慢性肾脏病矿物质和骨异常研究进展
Advances in the Study of Mineral and Bone Abnormalities in Chronic Kidney Disease
DOI: 10.12677/acm.2025.1541264, PDF, HTML, XML,   
作者: 高云飞, 赵建荣*:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特
关键词: 矿物质代谢肾性骨营养不良骨质疏松血管钙化Mineral Metabolism Renal Osteodystrophy Osteoporosis Vascular Calcification
摘要: 慢性肾脏病(Chronic kidney disease, CKD)是肾脏结构和/或功能异常,持续时间超过3个月,并对健康造成影响的慢性疾病。其伴随有显著的疾病负担和较高的发病率。慢性肾脏病矿物质和骨异常(Chronic kidney disease-mineral and bone disorder, CKD-MBD)是CKD的并发症,临床表现为钙、磷、甲状旁腺激素及维生素D代谢异常,骨营养不良及血管钙化等,严重影响着CKD患者的预后。本文围绕矿物质代谢紊乱、骨营养不良、血管钙化的机制研究展开综述。
Abstract: Chronic kidney disease (CKD) is a chronic disease in which the kidneys are structurally and/or functionally abnormal for more than 3 months and have an impact on health. It is associated with a significant disease burden and high morbidity. Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a complication of CKD, which is clinically manifested by abnormal metabolism of calcium, phosphorus, parathyroid hormone and vitamin D, osteodystrophy and vascular calcification, which seriously affects the prognosis of patients with CKD. This article reviews the mechanisms of mineral metabolism disorders, osteodystrophy, and vascular calcification.
文章引用:高云飞, 赵建荣. 慢性肾脏病矿物质和骨异常研究进展[J]. 临床医学进展, 2025, 15(4): 2990-3000. https://doi.org/10.12677/acm.2025.1541264

1. 引言

慢性肾脏病(Chronic kidney disease, CKD)是指肾脏结构和/或功能异常,持续时间超过3个月,并对健康造成影响的慢性疾病[1]。CKD是一个广泛存在的健康问题,其伴随着显著的疾病负担和较高的发病率。2017年,全球记录的CKD病例为6.975亿例,全球患病率为9.1%,导致全球有近120万人死亡,这一无声的“隐形杀手”不仅侵蚀着数以百万计患者的生命质量,更在全球死亡原因中占据着日益重要的地位[2]。其悄然改变着全球疾病谱的格局,为各国医疗卫生体系带来前所未有的挑战,亟待我们以更深刻的认知、更积极的行动来应对CKD的病情进展。

CKD早期会出现疲劳乏力、水肿等临床表现,随着病情进展,患者通常会面临一系列复杂的多系统并发症,包括心血管系统、神经肌肉系统、内分泌系统及全身代谢等。其中,慢性肾脏病矿物质和骨异常(Chronic kidney disease-mineral and bone disorder, CKD-MBD)是CKD的严重并发症之一,显著影响着CKD患者的预后。CKD-MBD是指CKD所致的矿物质与骨代谢异常综合征,可出现以下一项或多项临床表现:(1) 钙、磷、甲状旁腺激素(Parathyroid hormone, PTH)或维生素D代谢异常;(2) 骨转化、骨矿化、骨量、骨线性生长或骨强度异常;(3) 血管或其他软组织钙化[3]。充分了解慢性肾脏病矿物质代谢、骨异常和血管钙化之间的复杂关系对于有效的诊断和治疗干预至关重要。

2. CKD与矿物质代谢异常

CKD-MBD通常在CKD病程的初期就悄然发生,但只有当肾小球滤过率(Glomerular filtration rate, GFR)低于45~50 mL/min/1.73m2 (基于评估GFR的不同方法)时,才会出现低钙血症、高磷血症、维生素D降低及继发性甲状旁腺功能亢进,并随着病程的进展而恶化(CKD3b-5期) [4]

2.1. 钙

维持适当的血清钙水平对预防CKD-MBD非常关键[5]。随着CKD疾病进展,肾功能减退,血清钙水平下降,患者往往出现低钙血症。此外,CKD患者也可能会因服用含钙磷结合剂、使用活性维生素D或在透析患者中使用高钙透析液等出现高钙血症。研究表明,血清低钙和高钙水平均与CKD进展和心血管死亡率升高相关[6] [7]

2.2. 磷酸盐

磷酸盐是一种重要的生物元素,是DNA、细胞膜脂、高能磷酸盐、第二信使和蛋白质磷酸化的重要组成部分[8]。磷酸盐稳态是通过三种钠依赖性磷酸盐共转运蛋白(NaPi-2a、NaPi-2b和NaPi-2c)来维持的。钠依赖性磷酸盐共转运蛋白的表达受血清磷酸盐浓度本身[9]和不同激素系统的调节。低血清磷酸盐水平会刺激肠道内NaPi-2b的表达,增加食物中磷的吸收,也会刺激肾脏近端小管中NaPi-2a和NaPi-2c的表达,最大限度地增加肾小球滤过后磷酸盐的重吸收,并减少其尿排泄,从而升高血清磷酸盐,维持磷酸盐平衡。研究发现,调节磷酸盐平衡的主要激素是成纤维细胞生长因子23 (Fibroblast Growth Factor 23, FGF-23)/klotho和PTH [10]。在CKD早期,随着肾功能减退,磷酸盐滤过减少从而超载,刺激FGF-23和PTH代偿性增加,通过下调NaPi-2共转运蛋白的表达,并产生磷酸化效应,降低血清磷酸盐,维持磷酸盐平衡[11]。CKD晚期中,当GFR低于30~40 mL/min/1.73m2时,FGF23-Klotho轴出现失调,增加的FGF-23水平不再能够有效促进残余肾单位中磷酸盐的排泄,最终导致明显的高磷血症的发展,这刺激了骨骼中FGF-23的进一步分泌。同时,高水平的FGF-23抑制1,25-二羟基维生素D3 (1α,25-dihydroxyvitamin D3, 1,25(OH)2D3)生成[12],从而促进PTH的分泌,形成恶性循环。高磷血症还可通过诱导低钙血症、减少1,25(OH)2D3的形成和增加PTH基因表达来促进甲状旁腺功能亢进[13],致矿物质代谢紊乱。磷酸盐代谢平衡在维持肾脏功能及心血管健康中起着重要作用,其紊乱与肾脏疾病进展及心血管事件的发生密切相关。根据Bellasi [14]等人的研究,磷酸盐水平≥4.3 mg/dL的CKD患者进展为终末期肾病(End-stage kidney disease, ESKD)和死亡的风险增加。Dhingra [15]等人还证实,在肾功能正常且无心血管疾病的健康个体中,较高的血清磷水平与心血管事件风险增加相关。此外,Hou [16]等人在2017年进行了一项荟萃分析,该研究包括9项队列研究和1,992,869名血液透析患者,结果显示血磷水平最高和最低均与全因死亡率风险增加相关。

2.3. 甲状旁腺激素

甲状旁腺激素(PTH)是一种由甲状旁腺分泌的肽,其活性形式被称为“全段甲状旁腺激素”,由84个氨基酸组成,通过裂解非活性形式获得[17]。PTH可通过刺激骨骼对钙的释放、肾脏对钙的再吸收以及小肠对膳食中钙的吸收,从而调节体内钙的平衡。在骨骼中,PTH通过激活破骨细胞来促进骨吸收,致骨骼释放钙和磷,进一步调节钙磷代谢[18]。在肾脏中,PTH通过增加近端小管对钙的重吸收和促进磷酸盐的排泄来调节电解质平衡。还可以上调肾脏中1-α-羟化酶基因(CYP27B1)的表达,增加1,25(OH)2D3的生成[19],进而刺激肠道增加膳食中钙和磷的吸收。主要调控PTH分泌的是细胞外液中的钙离子。血清钙离子直接结合并激活甲状旁腺细胞上表达的钙敏感受体(CaSR),触发细胞内信号通路,导致细胞内钙的增加,从而减少PTH合成和释放[20]。与之相对,在细胞外液钙水平降低时,PTH的合成与分泌将会增加。除血清钙外,PTH也受到磷酸盐、1,25(OH)2D3等调控。高磷酸盐会促进甲状旁腺功能亢进,详见1.2处[13]。1,25(OH)2D3升高会抑制PTH合成与释放,详见1.4处[21]。在CKD患者中,肾功能减退,常出现低钙血症和高磷血症,进而刺激PTH分泌增加,进而出现继发性甲状旁腺功能亢进症(Secondary hyperparathyroidism,SHPT)。SHPT会促使骨转换活跃,导致血清钙和磷水平明显升高,出现不同程度的骨营养不良,并与动脉中膜钙化的发展密切相关[22]。研究表明,PTH水平升高是骨折的独立预测因子[7]

2.4. 维生素D

维生素D是一种类固醇激素,它以两种主要形式存在:骨化二醇和骨化三醇,由连续羟基化得到。25-羟基维生素D3,又称为骨化二醇,是维生素D的较低生物活性形式,由肝脏生成,但在血液循环中含量较高[23]。1,25-二羟基维生素D3,又称为骨化三醇,是维生素D的活性形式,它由25-羟基维生素D3在肾脏近端小管中经1-α-羟化酶(CYP27B1)的羟基化反应生成。骨化三醇经24-羟化酶(CYP24A1)降解,转换为无活性的代谢产物,1-α-羟化酶与24-羟化酶相互调节维持骨化三醇活性的平衡。骨化三醇通过激活靶器官上表达的维生素D受体(VDR),从而调控与生物反应相关的靶基因的转录率。它不仅能够直接抑制甲状旁腺细胞的增殖,还可以通过增加肠道对膳食中钙和磷的吸收,升高血清钙、磷的浓度,间接抑制PTH基因的表达。此外,在骨骼中,骨化三醇能够刺激骨细胞生成FGF-23 [21]。在CKD患者中,随着肾功能减退,肾脏近端小管中1-α-羟化酶(CYP27B1)的活性下降,导致1,25-二羟基维生素D3的合成显著减少。同时,FGF-23水平升高和高磷血症的出现,两者共同作用,抑制1,25-二羟基维生素D3的合成及其活性,进而导致维生素D受体(VDR)反应性下降和甲状旁腺钙敏感受体(CaSR)表达减少。这些变化进一步刺激PTH合成增加,并促进甲状旁腺增生[24]

2.5. 成纤维细胞生长因子-23

成纤维细胞生长因子-23 (Fibroblast Growth Factor 23, FGF-23)是一种由成骨细胞和骨细胞合成的32KDa的糖蛋白[25]。FGF-23对靶器官的生理作用是由FGF-23受体(Fibroblast Growth Factor 23 receptor, FGFR)介导的,该受体需要辅助受体αKlotho,其能够促使FGF-23增加对FGFR的亲和力[26]。在CKD的早期阶段,FGF-23是最先且主导调节血磷的激素[27]。高水平的FGF-23可减轻高磷血症,降低1,25(OH)2D3水平,抑制甲状旁腺激素的合成和分泌。在肾脏的近端小管中,FGF-23通过抑制两种钠依赖性磷酸盐共转运蛋白(NaPi2a和NaPi2c)的表达,降低肾小管对磷酸盐的重吸收能力,从而增加磷酸盐从尿液中的排泄[11]。在肠道中,FGF-23通过抑制NaPi2b共转运蛋白活性[28],降低肠道对磷酸盐的吸收,以维持体内磷酸盐的平衡。在肾脏的远端小管中,FGF-23通过增加上皮钙通道TRPV5和钠–氯共转运蛋白(NCC)的顶端表达,促进钙和钠的重吸收[29]。FGF-23还分别通过抑制1-α-羟化酶(CYP27B1)和刺激24-羟化酶(CYP24A1) [12]来抑制1,25(OH)2D3的合成并促进其降解,降低1,25(OH)2D3血清浓度,从而减少肠道对膳食中钙和磷的吸收。(FGF-23通过抑制和刺激羟化酶来发挥作用,文献未提及详细的信号通路)(由于矿物质代谢较为复杂,时间较为紧迫,所以没有绘图来展示互相调节的关系)在甲状旁腺中,FGF-23抑制甲状旁腺的生成和分泌,但也增加甲状旁腺钙敏感受体(CaSR)和维生素D受体(VDR)的表达,进一步促进该激素对甲状旁腺的抑制[30]。CKD进展后期的FGF-23变化见1.2处所述。

2.6. Klotho

Klotho是一种I型膜结合β-葡萄糖苷酶样蛋白[31]。如前文所述,αKlotho是FGF-23的辅助受体,赋予FGF-23组织特异性。其表达受1,25(OH)2D3的正调控[32]。在CKD中,随着疾病进展,肾功能逐渐减退,血浆中1,25(OH)2D3水平下降,从而降低肾脏和甲状旁腺中Klotho的表达,导致FGF-23/Klotho轴紊乱,使这些器官对FGF-23产生抗性[33]。在基础研究中发现,实验小鼠模型中的Klotho缺乏症会导致钙/磷酸盐代谢改变,伴有高磷血症、继发性甲状旁腺功能亢进、血管钙化、心脏肥厚、早衰和寿命缩短[32] [34]

3. CKD与骨代谢异常

3.1. 骨骼的组成

骨骼是一种复杂的结缔组织,其结构主要由有机基质和无机基质两大部分组成。有机基质主要由胶原蛋白和非胶原蛋白组成,两者赋予骨骼柔韧性和抗张强度。无机基质主要由羟基磷灰石晶体组成,赋予骨骼硬度和抗压能力。此外,骨骼中还含有少量水分及细胞成分,如成骨细胞、破骨细胞和骨细胞等,成骨细胞主要参与骨形成,破骨细胞主要参与骨吸收,这些细胞在骨骼的动态重塑过程中起着关键作用,以维持骨骼的代谢平衡和力学适应性[35]

3.2. 骨代谢异常

随着CKD进展,矿物质代谢紊乱,影响骨骼系统的骨吸收与骨形成,出现骨转换失衡,骨微结构、骨质量改变,引发CKD-MBD中的骨代谢异常,即肾性骨营养不良(Renal osteodystrophy, ROD) [36]。RDO依据病理学形态分为高转运性骨病、低转运性骨病、混合性骨病等。随着CKD病程不断进展,肾功能减退,出现低钙血症、高磷血症,维生素D降低等,继发性引起PTH升高,促进成骨细胞合成和释放核因子κB受体激活因子配体(Receptor activator of nuclear factor kappa B ligand, RANKL),RANKL与破骨细胞表面的核因子κB受体激活因子(Receptor activator of nuclear factor kappa B, RANK)结合,促进破骨细胞分化与成熟,刺激骨吸收[37]。骨吸收刺激成骨细胞功能活跃,介导新骨生成。骨吸收与骨生成速度加快,新生骨的钙化不充分,纤维组织增生活跃,出现纤维囊性骨炎,出现高转运性骨病。随着GFR进一步下降,尿毒症毒素沉积于骨小梁表面,成骨细胞与破骨细胞对PTH产生抵抗,或者部分老年人出现PTH水平偏低,骨吸收与骨生成速度减慢,出现低转运性骨病。高转运性骨病与低转运性骨病同时存在称为混合性骨病。其中,高转运性骨病和低转运性骨病在CKD患者中较为常见,且这两种类型在疾病进展过程中可能相互转化[36]。ROD不仅导致骨生物力学性能降低,还会引起骨脆性升高,致使病理性骨折的发生风险增加,并可能引发一系列相关的骨骼系统并发症。临床主要表现为骨痛、骨骼畸形、骨坏死和骨折,严重影响着CKD患者的预后。骨活检是诊断ROD的金标准,能够提供关于骨结构、骨转换率和骨矿化状态的独特信息。但是,骨活检为侵入性检查,也存在潜在的并发症风险,最关键的是,能够准确解读骨活检结果的经验丰富的病理学家较为稀缺,临床应用较为受限[38] [39]

骨质疏松症指的是一种以骨量低、骨组织微结构破坏、骨强度下降以及由此所致的骨折风险增加为特征的疾病[40]。CKD本身也是骨质疏松症的独立危险因素[41]。近年来,随着对CKD-MBD研究的不断深入,研究发现CKD患者骨折发生率会随着年龄增长呈逐步上升趋势,且其发病机制与非CKD的老年骨折不同。有学者提出新的观点认为,在CKD-MBD的病理进程中,相较于ROD,由CKD直接诱发的骨质疏松(Osteoporosis, OP)可能在CKD-MBD中占据更加主导的地位[42]。CKD诱发的骨质疏松与肾性骨营养不良引发的骨重塑异常及骨代谢紊乱密切相关,因此,也有学者提出了“肾性骨质疏松症”[43]或“CKD相关骨质疏松症”[44]的拟定术语。(这部分是有学者新提出的,所以说的是可能)随着研究深入,未来CKD相关的骨质疏松症有望被纳入CKD-MBD的范畴。骨质疏松的诊断以骨矿物质密度(Bone mineral density, BMD)为基础,但BMD无法反映患者短期内骨代谢情况,完全依赖BMD预测骨折可能会有滞后的风险。

3.3. 骨转运状态生物标志物

近年来,对骨转运状态生物标志物(Bone turnover markers, BTMs)的探索已成为本领域的热点之一。骨转换标志物是反映骨代谢状态的重要生物标志物。研究表明,BTMs可反映短期内患者骨代谢状况,有助于指导临床治疗[45]。BTMs包含有骨形成标志物、骨吸收标志物以及骨转换调节剂。

骨形成标志物有骨碱性磷酸酶(Bone alkaline phosphatase, bALP)、I型胶原N端前肽(Type I collagen N-terminal propeptide, PINP)等。碱性磷酸酶(alkaline phosphatase, ALP)是一种膜结合的糖蛋白水解酶,负责从核苷酸和蛋白质中去除磷酸基团。人体ALP有6种同工酶,主要来自肝脏、骨骼、肾脏等。总ALP可能因肝脏、胰腺等疾病而升高,这些疾病导致ALP的升高不能特异性反映骨形成。bALP来源于成骨细胞,在骨形成及骨矿化过程中起着重要的作用,在碱性环境中骨矿化活跃,bALP可水解无机磷酸盐,进而降低焦磷酸盐浓度,利于骨的矿化。[46]。高转运骨病患者bALP和PTH较高,低转换骨病患者bALP显著偏低[47]。Sprague等[48]在一项大规模国际研究中,评估了长期透析患者中PTH、bALP和PINP在骨转换评估中的准确性。研究结果表明,bALP能够有效区分低骨转换性骨病与非低骨转换性骨病,以及高骨转换性骨病与非高骨转换性骨病。与PTH相比,bALP在诊断上表现出轻微的优势。同时,研究表明,bALP水平不受肾功能下降及透析的影响,可以作为CKD患者骨丢失的独立预测因子[49]。骨骼中的成骨细胞富含I型前胶原,骨形成时I型前胶原经内切肽酶水解,裂解为I型前胶原N端前肽(Type I procollagen N-terminal peptide, PINP)、I型前胶原C端前肽(Type I procollagen C-terminal peptide, PICP)和I型胶原3个片段,I型胶原被组装在类骨质中,无机矿物质钙和磷沉积于其中,形成羟基磷灰石;而PINP和PICP则作为代谢产物进入血液和尿液中,故检测PINP和PICP可以反映骨形成水平。在Salam等[50]的一项病例对照研究中,与正常人相比,包括透析患者在内的CKD患者的PINP水平显著升高,且在CKD各个阶段内,PINP均与骨折风险呈现显著正相关。

骨吸收标志物包含有抗酒石酸酸性磷酸酶(Tartrate-resistant acid phosphatase, TRAP)、I型胶原交联羧基端肽(C-terminal telopeptide of type I collagen, CTX)等。TRAP是存在于破骨细胞和巨噬细胞的一种酸性磷酸酶。TRAP-5a和TRAP-5b两种亚型,TRAP-5a主要来源于巨噬细胞,TRAP-5b来源于破骨细胞。在骨吸收过程中,破骨细胞活跃并释放TRAP-5b进入血液循环,能够反映破骨细胞的功能状态和骨吸收水平。因此,TRAP-5b被认为是破骨细胞的标志性酶,同时也是当前唯一不受肝肾疾病、饮食和时间因素干扰的骨吸收指标。此外,由于其生物变异度较低,TRAP-5b在CKD及透析患者中可作为骨丢失的独立预测因子[49] [51]。I型胶原交联羧基端肽CTX是骨基质中I型胶原纤维在骨吸收时产生的特异性降解产物,其水平反映破骨细胞的骨吸收活性[52]。检测血清CTX水平可以预测骨转换的严重程度,并作为临床评估骨转换相关疾病的重要参考指标[53]。Tian等[54]的一项Meta分析表明,原始数据和校正混杂因素后数据均表现出CTX与普通人群的骨折存在相关关系。

骨转换调节剂包含有FGF-23/Klotho、PTH、维生素D、骨保护素(osteoprotegerin, OPG)、Dickkopf-1等。FGF-23/Klotho、PTH、维生素D前文已详细阐述,此处不作赘述。骨保护素又称为破骨细胞生成抑制因子,是包括成骨细胞在内的多种细胞分泌的可溶性受体,主要通过RANK/RANKL系统发挥调节骨代谢作用。OPG是一种RANKL的可溶性诱饵受体,与RANKL竞争性结合,阻段RANKL与RANK之间的结合,抑制破骨细胞分化,促进成熟破骨细胞的凋亡。CKD早期,患者OPG升高,骨活检提示骨形成减少[55]。研究报道,OPG缺陷型小鼠出现RANKL过度激活,骨吸收增强,骨形成减少,从而出现骨质疏松症[56]。Dickkopf-1 (DKK1)由成骨细胞生成并分泌进入血液循环。Wnt/β-catenin信号通路在骨代谢调节中具有重要作用,其激活会导致成骨细胞生成增加和破骨细胞生成下调,导致骨形成增强和骨吸收减少。Wnt蛋白与其受体复合物的结合是信号传递的起始环节。该受体复合物由Frizzled蛋白和低密度脂蛋白受体相关蛋白5/6 (Low-density lipoprotein receptor-related protein-5/6, LRP5/6)组成。DKK1可以与LRP5/6共受体结合来调节Wnt/β-catenin信号通路信号通路,从而影响骨形成和血管钙化,抑制成骨细胞的生成,是一项骨重塑的标志物[57]

4. CKD与血管钙化

心血管疾病(Cardiovascular disease, CVD)是CKD患者的主要死亡原因,占CKD患者总死亡率的40%至50%,其风险显著高于一般人群[58]。随着GFR的下降,CVD的风险逐渐增加。其中,血管钙化是CVD的特征性表现,是发生于动脉血管壁的病理性异位矿化,主要成分为羟基磷灰石晶体。<5 μm的微小钙化主要沉积于血管内膜,影响动脉粥样硬化斑块的稳定性;>50 μm的钙化主要沉积于血管中膜,导致管壁僵窄[59]

4.1. 血管钙化的分类

CKD引起的血管钙化可发生于全身各处血管,根据发生部位主要可分为内膜钙化、中膜钙化以及钙化防御。内膜钙化主要累及大血管和冠状动脉,在内壁上形成斑块,斑块与炎症反应和脂质沉积有关,导致动脉粥样硬化。中膜钙化在CKD患者中最为常见,通常发生在中心大动脉和周围动脉,主要是弹性内层出现线性沉积的羟基磷灰石晶体钙,无炎症反应细胞和脂质沉积。钙化防御主要累及皮肤小动脉,长期致血管闭塞性改变。

4.2. 血管钙化的病理生理机制

早期认为,CKD引起的血管钙化是由于钙磷过饱和的被动沉积过程。现阶段的研究表明,CKD引起的血管钙化与骨形成类似,是在矿物质代谢异常、尿毒症毒素、炎症、氧化应激等促钙化因素影响下,由多种细胞参与的、主动的、可调控的异位成骨过程[60] [61]

调节血管钙化的细胞主要包括血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)、内皮细胞 (Endothelial cells, ECs)、巨噬细胞等。其中VSMCs和ECs作为动脉壁的主要细胞类型,在血管钙化的发生和发展中起关键作用。VSMCs成骨样转化是CKD血管钙化的病理生理学基础。随着CKD的进展,矿物质代谢紊乱、炎症与氧化应激、尿毒症毒素累积等环境因素作用下,VSMCs收缩蛋白表达减少,而成骨转录因子(Runx2、Osterix、Msx2等)表达上调,同时骨形成相关蛋白表达和分泌增加,介导VSMCs从收缩表型转变为成骨样表型[62] [63]。成骨样VSMCs分泌基质囊泡(Matrix vesicles, MVs)和凋亡小体则作为矿化物沉积和晶体成核的初始位点,进一步形成钙化灶[64]。ECs是血管内膜的主要组成,是血管壁抵御血清刺激的第一道屏障,对于维持血管壁稳态至关重要。在矿物质代谢紊乱、炎症与氧化应激等多种因素刺激影响下,ECs内皮-间充质转化(endothelial-mesenchymal transition, EndMT),内皮细胞逐渐失去内皮功能并获得间充质成纤维细胞样特征的过程,迁移和侵袭能力增加[65] [66]。EndMT是ECs获得骨/软骨表型的重要机制[67] [68]。多种因素介导VSMCs成骨样转化及ECs间充质转化,获得骨样表型。

4.2.1. 矿物质代谢紊乱

收缩型VSMCs高表达电压门控L型钙通道以及肌浆网/内质网RyR受体,成骨样VSMCs则高表达T型钙通道且低表达RyR受体[69]。由此可见,细胞内钙离子浓度变化是影响VSMCs表型的关键因素。随着CKD的进展,继发性PTH升高造成血钙升高,血管壁处于高钙负荷,过度钙摄取和储存钙释放导致VSMCs细胞内钙超载,促进线粒体功能障碍,氧化应激损伤,细胞表型转化,促进血管钙化[70]-[73]。血钙还可直接沉积于血管壁成为羟基磷灰石的主要成核物,加剧血管钙化的发生和发展。高水平的磷酸盐能够上调成骨细胞相关转录因子Runx2和Osterix的表达,进而诱导VSMCs向成骨细胞转分化,最终加速血管钙化的发展进程[74]

4.2.2. 炎症及氧化应激

TNFα/IL-6可诱导人主动脉ECs发生EndMT,下调BMPR2,通过JNK信号增强BMP9诱导的成骨[75]。四甲基哌啶是一种抗氧化剂,在尿毒症动物模型中能抑制血管钙化的进展,这表明尿毒症诱导的氧化应激可促进CKD血管钙化的发展[76]。过氧化氢作为细胞渗透性的活性氧参与细胞内信号的调控。Byon等[77]发现过氧化氢可上调Runx2的表达,呈剂量依赖性地促进VSMC由收缩型向成骨细胞表型转换。

4.2.3. 骨代谢标志物

多项研究表明,骨代谢标志物与血管钙化密切有关。CKD大鼠模型研究证实,FGF23通过FGF23-klotho轴参与骨稳态、骨质疏松和血管钙化[78]。成骨细胞合成并分泌的骨钙素可以调控胰岛素基因的表达,抑制具有抗炎及抗动脉粥样硬化作用的脂肪细胞脂联素的释放和表达,进而参与到血管钙化的发生中[79]。破骨细胞合成的TRAP-5b与冠状动脉粥样硬化相关,Morisawa等[80]的研究中多因素线性回归分析显示,TRAP-5b水平与病变血管数量及Gensini评分显著且独立相关。

5. 结语

慢性肾脏病矿物质和骨异常是一项全球性的健康挑战,对医疗卫生系统造成了沉重负担。CKD与矿物质代谢紊乱、骨代谢异常及血管钙化之间的相互作用,凸显了其病理生理机制的复杂性。因此,亟需进一步深入研究其病理生理机制,以便为早期综合干预肾性骨营养不良、骨质疏松及心血管不良事件的发生提供更为科学的理论依据和实践指导。

NOTES

*通讯作者。

参考文献

[1] Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314.
https://doi.org/10.1016/j.kint.2023.10.018
[2] GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, 395, 709-733.
[3] 国家肾脏疾病临床医学研究中心. 中国慢性肾脏病矿物质和骨异常诊治指南概要[J]. 肾脏病与透析肾移植杂志, 2019, 28(1): 52-57.
[4] Fang, Y., Ginsberg, C., Sugatani, T., Monier-Faugere, M., Malluche, H. and Hruska, K.A. (2014) Early Chronic Kidney Disease-Mineral Bone Disorder Stimulates Vascular Calcification. Kidney International, 85, 142-150.
https://doi.org/10.1038/ki.2013.271
[5] Cunningham, J., Locatelli, F. and Rodriguez, M. (2011) Secondary Hyperparathyroidism: Pathogenesis, Disease Progression, and Therapeutic Options. Clinical Journal of the American Society of Nephrology, 6, 913-921.
https://doi.org/10.2215/cjn.06040710
[6] Greenland, P., Blaha, M.J., Budoff, M.J., Erbel, R. and Watson, K.E. (2018) Coronary Calcium Score and Cardiovascular Risk. Journal of the American College of Cardiology, 72, 434-447.
https://doi.org/10.1016/j.jacc.2018.05.027
[7] Molina, P., Molina, M.D., Pallardó, L.M., Torralba, J., Escudero, V., Álvarez, L., et al. (2021) Disorders in Bone-Mineral Parameters and the Risk of Death in Persons with Chronic Kidney Disease Stages 4 and 5: The PECERA Study. Journal of Nephrology, 34, 1189-1199.
https://doi.org/10.1007/s40620-020-00916-9
[8] Jüppner, H. (2011) Phosphate and FGF-23. Kidney International, 79, S24-S27.
https://doi.org/10.1038/ki.2011.27
[9] Jacquillet, G. and Unwin, R.J. (2018) Physiological Regulation of Phosphate by Vitamin D, Parathyroid Hormone (PTH) and Phosphate (PI). Pflügers ArchivEuropean Journal of Physiology, 471, 83-98.
https://doi.org/10.1007/s00424-018-2231-z
[10] Bergwitz, C. and Jüppner, H. (2010) Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annual Review of Medicine, 61, 91-104.
https://doi.org/10.1146/annurev.med.051308.111339
[11] Hu, M.C., Shi, M. and Moe, O.W. (2018) Role of Αklotho and FGF23 in Regulation of Type II Na-Dependent Phosphate Co-transporters. Pflügers ArchivEuropean Journal of Physiology, 471, 99-108.
https://doi.org/10.1007/s00424-018-2238-5
[12] Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., et al. (2004) FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. Journal of Bone and Mineral Research, 19, 429-435.
https://doi.org/10.1359/jbmr.0301264
[13] Centeno, P.P., Herberger, A., Mun, H., Tu, C., Nemeth, E.F., Chang, W., et al. (2019) Phosphate Acts Directly on the Calcium-Sensing Receptor to Stimulate Parathyroid Hormone Secretion. Nature Communications, 10, Article No. 4693.
https://doi.org/10.1038/s41467-019-12399-9
[14] Bellasi, A., Mandreoli, M., Baldrati, L., Corradini, M., Di Nicolò, P., Malmusi, G., et al. (2011) Chronic Kidney Disease Progression and Outcome According to Serum Phosphorus in Mild-To-Moderate Kidney Dysfunction. Clinical Journal of the American Society of Nephrology, 6, 883-891.
https://doi.org/10.2215/cjn.07810910
[15] Dhingra, R. (2007) Relations of Serum Phosphorus and Calcium Levels to the Incidence of Cardiovascular Disease in the Community. Archives of Internal Medicine, 167, 879-885.
https://doi.org/10.1001/archinte.167.9.879
[16] Hou, Y., Li, X., Sun, L., Qu, Z., Jiang, L. and Du, Y. (2017) Phosphorus and Mortality Risk in End-Stage Renal Disease: A Meta-Analysis. Clinica Chimica Acta, 474, 108-113.
https://doi.org/10.1016/j.cca.2017.09.005
[17] Goodman, W.G. (2002) New Lessons from Old Assays: Parathyroid Hormone (PTH), Its Receptors, and the Potential Biological Relevance of PTH Fragments. Nephrology Dialysis Transplantation, 17, 1731-1736.
https://doi.org/10.1093/ndt/17.10.1731
[18] Vervloet, M.G., Massy, Z.A., Brandenburg, V.M., Mazzaferro, S., Cozzolino, M., Ureña-Torres, P., et al. (2014) Bone: A New Endocrine Organ at the Heart of Chronic Kidney Disease and Mineral and Bone Disorders. The Lancet Diabetes & Endocrinology, 2, 427-436.
https://doi.org/10.1016/s2213-8587(14)70059-2
[19] Goltzman, D., Mannstadt, M. and Marcocci, C. (2018) Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. In: Giustina, A. and Bilezikian, J.P., Eds., Frontiers of Hormone Research, S. Karger AG, 1-13.
https://doi.org/10.1159/000486060
[20] Brown, E.M. (2013) Role of the Calcium-Sensing Receptor in Extracellular Calcium Homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 333-343.
https://doi.org/10.1016/j.beem.2013.02.006
[21] Dusso, A.S., Brown, A.J. and Slatopolsky, E. (2005) Vitamin D. American Journal of Physiology-Renal Physiology, 289, F8-F28.
https://doi.org/10.1152/ajprenal.00336.2004
[22] Fukagawa, M. and Kazama, J.J. (2007) The Making of a Bone in Blood Vessels: From the Soft Shell to the Hard Bone. Kidney International, 72, 533-534.
https://doi.org/10.1038/sj.ki.5002440
[23] Pascale, A.V., Finelli, R., Giannotti, R., Visco, V., Fabbricatore, D., Matula, I., et al. (2018) Vitamin D, Parathyroid Hormone and Cardiovascular Risk: The Good, the Bad and the Ugly. Journal of Cardiovascular Medicine, 19, 62-66.
https://doi.org/10.2459/jcm.0000000000000614
[24] Hyder, R. and Sprague, S.M. (2020) Secondary Hyperparathyroidism in a Patient with CKD. Clinical Journal of the American Society of Nephrology, 15, 1041-1043.
https://doi.org/10.2215/cjn.13411119
[25] Erben, R.G. (2018) Physiological Actions of Fibroblast Growth Factor-23. Frontiers in Endocrinology, 9, Article 267.
https://doi.org/10.3389/fendo.2018.00267
[26] Kuro-o, M. (2009) Overview of the FGF23-Klotho Axis. Pediatric Nephrology, 25, 583-590.
https://doi.org/10.1007/s00467-009-1260-4
[27] Mace, M.L., Gravesen, E., Nordholm, A., Olgaard, K. and Lewin, E. (2017) Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone in Vivo through the FGF Receptor in Normocalcemia, but Not in Hypocalcemia. Calcified Tissue International, 102, 85-92.
https://doi.org/10.1007/s00223-017-0333-9
[28] Miyamoto, K., Ito, M., Kuwahata, M., Kato, S. and Segawa, H. (2005) Inhibition of Intestinal Sodium‐Dependent Inorganic Phosphate Transport by Fibroblast Growth Factor 23. Therapeutic Apheresis and Dialysis, 9, 331-335.
https://doi.org/10.1111/j.1744-9987.2005.00292.x
[29] Andrukhova, O., Smorodchenko, A., Egerbacher, M., Streicher, C., Zeitz, U., Goetz, R., et al. (2014) FGF23 Promotes Renal Calcium Reabsorption through the TRPV5 Channel. The EMBO Journal, 33, 229-246.
https://doi.org/10.1002/embj.201284188
[30] Canalejo, R., Canalejo, A., Martinez-Moreno, J.M., Rodriguez-Ortiz, M.E., Estepa, J.C., Mendoza, F.J., et al. (2010) FGF23 Fails to Inhibit Uremic Parathyroid Glands. Journal of the American Society of Nephrology, 21, 1125-1135.
https://doi.org/10.1681/asn.2009040427
[31] David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney International, 89, 135-146.
https://doi.org/10.1038/ki.2015.290
[32] Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. and Nabeshima, Y. (2003) Klotho, a Gene Related to a Syndrome Resembling Human Premature Aging, Functions in a Negative Regulatory Circuit of Vitamin D Endocrine System. Molecular Endocrinology, 17, 2393-2403.
https://doi.org/10.1210/me.2003-0048
[33] Galitzer, H., Ben-Dov, I.Z., Silver, J. and Naveh-Many, T. (2010) Parathyroid Cell Resistance to Fibroblast Growth Factor 23 in Secondary Hyperparathyroidism of Chronic Kidney Disease. Kidney International, 77, 211-218.
https://doi.org/10.1038/ki.2009.464
[34] Hu, M.C., Shi, M., Zhang, J., Quiñones, H., Griffith, C., Kuro-o, M., et al. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136.
https://doi.org/10.1681/asn.2009121311
[35] Clarke, B. (2008) Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology, 3, S131-S139.
https://doi.org/10.2215/cjn.04151206
[36] 余学清, 赵明辉, 陈江华, 等. 肾内科学[M]. 北京: 人民卫生出版社, 2021.
[37] Byon, C.H. and Chen, Y. (2015) Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Current Osteoporosis Reports, 13, 206-215.
https://doi.org/10.1007/s11914-015-0270-3
[38] Dalle Carbonare, L., Valenti, M.T., Giannini, S., Gallieni, M., Stefani, F., Ciresa, R., et al. (2021) Bone Biopsy for Histomorphometry in Chronic Kidney Disease (CKD): State-of-the-Art and New Perspectives. Journal of Clinical Medicine, 10, Article 4617.
https://doi.org/10.3390/jcm10194617
[39] Fusaro, M., Re Sartò, G.V., Gallieni, M., Cosmai, L., Messa, P., Rossini, M., et al. (2022) Time for Revival of Bone Biopsy with Histomorphometric Analysis in Chronic Kidney Disease (CKD): Moving from Skepticism to Pragmatism. Nutrients, 14, Article 1742.
https://doi.org/10.3390/nu14091742
[40] Cosman, F., de Beur, S.J., LeBoff, M.S., Lewiecki, E.M., Tanner, B., Randall, S., et al. (2014) Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 25, 2359-2381.
https://doi.org/10.1007/s00198-014-2794-2
[41] Sidibé, A., Auguste, D., Desbiens, L., Fortier, C., Wang, Y.P., Jean, S., et al. (2018) Fracture Risk in Dialysis and Kidney Transplanted Patients: A Systematic Review. JBMR Plus, 3, 45-55.
https://doi.org/10.1002/jbm4.10067
[42] Pazianas, M. and Miller, P.D. (2021) Osteoporosis and Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD): Back to Basics. American Journal of Kidney Diseases, 78, 582-589.
https://doi.org/10.1053/j.ajkd.2020.12.024
[43] Moe, S.M. (2017) Renal Osteodystrophy or Kidney-Induced Osteoporosis? Current Osteoporosis Reports, 15, 194-197.
https://doi.org/10.1007/s11914-017-0364-1
[44] Damasiewicz, M.J. and Nickolas, T.L. (2018) Rethinking Bone Disease in Kidney Disease. JBMR Plus, 2, 309-322.
https://doi.org/10.1002/jbm4.10117
[45] Jørgensen, H.S., Behets, G., Viaene, L., Bammens, B., Claes, K., Meijers, B., et al. (2022) Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. American Journal of Kidney Diseases, 79, 667-676.e1.
https://doi.org/10.1053/j.ajkd.2021.07.027
[46] Bergman, A., Qureshi, A.R., Haarhaus, M., Lindholm, B., Barany, P., Heimburger, O., et al. (2016) Total and Bone-Specific Alkaline Phosphatase Are Associated with Bone Mineral Density over Time in End-Stage Renal Disease Patients Starting Dialysis. Journal of Nephrology, 30, 255-262.
https://doi.org/10.1007/s40620-016-0292-7
[47] Lalayiannis, A.D., Crabtree, N.J., Ferro, C.J., Askiti, V., Mitsioni, A., Biassoni, L., et al. (2020) Routine Serum Biomarkers, but Not Dual-Energy X-Ray Absorptiometry, Correlate with Cortical Bone Mineral Density in Children and Young Adults with Chronic Kidney Disease. Nephrology Dialysis Transplantation, 36, 1872-1881.
https://doi.org/10.1093/ndt/gfaa199
[48] Sprague, S.M., Bellorin-Font, E., Jorgetti, V., Carvalho, A.B., Malluche, H.H., Ferreira, A., et al. (2016) Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients with CKD Treated by Dialysis. American Journal of Kidney Diseases, 67, 559-566.
https://doi.org/10.1053/j.ajkd.2015.06.023
[49] Drüeke, T.B. and Massy, Z.A. (2016) Changing Bone Patterns with Progression of Chronic Kidney Disease. Kidney International, 89, 289-302.
https://doi.org/10.1016/j.kint.2015.12.004
[50] Salam, S., Gallagher, O., Gossiel, F., Paggiosi, M., Khwaja, A. and Eastell, R. (2018) Diagnostic Accuracy of Biomarkers and Imaging for Bone Turnover in Renal Osteodystrophy. Journal of the American Society of Nephrology, 29, 1557-1565.
https://doi.org/10.1681/asn.2017050584
[51] West, S.L., Patel, P. and Jamal, S.A. (2015) How to Predict and Treat Increased Fracture Risk in Chronic Kidney Disease. Journal of Internal Medicine, 278, 19-28.
https://doi.org/10.1111/joim.12361
[52] 《中国骨质疏松杂志》骨代谢专家组. 骨代谢生化指标临床应用专家共识(2023修订版) [J]. 中国骨质疏松杂志, 2023, 29(4): 469-476.
[53] Kanis, J.A., Cooper, C., Rizzoli, R. and Reginster, J. (2018) European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporosis International, 30, 3-44.
https://doi.org/10.1007/s00198-018-4704-5
[54] Tian, A., Ma, J., Feng, K., Liu, Z., Chen, L., Jia, H., et al. (2019) Reference Markers of Bone Turnover for Prediction of Fracture: A Meta-Analysis. Journal of Orthopaedic Surgery and Research, 14, Article No. 68.
https://doi.org/10.1186/s13018-019-1100-6
[55] Massy, Z. and Drueke, T. (2017) Adynamic Bone Disease Is a Predominant Bone Pattern in Early Stages of Chronic Kidney Disease. Journal of Nephrology, 30, 629-634.
https://doi.org/10.1007/s40620-017-0397-7
[56] Ozaki, Y., Koide, M., Furuya, Y., Ninomiya, T., Yasuda, H., Nakamura, M., et al. (2017) Treatment of OPG-Deficient Mice with WP9QY, a Rankl-Binding Peptide, Recovers Alveolar Bone Loss by Suppressing Osteoclastogenesis and Enhancing Osteoblastogenesis. PLOS ONE, 12, e0184904.
https://doi.org/10.1371/journal.pone.0184904
[57] 司佶宜, 张晓良. 慢性肾脏病患者骨代谢标志物的临床意义[J]. 临床肾脏病杂志, 2023, 23(3): 245-251.
[58] Saran, R., Robinson, B., Abbott, K.C., et al. (2018) US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 71, A7.
[59] Hutcheson, J.D. and Goettsch, C. (2023) Cardiovascular Calcification Heterogeneity in Chronic Kidney Disease. Circulation Research, 132, 993-1012.
https://doi.org/10.1161/circresaha.123.321760
[60] Hou, Y., Lu, C., Yuan, T., Liao, M., Chao, C. and Lu, K. (2020) The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. International Journal of Molecular Sciences, 21, Article 980.
https://doi.org/10.3390/ijms21030980
[61] Ryu, J., Ahn, Y., Kook, H. and Kim, Y. (2021) The Roles of Non-Coding RNAs in Vascular Calcification and Opportunities as Therapeutic Targets. Pharmacology & Therapeutics, 218, Article ID: 107675.
https://doi.org/10.1016/j.pharmthera.2020.107675
[62] Jono, S., McKee, M.D., Murry, C.E., Shioi, A., Nishizawa, Y., Mori, K., et al. (2000) Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circulation Research, 87, E10-E17.
https://doi.org/10.1161/01.res.87.7.e10
[63] Chen, N.X., O’Neill, K.D., Duan, D. and Moe, S.M. (2002) Phosphorus and Uremic Serum Up-Regulate Osteopontin Expression in Vascular Smooth Muscle Cells. Kidney International, 62, 1724-1731.
https://doi.org/10.1046/j.1523-1755.2002.00625.x
[64] Kapustin, A.N., Chatrou, M.L.L., Drozdov, I., Zheng, Y., Davidson, S.M., Soong, D., et al. (2015) Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 116, 1312-1323.
https://doi.org/10.1161/circresaha.116.305012
[65] Zhu, Y., Han, X., Sun, X., Yang, R., Ma, W. and Liu, N. (2020) Lactate Accelerates Vascular Calcification through NR4A1-Regulated Mitochondrial Fission and BNIP3-Related Mitophagy. Apoptosis, 25, 321-340.
https://doi.org/10.1007/s10495-020-01592-7
[66] Chen, P., Schwartz, M.A. and Simons, M. (2020) Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Frontiers in Cardiovascular Medicine, 7, Article 53.
https://doi.org/10.3389/fcvm.2020.00053
[67] Boström, K.I., Yao, J., Guihard, P.J., Blazquez-Medela, A.M. and Yao, Y. (2016) Endothelial-Mesenchymal Transition in Atherosclerotic Lesion Calcification. Atherosclerosis, 253, 124-127.
https://doi.org/10.1016/j.atherosclerosis.2016.08.046
[68] Hjortnaes, J., Shapero, K., Goettsch, C., Hutcheson, J.D., Keegan, J., Kluin, J., et al. (2015) Valvular Interstitial Cells Suppress Calcification of Valvular Endothelial Cells. Atherosclerosis, 242, 251-260.
https://doi.org/10.1016/j.atherosclerosis.2015.07.008
[69] Shanahan, C.M., Crouthamel, M.H., Kapustin, A. and Giachelli, C.M. (2011) Arterial Calcification in Chronic Kidney Disease: Key Roles for Calcium and Phosphate. Circulation Research, 109, 697-711.
https://doi.org/10.1161/circresaha.110.234914
[70] Xia, Y., Li, B., Zhang, F., Wu, Q., Wen, S., Jiang, N., et al. (2022) Hydroxyapatite Nanoparticles Promote Mitochondrial-Based Pyroptosis via Activating Calcium Homeostasis and Redox Imbalance in Vascular Smooth Muscle Cells. Nanotechnology, 33, Article ID: 275101.
https://doi.org/10.1088/1361-6528/ac61ca
[71] Shroff, R.C., McNair, R., Skepper, J.N., Figg, N., Schurgers, L.J., Deanfield, J., et al. (2010) Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification. Journal of the American Society of Nephrology, 21, 103-112.
https://doi.org/10.1681/asn.2009060640
[72] Rodenbeck, S.D., Zarse, C.A., McKenney-Drake, M.L., Bruning, R.S., Sturek, M., Chen, N.X., et al. (2016) Intracellular Calcium Increases in Vascular Smooth Muscle Cells with Progression of Chronic Kidney Disease in a Rat Model. Nephrology Dialysis Transplantation, 32, 450-458.
https://doi.org/10.1093/ndt/gfw274
[73] Zhu, X., Ma, K., Zhou, K., Liu, J., Nürnberg, B. and Lang, F. (2021) Vasopressin-Stimulated ORAI1 Expression and Store-Operated Ca2+ Entry in Aortic Smooth Muscle Cells. Journal of Molecular Medicine, 99, 373-382.
https://doi.org/10.1007/s00109-020-02016-4
[74] Ray, M. and Jovanovich, A. (2019) Mineral Bone Abnormalities and Vascular Calcifications. Advances in Chronic Kidney Disease, 26, 409-416.
https://doi.org/10.1053/j.ackd.2019.09.004
[75] Sánchez‐Duffhues, G., García de Vinuesa, A., van de Pol, V., Geerts, M.E., de Vries, M.R., Janson, S.G., et al. (2019) Inflammation Induces Endothelial‐to‐Mesenchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. The Journal of Pathology, 247, 333-346.
https://doi.org/10.1002/path.5193
[76] Yamada, S., Taniguchi, M., Tokumoto, M., Toyonaga, J., Fujisaki, K., Suehiro, T., et al. (2011) The Antioxidant Tempol Ameliorates Arterial Medial Calcification in Uremic Rats: Important Role of Oxidative Stress in the Pathogenesis of Vascular Calcification in Chronic Kidney Disease. Journal of Bone and Mineral Research, 27, 474-485.
https://doi.org/10.1002/jbmr.539
[77] Byon, C.H., Javed, A., Dai, Q., Kappes, J.C., Clemens, T.L., Darley-Usmar, V.M., et al. (2008) Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling. Journal of Biological Chemistry, 283, 15319-15327.
https://doi.org/10.1074/jbc.m800021200
[78] Evenepoel, P., Opdebeeck, B., David, K. and D’Haese, P.C. (2019) Bone-Vascular Axis in Chronic Kidney Disease. Advances in Chronic Kidney Disease, 26, 472-483.
https://doi.org/10.1053/j.ackd.2019.09.006
[79] Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R.A., Teti, A., et al. (2010) Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 142, 296-308.
https://doi.org/10.1016/j.cell.2010.06.003
[80] Morisawa, T., Nakagomi, A., Kohashi, K., Kusama, Y. and Shimizu, W. (2017) Serum Tartrate-Resistant Acid Phosphatase-5b Levels Are Associated with the Severity and Extent of Coronary Atherosclerosis in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 24, 1058-1068.
https://doi.org/10.5551/jat.39339