|
Chen, J., Yu, M., Guo, B., Ma, P.X. and Yin, Z. (2018) Conductive Nanofibrous Composite Scaffolds Based on In-Situ Formed Polyaniline Nanoparticle and Polylactide for Bone Regeneration. Journal of Colloid and Interface Science, 514, 517-527. https://doi.org/10.1016/j.jcis.2017.12.062
|
[15]
|
Hu, W., Chen, T., Tsao, C. and Cheng, Y. (2018) The Effects of Substrate‐Mediated Electrical Stimulation on the Promotion of Osteogenic Differentiation and Its Optimization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 1607-1619. https://doi.org/10.1002/jbm.b.34253
|
[16]
|
Sun, M., Deng, Z., Shi, F., Zhou, Z., Jiang, C., Xu, Z., et al. (2020) Rebamipide-Loaded Chitosan Nanoparticles Accelerate Prostatic Wound Healing by Inhibiting M1 Macrophage-Mediated Inflammation via the NF-κB Signaling Pathway. Biomaterials Science, 8, 912-925. https://doi.org/10.1039/c9bm01512d
|
[17]
|
Kumar, A., Nune, K.C. and Misra, R.D.K. (2016) Electric Field-Mediated Growth of Osteoblasts—The Significant Impact of Dynamic Flow of Medium. Biomaterials Science, 4, 136-144. https://doi.org/10.1039/c5bm00350d
|
[18]
|
MacLean, P.D., Chapman, E.E., Dobrowolski, S.L., Thompson, A. and Barclay, L.R.C. (2008) Pyrroles as Antioxidants: Solvent Effects and the Nature of the Attacking Radical on Antioxidant Activities and Mechanisms of Pyrroles, Dipyrrinones, and Bile Pigments. The Journal of Organic Chemistry, 73, 6623-6635. https://doi.org/10.1021/jo8005073
|
[19]
|
Curie, J. and Curie, P. (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société minéralogique de France, 3, 90-93. https://doi.org/10.3406/bulmi.1880.1564
|
[20]
|
Park, J.B., Kelly, B.J., Kenner, G.H., von Recum, A.F., Grether, M.F. and Coffeen, W.W. (1981) Piezoelectric Ceramic Implants: In vivo Results. Journal of Biomedical Materials Research, 15, 103-110. https://doi.org/10.1002/jbm.820150114
|
[21]
|
Liu, J., Qi, W., Xu, M., Thomas, T., Liu, S. and Yang, M. (2022) Piezocatalytic Techniques in Environmental Remediation. Angewandte Chemie International Edition, 62, e202213927. https://doi.org/10.1002/anie.202213927
|
[22]
|
Kang, Y., Lei, L., Zhu, C., Zhang, H., Mei, L. and Ji, X. (2021) Piezo-photocatalytic Effect Mediating Reactive Oxygen Species Burst for Cancer Catalytic Therapy. Materials Horizons, 8, 2273-2285. https://doi.org/10.1039/d1mh00492a
|
[23]
|
Peng, M., Zhao, Q., Wang, M. and Du, X. (2023) Reconfigurable Scaffolds for Adaptive Tissue Regeneration. Nanoscale, 15, 6105-6120. https://doi.org/10.1039/d3nr00281k
|
[24]
|
Wang, R., Sui, J. and Wang, X. (2022) Natural Piezoelectric Biomaterials: A Biocompatible and Sustainable Building Block for Biomedical Devices. ACS Nano, 16, 17708-17728. https://doi.org/10.1021/acsnano.2c08164
|
[25]
|
Wu, L., Gao, H., Han, Q., Guan, W., Sun, S., Zheng, T., et al. (2023) Piezoelectric Materials for Neuroregeneration: A Review. Biomaterials Science, 11, 7296-7310. https://doi.org/10.1039/d3bm01111a
|
[26]
|
Zaszczynska, A., Sajkiewicz, P. and Gradys, A. (2020) Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers, 12, Article 161. https://doi.org/10.3390/polym12010161
|
[27]
|
Damaraju, S.M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., et al. (2017) Three-Dimensional Piezoelectric Fibrous Scaffolds Selectively Promote Mesenchymal Stem Cell Differentiation. Biomaterials, 149, 51-62. https://doi.org/10.1016/j.biomaterials.2017.09.024
|
[28]
|
Samadi, A., Salati, M.A., Safari, A., Jouyandeh, M., Barani, M., Singh Chauhan, N.P., et al. (2022) Comparative Review of Piezoelectric Biomaterials Approach for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 33, 1555-1594. https://doi.org/10.1080/09205063.2022.2065409
|
[29]
|
Ribeiro, C., Sencadas, V., Correia, D.M. and Lanceros-Méndez, S. (2015) Piezoelectric Polymers as Biomaterials for Tissue Engineering Applications. Colloids and Surfaces B: Biointerfaces, 136, 46-55. https://doi.org/10.1016/j.colsurfb.2015.08.043
|
[30]
|
Jianqing, F., Huipin, Y. and Xingdong, Z. (1997) Promotion of Osteogenesis by a Piezoelectric Biological Ceramic. Biomaterials, 18, 1531-1534. https://doi.org/10.1016/s0142-9612(97)80004-x
|
[31]
|
Liu, Z., Wan, X., Wang, Z.L. and Li, L. (2021) Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 33, Article ID: 2007429. https://doi.org/10.1002/adma.202007429
|
[32]
|
West, C.R. and Bowden, A.E. (2012) Using Tendon Inherent Electric Properties to Consistently Track Induced Mechanical Strain. Annals of Biomedical Engineering, 40, 1568-1574. https://doi.org/10.1007/s10439-011-0504-1
|
[33]
|
Liu, Y., Wang, Y., Chow, M., Chen, N.Q., Ma, F., Zhang, Y., et al. (2013) Glucose Suppresses Biological Ferroelectricity in Aortic Elastin. Physical Review Letters, 110, Article ID: 168101. https://doi.org/10.1103/physrevlett.110.168101
|
[34]
|
Pate, F.D. (1994) Bone Chemistry and Paleodiet. Journal of Archaeological Method and Theory, 1, 161-209. https://doi.org/10.1007/bf02231415
|
[35]
|
Ciofani, G., Ricotti, L. and Mattoli, V. (2010) Preparation, Characterization and in Vitro Testing of Poly(Lactic-Co-Glycolic) Acid/Barium Titanate Nanoparticle Composites for Enhanced Cellular Proliferation. Biomedical Microdevices, 13, 255-266. https://doi.org/10.1007/s10544-010-9490-6
|
[36]
|
deVet, T., et al. (2021) Bone Bioelectricity and Bone-Cell Response to Electrical Stimulation: A Review. Critical Reviews in Biomedical Engineering, 49, 1-19. https://doi.org/10.1615/CritRevBiomedEng.2021035327
|
[37]
|
Wu, Z., Tang, T., Guo, H., Tang, S., Niu, Y., Zhang, J., et al. (2014) In Vitro Degradability, Bioactivity and Cell Responses to Mesoporous Magnesium Silicate for the Induction of Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 120, 38-46. https://doi.org/10.1016/j.colsurfb.2014.04.010
|
[38]
|
Frias, C., Reis, J., Capela e Silva, F., Potes, J., Simões, J. and Marques, A.T. (2010) Polymeric Piezoelectric Actuator Substrate for Osteoblast Mechanical Stimulation. Journal of Biomechanics, 43, 1061-1066. https://doi.org/10.1016/j.jbiomech.2009.12.010
|
[39]
|
Guillot-Ferriols, M., Rodríguez-Hernández, J.C., Correia, D.M., Carabineiro, S.A.C., Lanceros-Méndez, S., Gómez Ribelles, J.L., et al. (2020) Poly(vinylidene) Fluoride Membranes Coated by Heparin/Collagen Layer-By-Layer, Smart Biomimetic Approaches for Mesenchymal Stem Cell Culture. Materials Science and Engineering: C, 117, Article ID: 111281. https://doi.org/10.1016/j.msec.2020.111281
|
[40]
|
Ikada, Y., Shikinami, Y., Hara, Y., Tagawa, M. and Fukada, E. (1996) Enhancement of Bone Formation by Drawn Poly(l-lactide). Journal of Biomedical Materials Research, 30, 553-558. https://doi.org/10.1002/(sici)1097-4636(199604)30:4<553::aid-jbm14>3.0.co;2-i
|
[41]
|
Chen, S., Tong, X., Huo, Y., Liu, S., Yin, Y., Tan, M., et al. (2024) Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. Advanced Materials, 36, Article No. 18833. https://doi.org/10.1002/adma.202406192
|
[42]
|
Shimono, T., Matsunaga, S., Fukada, E., Hattori, T. and Shikinami, Y. (1996) The Effects of Piezoelectric Poly L Lactic Acid Films in Promoting Ossification in Vivo. In Vivo, 10, 471-476.
|
[43]
|
Wang, Y., Wu, Q. and Chen, G. (2004) Attachment, Proliferation and Differentiation of Osteoblasts on Random Biopolyester Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Scaffolds. Biomaterials, 25, 669-675. https://doi.org/10.1016/s0142-9612(03)00561-1
|
[44]
|
Lee, J.H., Shin, Y.C., Lee, S., Jin, O.S., Kang, S.H., Hong, S.W., et al. (2015) Enhanced Osteogenesis by Reduced Graphene Oxide/hydroxyapatite Nanocomposites. Scientific Reports, 5, Article No. 18833. https://doi.org/10.1038/srep18833
|
[45]
|
Choe, G., Oh, S., Seok, J.M., Park, S.A. and Lee, J.Y. (2019) Graphene Oxide/Alginate Composites as Novel Bioinks for Three-Dimensional Mesenchymal Stem Cell Printing and Bone Regeneration Applications. Nanoscale, 11, 23275-23285. https://doi.org/10.1039/c9nr07643c
|
[46]
|
Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V.P., et al. (2014) Dynamic Piezoelectric Stimulation Enhances Osteogenic Differentiation of Human Adipose Stem Cells. Journal of Biomedical Materials Research Part A, 103, 2172-2175. https://doi.org/10.1002/jbm.a.35368
|
[47]
|
Kenry, Lee, W.C., Loh, K.P. and Lim, C.T. (2018) When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine. Biomaterials, 155, 236-250. https://doi.org/10.1016/j.biomaterials.2017.10.004
|
[48]
|
Fernandes, M.M., Correia, D.M., Ribeiro, C., Castro, N., Correia, V. and Lanceros-Mendez, S. (2019) Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11, 45265-45275. https://doi.org/10.1021/acsami.9b14001
|
[49]
|
Cui, L., Zhang, J., Zou, J., Yang, X., Guo, H., Tian, H., et al. (2020) Electroactive Composite Scaffold with Locally Expressed Osteoinductive Factor for Synergistic Bone Repair Upon Electrical Stimulation. Biomaterials, 230, Article ID: 119617. https://doi.org/10.1016/j.biomaterials.2019.119617
|
[50]
|
Zheng, T., Huang, Y., Zhang, X., Cai, Q., Deng, X. and Yang, X. (2020) Mimicking the Electrophysiological Microenvironment of Bone Tissue Using Electroactive Materials to Promote Its Regeneration. Journal of Materials Chemistry B, 8, 10221-10256. https://doi.org/10.1039/d0tb01601b
|
[51]
|
Kitsara, M., Blanquer, A., Murillo, G., Humblot, V., De Bragança Vieira, S., Nogués, C., et al. (2019) Permanently Hydrophilic, Piezoelectric PVDF Nanofibrous Scaffolds Promoting Unaided Electromechanical Stimulation on Osteoblasts. Nanoscale, 11, 8906-8917. https://doi.org/10.1039/c8nr10384d
|
[52]
|
Liu, Y., Dzidotor, G., Le, T.T., Vinikoor, T., Morgan, K., Curry, E.J., et al. (2022) Exercise-Induced Piezoelectric Stimulation for Cartilage Regeneration in Rabbits. Science Translational Medicine, 14, eabi7282. https://doi.org/10.1126/scitranslmed.abi7282
|
[53]
|
More, N. and Kapusetti, G. (2017) Piezoelectric Material—A Promising Approach for Bone and Cartilage Regeneration. Medical Hypotheses, 108, 10-16. https://doi.org/10.1016/j.mehy.2017.07.021
|
[54]
|
Yang, F., Li, J., Long, Y., Zhang, Z., Wang, L., Sui, J., et al. (2021) Wafer-Scale Heterostructured Piezoelectric Bio-Organic Thin Films. Science, 373, 337-342. https://doi.org/10.1126/science.abf2155
|
[55]
|
Kramp, B., Bernd, H., Schumacher, W., Blynow, M., Schmidt, W., Kunze, C., et al. (2002) Polyhydroxybuttersäure (PHB)-Folien und-Platten zur Defektdeckung des knöchernen Schädels im Kaninchenmodell. Laryngo-Rhino-Otologie, 81, 351-356. https://doi.org/10.1055/s-2002-28343
|
[56]
|
Rocha, L.B., Goissis, G. and Rossi, M.A. (2002) Biocompatibility of Anionic Collagen Matrix as Scaffold for Bone Healing. Biomaterials, 23, 449-456. https://doi.org/10.1016/s0142-9612(01)00126-0
|
[57]
|
Wroe, J.A., Johnson, C.T. and García, A.J. (2019) Bacteriophage Delivering Hydrogels Reduce Biofilm Formation in Vitro and Infection in Vivo. Journal of Biomedical Materials Research Part A, 108, 39-49. https://doi.org/10.1002/jbm.a.36790
|
[58]
|
Guo, S., Zhang, Z., Cao, L., Wu, T., Li, B. and Cui, Y. (2023) Nanocomposites Containing ZnO-TiO2-Chitosan and Berbamine Promote Osteoblast Differentiation, Proliferation, and Calcium Mineralization in MG63 Osteoblasts. Process Biochemistry, 124, 63-70. https://doi.org/10.1016/j.procbio.2022.11.004
|
[59]
|
Deng, J., Song, Q., Liu, S., Pei, W., Wang, P., Zheng, L., et al. (2022) Advanced Applications of Cellulose-Based Composites in Fighting Bone Diseases. Composites Part B: Engineering, 245, Article ID: 110221. https://doi.org/10.1016/j.compositesb.2022.110221
|