|
[1]
|
Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020) Fully Hardware-Implemented Memristor Convolutional Neural Network. Nature, 577, 641-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Woźniak, S., Pantazi, A., Bohnstingl, T. and Eleftheriou, E. (2020) Deep Learning Incorporating Biologically Inspired Neural Dynamics and In-Memory Computing. Nature Machine Intelligence, 2, 325-336. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhang, Q., Yu, H., Barbiero, M., Wang, B. and Gu, M. (2019) Artificial Neural Networks Enabled by Nanophotonics. Light: Science & Applications, 8, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Thompson, R.F. (1986) The Neurobiology of Learning and Memory. Science, 233, 941-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, J., Mengu, D., Yardimci, N.T., Luo, Y., Li, X., Veli, M., et al. (2021) Spectrally Encoded Single-Pixel Machine Vision Using Diffractive Networks. Science Advances, 7, eabd7690. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhou, Y., Zhao, X., Xu, J., Chen, G., Tat, T., Li, J., et al. (2024) A Multimodal Magnetoelastic Artificial Skin for Underwater Haptic Sensing. Science Advances, 10, eadj8567. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., et al. (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163, 456-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, H., Gu, M., Jiang, X.D., Thompson, J., Cai, H., Paesani, S., et al. (2021) An Optical Neural Chip for Implementing Complex-Valued Neural Network. Nature Communications, 12, Article No. 457. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, T., Ma, S., Wright, L.G., Onodera, T., Richard, B.C. and McMahon, P.L. (2022) An Optical Neural Network Using Less than 1 Photon per Multiplication. Nature Communications, 13, Article No. 123. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bernstein, L., Sludds, A., Panuski, C., Trajtenberg-Mills, S., Hamerly, R. and Englund, D. (2023) Single-Shot Optical Neural Network. Science Advances, 9, eadg7904. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., Jarrahi, M., et al. (2018) All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science, 361, 1004-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ranno, L., Gupta, P., Gradkowski, K., Bernson, R., Weninger, D., Serna, S., et al. (2022) Integrated Photonics Packaging: Challenges and Opportunities. ACS Photonics, 9, 3467-3485. [Google Scholar] [CrossRef]
|
|
[13]
|
Goi, E., Schoenhardt, S. and Gu, M. (2022) Direct Retrieval of Zernike-Based Pupil Functions Using Integrated Diffractive Deep Neural Networks. Nature Communications, 13, Article No. 7531. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dong, C., Cai, Y., Dai, S., Wu, J., Tong, G., Wang, W., et al. (2023) An Optimized Optical Diffractive Deep Neural Network with Orelu Function Based on Genetic Algorithm. Optics & Laser Technology, 160, Article ID: 109104. [Google Scholar] [CrossRef]
|
|
[15]
|
Fang, T., Li, J., Zhang, X. and Dong, X. (2021) Classification Accuracy Improvement of the Optical Diffractive Deep Neural Network by Employing a Knowledge Distillation and Stochastic Gradient Descent Β-Lasso Joint Training Framework. Optics Express, 29, 44264-4474. [Google Scholar] [CrossRef]
|
|
[16]
|
Pour Fard, M.M., Williamson, I.A.D., Edwards, M., Liu, K., Pai, S., Bartlett, B., et al. (2020) Experimental Realization of Arbitrary Activation Functions for Optical Neural Networks. Optics Express, 28, 12138-12148. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yu, J., Yang, X., Gao, G., Xiong, Y., Wang, Y., Han, J., et al. (2021) Bioinspired Mechano-Photonic Artificial Synapse Based on Graphene/MoS2 Heterostructure. Science Advances, 7, eabd9117. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Park, H., Kim, H., Lim, D., Zhou, H., Kim, Y., Lee, Y., et al. (2020) Retina‐Inspired Carbon Nitride‐Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials, 32, Article ID: 1906899. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Seo, S., Lee, J., Lee, R., Kim, T.H., Park, S., Jung, S., et al. (2021) An Optogenetics‐Inspired Flexible Van Der Waals Optoelectronic Synapse and Its Application to a Convolutional Neural Network. Advanced Materials, 33, Article ID: 2102980. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Huang, X., Li, Q., Shi, W., Liu, K., Zhang, Y., Liu, Y., et al. (2021) Dual‐Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small, 17, Article ID: 2102820. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, Y., Wang, J., Yang, Q. and Shen, G. (2022) Flexible Artificial Optoelectronic Synapse Based on Lead‐Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition. Advanced Science, 9, Article ID: 2202123. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
He, K., Liu, Y., Yu, J., Guo, X., Wang, M., Zhang, L., et al. (2022) Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 16, 9691-9700. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Islam, M.M., Krishnaprasad, A., Dev, D., Martinez-Martinez, R., Okonkwo, V., Wu, B., et al. (2022) Multiwavelength Optoelectronic Synapse with 2D Materials for Mixed-Color Pattern Recognition. ACS Nano, 16, 10188-10198. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kim, M. and Lee, J. (2020) Synergistic Improvement of Long‐Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia‐Based Oxide‐Semiconductor Transistors. Advanced Materials, 32, Article ID: 1907826. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gregory, W., MacEachern, R., Takao, S., Lawrence, I.R., Nab, C., Deisenroth, M.P., et al. (2024) Scalable Interpolation of Satellite Altimetry Data with Probabilistic Machine Learning. Nature Communications, 15, Article No. 7453. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pang, B., Nijkamp, E. and Wu, Y.N. (2019) Deep Learning with Tensorflow: A Review. Journal of Educational and Behavioral Statistics, 45, 227-248. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, Z., Chen, J. and Hoi, S.C.H. (2021) Deep Learning for Image Super-Resolution: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3365-3387. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kim, T., Oh, J., Kim, N.Y., Cho, S. and Yun, S. (2021) Comparing Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge Distillation. Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, 19-27 August 2021, 2628-2635. [Google Scholar] [CrossRef]
|
|
[29]
|
Burch, J. and Di Falco, A. (2018) Surface Topology Specific Metasurface Holograms. ACS Photonics, 5, 1762-1766. [Google Scholar] [CrossRef]
|
|
[30]
|
Li, R., Dong, Y., Qian, F., Xie, Y., Chen, X., Zhang, Q., et al. (2023) CsPbBr3/Graphene Nanowall Artificial Optoelectronic Synapses for Controllable Perceptual Learning. PhotoniX, 4, Article No. 4. [Google Scholar] [CrossRef]
|
|
[31]
|
Blanchard, P., Higham, D.J. and Higham, N.J. (2020) Accurately Computing the Log-Sum-Exp and Softmax Functions. IMA Journal of Numerical Analysis, 41, 2311-2330. [Google Scholar] [CrossRef]
|