[1]
|
Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314. https://doi.org/10.1016/j.kint.2023.10.018
|
[2]
|
GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, 395, 709-733.
|
[3]
|
国家肾脏疾病临床医学研究中心. 中国慢性肾脏病矿物质和骨异常诊治指南概要[J]. 肾脏病与透析肾移植杂志, 2019, 28(1): 52-57.
|
[4]
|
Fang, Y., Ginsberg, C., Sugatani, T., Monier-Faugere, M., Malluche, H. and Hruska, K.A. (2014) Early Chronic Kidney Disease-Mineral Bone Disorder Stimulates Vascular Calcification. Kidney International, 85, 142-150. https://doi.org/10.1038/ki.2013.271
|
[5]
|
Cunningham, J., Locatelli, F. and Rodriguez, M. (2011) Secondary Hyperparathyroidism: Pathogenesis, Disease Progression, and Therapeutic Options. Clinical Journal of the American Society of Nephrology, 6, 913-921. https://doi.org/10.2215/cjn.06040710
|
[6]
|
Greenland, P., Blaha, M.J., Budoff, M.J., Erbel, R. and Watson, K.E. (2018) Coronary Calcium Score and Cardiovascular Risk. Journal of the American College of Cardiology, 72, 434-447. https://doi.org/10.1016/j.jacc.2018.05.027
|
[7]
|
Molina, P., Molina, M.D., Pallardó, L.M., Torralba, J., Escudero, V., Álvarez, L., et al. (2021) Disorders in Bone-Mineral Parameters and the Risk of Death in Persons with Chronic Kidney Disease Stages 4 and 5: The PECERA Study. Journal of Nephrology, 34, 1189-1199. https://doi.org/10.1007/s40620-020-00916-9
|
[8]
|
Jüppner, H. (2011) Phosphate and FGF-23. Kidney International, 79, S24-S27. https://doi.org/10.1038/ki.2011.27
|
[9]
|
Jacquillet, G. and Unwin, R.J. (2018) Physiological Regulation of Phosphate by Vitamin D, Parathyroid Hormone (PTH) and Phosphate (PI). Pflügers Archiv—European Journal of Physiology, 471, 83-98. https://doi.org/10.1007/s00424-018-2231-z
|
[10]
|
Bergwitz, C. and Jüppner, H. (2010) Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annual Review of Medicine, 61, 91-104. https://doi.org/10.1146/annurev.med.051308.111339
|
[11]
|
Hu, M.C., Shi, M. and Moe, O.W. (2018) Role of Αklotho and FGF23 in Regulation of Type II Na-Dependent Phosphate Co-transporters. Pflügers Archiv—European Journal of Physiology, 471, 99-108. https://doi.org/10.1007/s00424-018-2238-5
|
[12]
|
Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., et al. (2004) FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. Journal of Bone and Mineral Research, 19, 429-435. https://doi.org/10.1359/jbmr.0301264
|
[13]
|
Centeno, P.P., Herberger, A., Mun, H., Tu, C., Nemeth, E.F., Chang, W., et al. (2019) Phosphate Acts Directly on the Calcium-Sensing Receptor to Stimulate Parathyroid Hormone Secretion. Nature Communications, 10, Article No. 4693. https://doi.org/10.1038/s41467-019-12399-9
|
[14]
|
Bellasi, A., Mandreoli, M., Baldrati, L., Corradini, M., Di Nicolò, P., Malmusi, G., et al. (2011) Chronic Kidney Disease Progression and Outcome According to Serum Phosphorus in Mild-To-Moderate Kidney Dysfunction. Clinical Journal of the American Society of Nephrology, 6, 883-891. https://doi.org/10.2215/cjn.07810910
|
[15]
|
Dhingra, R. (2007) Relations of Serum Phosphorus and Calcium Levels to the Incidence of Cardiovascular Disease in the Community. Archives of Internal Medicine, 167, 879-885. https://doi.org/10.1001/archinte.167.9.879
|
[16]
|
Hou, Y., Li, X., Sun, L., Qu, Z., Jiang, L. and Du, Y. (2017) Phosphorus and Mortality Risk in End-Stage Renal Disease: A Meta-Analysis. Clinica Chimica Acta, 474, 108-113. https://doi.org/10.1016/j.cca.2017.09.005
|
[17]
|
Goodman, W.G. (2002) New Lessons from Old Assays: Parathyroid Hormone (PTH), Its Receptors, and the Potential Biological Relevance of PTH Fragments. Nephrology Dialysis Transplantation, 17, 1731-1736. https://doi.org/10.1093/ndt/17.10.1731
|
[18]
|
Vervloet, M.G., Massy, Z.A., Brandenburg, V.M., Mazzaferro, S., Cozzolino, M., Ureña-Torres, P., et al. (2014) Bone: A New Endocrine Organ at the Heart of Chronic Kidney Disease and Mineral and Bone Disorders. The Lancet Diabetes & Endocrinology, 2, 427-436. https://doi.org/10.1016/s2213-8587(14)70059-2
|
[19]
|
Goltzman, D., Mannstadt, M. and Marcocci, C. (2018) Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. In: Giustina, A. and Bilezikian, J.P., Eds., Frontiers of Hormone Research, S. Karger AG, 1-13. https://doi.org/10.1159/000486060
|
[20]
|
Brown, E.M. (2013) Role of the Calcium-Sensing Receptor in Extracellular Calcium Homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 333-343. https://doi.org/10.1016/j.beem.2013.02.006
|
[21]
|
Dusso, A.S., Brown, A.J. and Slatopolsky, E. (2005) Vitamin D. American Journal of Physiology-Renal Physiology, 289, F8-F28. https://doi.org/10.1152/ajprenal.00336.2004
|
[22]
|
Fukagawa, M. and Kazama, J.J. (2007) The Making of a Bone in Blood Vessels: From the Soft Shell to the Hard Bone. Kidney International, 72, 533-534. https://doi.org/10.1038/sj.ki.5002440
|
[23]
|
Pascale, A.V., Finelli, R., Giannotti, R., Visco, V., Fabbricatore, D., Matula, I., et al. (2018) Vitamin D, Parathyroid Hormone and Cardiovascular Risk: The Good, the Bad and the Ugly. Journal of Cardiovascular Medicine, 19, 62-66. https://doi.org/10.2459/jcm.0000000000000614
|
[24]
|
Hyder, R. and Sprague, S.M. (2020) Secondary Hyperparathyroidism in a Patient with CKD. Clinical Journal of the American Society of Nephrology, 15, 1041-1043. https://doi.org/10.2215/cjn.13411119
|
[25]
|
Erben, R.G. (2018) Physiological Actions of Fibroblast Growth Factor-23. Frontiers in Endocrinology, 9, Article 267. https://doi.org/10.3389/fendo.2018.00267
|
[26]
|
Kuro-o, M. (2009) Overview of the FGF23-Klotho Axis. Pediatric Nephrology, 25, 583-590. https://doi.org/10.1007/s00467-009-1260-4
|
[27]
|
Mace, M.L., Gravesen, E., Nordholm, A., Olgaard, K. and Lewin, E. (2017) Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone in Vivo through the FGF Receptor in Normocalcemia, but Not in Hypocalcemia. Calcified Tissue International, 102, 85-92. https://doi.org/10.1007/s00223-017-0333-9
|
[28]
|
Miyamoto, K., Ito, M., Kuwahata, M., Kato, S. and Segawa, H. (2005) Inhibition of Intestinal Sodium‐Dependent Inorganic Phosphate Transport by Fibroblast Growth Factor 23. Therapeutic Apheresis and Dialysis, 9, 331-335. https://doi.org/10.1111/j.1744-9987.2005.00292.x
|
[29]
|
Andrukhova, O., Smorodchenko, A., Egerbacher, M., Streicher, C., Zeitz, U., Goetz, R., et al. (2014) FGF23 Promotes Renal Calcium Reabsorption through the TRPV5 Channel. The EMBO Journal, 33, 229-246. https://doi.org/10.1002/embj.201284188
|
[30]
|
Canalejo, R., Canalejo, A., Martinez-Moreno, J.M., Rodriguez-Ortiz, M.E., Estepa, J.C., Mendoza, F.J., et al. (2010) FGF23 Fails to Inhibit Uremic Parathyroid Glands. Journal of the American Society of Nephrology, 21, 1125-1135. https://doi.org/10.1681/asn.2009040427
|
[31]
|
David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney International, 89, 135-146. https://doi.org/10.1038/ki.2015.290
|
[32]
|
Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. and Nabeshima, Y. (2003) Klotho, a Gene Related to a Syndrome Resembling Human Premature Aging, Functions in a Negative Regulatory Circuit of Vitamin D Endocrine System. Molecular Endocrinology, 17, 2393-2403. https://doi.org/10.1210/me.2003-0048
|
[33]
|
Galitzer, H., Ben-Dov, I.Z., Silver, J. and Naveh-Many, T. (2010) Parathyroid Cell Resistance to Fibroblast Growth Factor 23 in Secondary Hyperparathyroidism of Chronic Kidney Disease. Kidney International, 77, 211-218. https://doi.org/10.1038/ki.2009.464
|
[34]
|
Hu, M.C., Shi, M., Zhang, J., Quiñones, H., Griffith, C., Kuro-o, M., et al. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136. https://doi.org/10.1681/asn.2009121311
|
[35]
|
Clarke, B. (2008) Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology, 3, S131-S139. https://doi.org/10.2215/cjn.04151206
|
[36]
|
余学清, 赵明辉, 陈江华, 等. 肾内科学[M]. 北京: 人民卫生出版社, 2021.
|
[37]
|
Byon, C.H. and Chen, Y. (2015) Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Current Osteoporosis Reports, 13, 206-215. https://doi.org/10.1007/s11914-015-0270-3
|
[38]
|
Dalle Carbonare, L., Valenti, M.T., Giannini, S., Gallieni, M., Stefani, F., Ciresa, R., et al. (2021) Bone Biopsy for Histomorphometry in Chronic Kidney Disease (CKD): State-of-the-Art and New Perspectives. Journal of Clinical Medicine, 10, Article 4617. https://doi.org/10.3390/jcm10194617
|
[39]
|
Fusaro, M., Re Sartò, G.V., Gallieni, M., Cosmai, L., Messa, P., Rossini, M., et al. (2022) Time for Revival of Bone Biopsy with Histomorphometric Analysis in Chronic Kidney Disease (CKD): Moving from Skepticism to Pragmatism. Nutrients, 14, Article 1742. https://doi.org/10.3390/nu14091742
|
[40]
|
Cosman, F., de Beur, S.J., LeBoff, M.S., Lewiecki, E.M., Tanner, B., Randall, S., et al. (2014) Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 25, 2359-2381. https://doi.org/10.1007/s00198-014-2794-2
|
[41]
|
Sidibé, A., Auguste, D., Desbiens, L., Fortier, C., Wang, Y.P., Jean, S., et al. (2018) Fracture Risk in Dialysis and Kidney Transplanted Patients: A Systematic Review. JBMR Plus, 3, 45-55. https://doi.org/10.1002/jbm4.10067
|
[42]
|
Pazianas, M. and Miller, P.D. (2021) Osteoporosis and Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD): Back to Basics. American Journal of Kidney Diseases, 78, 582-589. https://doi.org/10.1053/j.ajkd.2020.12.024
|
[43]
|
Moe, S.M. (2017) Renal Osteodystrophy or Kidney-Induced Osteoporosis? Current Osteoporosis Reports, 15, 194-197. https://doi.org/10.1007/s11914-017-0364-1
|
[44]
|
Damasiewicz, M.J. and Nickolas, T.L. (2018) Rethinking Bone Disease in Kidney Disease. JBMR Plus, 2, 309-322. https://doi.org/10.1002/jbm4.10117
|
[45]
|
Jørgensen, H.S., Behets, G., Viaene, L., Bammens, B., Claes, K., Meijers, B., et al. (2022) Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. American Journal of Kidney Diseases, 79, 667-676.e1. https://doi.org/10.1053/j.ajkd.2021.07.027
|
[46]
|
Bergman, A., Qureshi, A.R., Haarhaus, M., Lindholm, B., Barany, P., Heimburger, O., et al. (2016) Total and Bone-Specific Alkaline Phosphatase Are Associated with Bone Mineral Density over Time in End-Stage Renal Disease Patients Starting Dialysis. Journal of Nephrology, 30, 255-262. https://doi.org/10.1007/s40620-016-0292-7
|
[47]
|
Lalayiannis, A.D., Crabtree, N.J., Ferro, C.J., Askiti, V., Mitsioni, A., Biassoni, L., et al. (2020) Routine Serum Biomarkers, but Not Dual-Energy X-Ray Absorptiometry, Correlate with Cortical Bone Mineral Density in Children and Young Adults with Chronic Kidney Disease. Nephrology Dialysis Transplantation, 36, 1872-1881. https://doi.org/10.1093/ndt/gfaa199
|
[48]
|
Sprague, S.M., Bellorin-Font, E., Jorgetti, V., Carvalho, A.B., Malluche, H.H., Ferreira, A., et al. (2016) Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients with CKD Treated by Dialysis. American Journal of Kidney Diseases, 67, 559-566. https://doi.org/10.1053/j.ajkd.2015.06.023
|
[49]
|
Drüeke, T.B. and Massy, Z.A. (2016) Changing Bone Patterns with Progression of Chronic Kidney Disease. Kidney International, 89, 289-302. https://doi.org/10.1016/j.kint.2015.12.004
|
[50]
|
Salam, S., Gallagher, O., Gossiel, F., Paggiosi, M., Khwaja, A. and Eastell, R. (2018) Diagnostic Accuracy of Biomarkers and Imaging for Bone Turnover in Renal Osteodystrophy. Journal of the American Society of Nephrology, 29, 1557-1565. https://doi.org/10.1681/asn.2017050584
|
[51]
|
West, S.L., Patel, P. and Jamal, S.A. (2015) How to Predict and Treat Increased Fracture Risk in Chronic Kidney Disease. Journal of Internal Medicine, 278, 19-28. https://doi.org/10.1111/joim.12361
|
[52]
|
《中国骨质疏松杂志》骨代谢专家组. 骨代谢生化指标临床应用专家共识(2023修订版) [J]. 中国骨质疏松杂志, 2023, 29(4): 469-476.
|
[53]
|
Kanis, J.A., Cooper, C., Rizzoli, R. and Reginster, J. (2018) European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporosis International, 30, 3-44. https://doi.org/10.1007/s00198-018-4704-5
|
[54]
|
Tian, A., Ma, J., Feng, K., Liu, Z., Chen, L., Jia, H., et al. (2019) Reference Markers of Bone Turnover for Prediction of Fracture: A Meta-Analysis. Journal of Orthopaedic Surgery and Research, 14, Article No. 68. https://doi.org/10.1186/s13018-019-1100-6
|
[55]
|
Massy, Z. and Drueke, T. (2017) Adynamic Bone Disease Is a Predominant Bone Pattern in Early Stages of Chronic Kidney Disease. Journal of Nephrology, 30, 629-634. https://doi.org/10.1007/s40620-017-0397-7
|
[56]
|
Ozaki, Y., Koide, M., Furuya, Y., Ninomiya, T., Yasuda, H., Nakamura, M., et al. (2017) Treatment of OPG-Deficient Mice with WP9QY, a Rankl-Binding Peptide, Recovers Alveolar Bone Loss by Suppressing Osteoclastogenesis and Enhancing Osteoblastogenesis. PLOS ONE, 12, e0184904. https://doi.org/10.1371/journal.pone.0184904
|
[57]
|
司佶宜, 张晓良. 慢性肾脏病患者骨代谢标志物的临床意义[J]. 临床肾脏病杂志, 2023, 23(3): 245-251.
|
[58]
|
Saran, R., Robinson, B., Abbott, K.C., et al. (2018) US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 71, A7.
|
[59]
|
Hutcheson, J.D. and Goettsch, C. (2023) Cardiovascular Calcification Heterogeneity in Chronic Kidney Disease. Circulation Research, 132, 993-1012. https://doi.org/10.1161/circresaha.123.321760
|
[60]
|
Hou, Y., Lu, C., Yuan, T., Liao, M., Chao, C. and Lu, K. (2020) The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. International Journal of Molecular Sciences, 21, Article 980. https://doi.org/10.3390/ijms21030980
|
[61]
|
Ryu, J., Ahn, Y., Kook, H. and Kim, Y. (2021) The Roles of Non-Coding RNAs in Vascular Calcification and Opportunities as Therapeutic Targets. Pharmacology & Therapeutics, 218, Article ID: 107675. https://doi.org/10.1016/j.pharmthera.2020.107675
|
[62]
|
Jono, S., McKee, M.D., Murry, C.E., Shioi, A., Nishizawa, Y., Mori, K., et al. (2000) Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circulation Research, 87, E10-E17. https://doi.org/10.1161/01.res.87.7.e10
|
[63]
|
Chen, N.X., O’Neill, K.D., Duan, D. and Moe, S.M. (2002) Phosphorus and Uremic Serum Up-Regulate Osteopontin Expression in Vascular Smooth Muscle Cells. Kidney International, 62, 1724-1731. https://doi.org/10.1046/j.1523-1755.2002.00625.x
|
[64]
|
Kapustin, A.N., Chatrou, M.L.L., Drozdov, I., Zheng, Y., Davidson, S.M., Soong, D., et al. (2015) Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 116, 1312-1323. https://doi.org/10.1161/circresaha.116.305012
|
[65]
|
Zhu, Y., Han, X., Sun, X., Yang, R., Ma, W. and Liu, N. (2020) Lactate Accelerates Vascular Calcification through NR4A1-Regulated Mitochondrial Fission and BNIP3-Related Mitophagy. Apoptosis, 25, 321-340. https://doi.org/10.1007/s10495-020-01592-7
|
[66]
|
Chen, P., Schwartz, M.A. and Simons, M. (2020) Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Frontiers in Cardiovascular Medicine, 7, Article 53. https://doi.org/10.3389/fcvm.2020.00053
|
[67]
|
Boström, K.I., Yao, J., Guihard, P.J., Blazquez-Medela, A.M. and Yao, Y. (2016) Endothelial-Mesenchymal Transition in Atherosclerotic Lesion Calcification. Atherosclerosis, 253, 124-127. https://doi.org/10.1016/j.atherosclerosis.2016.08.046
|
[68]
|
Hjortnaes, J., Shapero, K., Goettsch, C., Hutcheson, J.D., Keegan, J., Kluin, J., et al. (2015) Valvular Interstitial Cells Suppress Calcification of Valvular Endothelial Cells. Atherosclerosis, 242, 251-260. https://doi.org/10.1016/j.atherosclerosis.2015.07.008
|
[69]
|
Shanahan, C.M., Crouthamel, M.H., Kapustin, A. and Giachelli, C.M. (2011) Arterial Calcification in Chronic Kidney Disease: Key Roles for Calcium and Phosphate. Circulation Research, 109, 697-711. https://doi.org/10.1161/circresaha.110.234914
|
[70]
|
Xia, Y., Li, B., Zhang, F., Wu, Q., Wen, S., Jiang, N., et al. (2022) Hydroxyapatite Nanoparticles Promote Mitochondrial-Based Pyroptosis via Activating Calcium Homeostasis and Redox Imbalance in Vascular Smooth Muscle Cells. Nanotechnology, 33, Article ID: 275101. https://doi.org/10.1088/1361-6528/ac61ca
|
[71]
|
Shroff, R.C., McNair, R., Skepper, J.N., Figg, N., Schurgers, L.J., Deanfield, J., et al. (2010) Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification. Journal of the American Society of Nephrology, 21, 103-112. https://doi.org/10.1681/asn.2009060640
|
[72]
|
Rodenbeck, S.D., Zarse, C.A., McKenney-Drake, M.L., Bruning, R.S., Sturek, M., Chen, N.X., et al. (2016) Intracellular Calcium Increases in Vascular Smooth Muscle Cells with Progression of Chronic Kidney Disease in a Rat Model. Nephrology Dialysis Transplantation, 32, 450-458. https://doi.org/10.1093/ndt/gfw274
|
[73]
|
Zhu, X., Ma, K., Zhou, K., Liu, J., Nürnberg, B. and Lang, F. (2021) Vasopressin-Stimulated ORAI1 Expression and Store-Operated Ca2+ Entry in Aortic Smooth Muscle Cells. Journal of Molecular Medicine, 99, 373-382. https://doi.org/10.1007/s00109-020-02016-4
|
[74]
|
Ray, M. and Jovanovich, A. (2019) Mineral Bone Abnormalities and Vascular Calcifications. Advances in Chronic Kidney Disease, 26, 409-416. https://doi.org/10.1053/j.ackd.2019.09.004
|
[75]
|
Sánchez‐Duffhues, G., García de Vinuesa, A., van de Pol, V., Geerts, M.E., de Vries, M.R., Janson, S.G., et al. (2019) Inflammation Induces Endothelial‐to‐Mesenchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. The Journal of Pathology, 247, 333-346. https://doi.org/10.1002/path.5193
|
[76]
|
Yamada, S., Taniguchi, M., Tokumoto, M., Toyonaga, J., Fujisaki, K., Suehiro, T., et al. (2011) The Antioxidant Tempol Ameliorates Arterial Medial Calcification in Uremic Rats: Important Role of Oxidative Stress in the Pathogenesis of Vascular Calcification in Chronic Kidney Disease. Journal of Bone and Mineral Research, 27, 474-485. https://doi.org/10.1002/jbmr.539
|
[77]
|
Byon, C.H., Javed, A., Dai, Q., Kappes, J.C., Clemens, T.L., Darley-Usmar, V.M., et al. (2008) Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling. Journal of Biological Chemistry, 283, 15319-15327. https://doi.org/10.1074/jbc.m800021200
|
[78]
|
Evenepoel, P., Opdebeeck, B., David, K. and D’Haese, P.C. (2019) Bone-Vascular Axis in Chronic Kidney Disease. Advances in Chronic Kidney Disease, 26, 472-483. https://doi.org/10.1053/j.ackd.2019.09.006
|
[79]
|
Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R.A., Teti, A., et al. (2010) Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 142, 296-308. https://doi.org/10.1016/j.cell.2010.06.003
|
[80]
|
Morisawa, T., Nakagomi, A., Kohashi, K., Kusama, Y. and Shimizu, W. (2017) Serum Tartrate-Resistant Acid Phosphatase-5b Levels Are Associated with the Severity and Extent of Coronary Atherosclerosis in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 24, 1058-1068. https://doi.org/10.5551/jat.39339
|