[1]
|
Friedman, D.S., et al. (2004) Prevalence of Open-Angle Glaucoma among Adults in the United States. Archives of Ophthalmology, 122, 532-538.
|
[2]
|
Song, P., Wang, J., Bucan, K., Theodoratou, E., Rudan, I. and Chan, K.Y. (2017) National and Subnational Prevalence and Burden of Glaucoma in China: A Systematic Analysis. Journal of Global Health, 7, Article ID: 020705. https://doi.org/10.7189/jogh.07.020705
|
[3]
|
Quigley, H.A. (2006) The Number of People with Glaucoma Worldwide in 2010 and 2020. British Journal of Ophthalmology, 90, 262-267. https://doi.org/10.1136/bjo.2005.081224
|
[4]
|
Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma. JAMA, 311, 1901-1911. https://doi.org/10.1001/jama.2014.3192
|
[5]
|
Garg, A. and Gazzard, G. (2019) Treatment Choices for Newly Diagnosed Primary Open Angle and Ocular Hypertension Patients. Eye, 34, 60-71. https://doi.org/10.1038/s41433-019-0633-6
|
[6]
|
Bravetti, G.E., Mansouri, K., Gillmann, K., Rao, H.L. and Mermoud, A. (2020) Xen-augmented Baerveldt Drainage Device Implantation in Refractory Glaucoma: 1-Year Outcomes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1787-1794. https://doi.org/10.1007/s00417-020-04654-3
|
[7]
|
Preda, M.A., Karancsi, O.L., Munteanu, M. and Stanca, H.T. (2020) Clinical Outcomes of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma—18 Months Follow-Up. Lasers in Medical Science, 35, 1487-1491. https://doi.org/10.1007/s10103-019-02934-x
|
[8]
|
Perez, C.I., Singh, K. and Lin, S. (2019) Relationship of Lifestyle, Exercise, and Nutrition with Glaucoma. Current Opinion in Ophthalmology, 30, 82-88. https://doi.org/10.1097/icu.0000000000000553
|
[9]
|
Zhu, M.M., et al. (2018) Physical Exercise and Glaucoma: A Review on the Roles of Physical Exercise on Intraocular Pressure Control, Ocular Blood Flow Regulation, Neuroprotection and Glaucoma-Related Mental Health. Acta Ophthalmologica, 96, e676-e691. https://pubmed.ncbi.nlm.nih.gov/29338126/
|
[10]
|
Tribble, J.R., Hui, F., Jöe, M., Bell, K., Chrysostomou, V., Crowston, J.G., et al. (2021) Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells, 10, Article 295. https://doi.org/10.3390/cells10020295
|
[11]
|
Stewart, L.A., Clarke, M., Rovers, M., Riley, R.D., Simmonds, M., Stewart, G., et al. (2015) Preferred Reporting Items for a Systematic Review and Meta-Analysis of Individual Participant Data: The PRISMA-IPD Statement. JAMA, 313, 1657-1665. https://doi.org/10.1001/jama.2015.3656
|
[12]
|
Medina, A.M.C., Lima, N.V.D.A., Santos, R.C.R.D., Pereira, M.C.A. and Santos, P.M.D. (2007) Efeitos da leitura, exercício e exercício sob leitura na pressão intra-ocular de portadores de glaucoma primário de ângulo aberto ou hipertensão ocular controlados clinicamente com medicação tópica. Arquivos Brasileiros de Oftalmologia, 70, 115-119. https://doi.org/10.1590/s0004-27492007000100021
|
[13]
|
Qureshi, I.A. (1995) The Effects of Mild, Moderate, and Severe Exercise on Intraocular Pressure in Glaucoma Patients. The Japanese Journal of Physiology, 45, 561-569. https://doi.org/10.2170/jjphysiol.45.561
|
[14]
|
Gracitelli, C.P.B., de Faria, N.V.L., Almeida, I., Dias, D.T., Vieira, J.M., Dorairaj, S., et al. (2019) Exercise-Induced Changes in Ocular Blood Flow Parameters in Primary Open-Angle Glaucoma Patients. Ophthalmic Research, 63, 309-313. https://doi.org/10.1159/000501694
|
[15]
|
Natsis, K., Asouhidou, I., Nousios, G., Chatzibalis, T., Vlasis, K. and Karabatakis, V. (2009) Aerobic Exercise and Intraocular Pressure in Normotensive and Glaucoma Patients. BMC Ophthalmology, 9, Article No. 6. https://doi.org/10.1186/1471-2415-9-6
|
[16]
|
Yang, Y., Li, Z., Wang, N., Wu, L., Zhen, Y., Wang, T., et al. (2014) Intraocular Pressure Fluctuation in Patients with Primary Open-Angle Glaucoma Combined with High Myopia. Journal of Glaucoma, 23, 19-22. https://doi.org/10.1097/ijg.0b013e31825afc9d
|
[17]
|
Yuan, Y., Lin, T.P.H., Gao, K., Zhou, R., Radke, N.V., Lam, D.S.C., et al. (2020) Aerobic Exercise Reduces Intraocular Pressure and Expands Schlemm’s Canal Dimensions in Healthy and Primary Open-Angle Glaucoma Eyes. Indian Journal of Ophthalmology, 69, 1127-1134. https://doi.org/10.4103/ijo.ijo_2858_20
|
[18]
|
Hayashi, N., Ikemura, T. and Someya, N. (2011) Effects of Dynamic Exercise and Its Intensity on Ocular Blood Flow in Humans. European Journal of Applied Physiology, 111, 2601-2606. https://doi.org/10.1007/s00421-011-1880-9
|
[19]
|
Lin, S., Wang, S.Y., Pasquale, L.R., Singh, K. and Lin, S.C. (2017) The Relation between Exercise and Glaucoma in a South Korean Population-Based Sample. PLOS ONE, 12, e0171441. https://doi.org/10.1371/journal.pone.0171441
|
[20]
|
Jesús Vera, et al. (2020) Intraocular Pressure Increases during Dynamic Resistance Training Exercises According to the Exercise Phase in Healthy Young Adults. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1795-1801. https://pubmed.ncbi.nlm.nih.gov/32405701/
|
[21]
|
Vera, J., Redondo, B., Koulieris, G., Torrejon, A., Jiménez, R. and Garcia-Ramos, A. (2020) Intraocular Pressure Responses to Four Different Isometric Exercises in Men and Women. Optometry and Vision Science, 97, 648-653. https://doi.org/10.1097/opx.0000000000001545
|
[22]
|
Hamilton-Maxwell, K.E. and Feeney, L. (2012) Walking for a Short Distance at a Brisk Pace Reduces Intraocular Pressure by a Clinically Significant Amount. Journal of Glaucoma, 21, 421-425. https://doi.org/10.1097/ijg.0b013e31821826d0
|
[23]
|
Rüfer, F., et al. (2014) Comparison of the Influence of Aerobic and Resistance Exercise of the Upper and Lower Limb on Intraocular Pressure. Acta Ophthalmologica, 92, 249-252. https://pubmed.ncbi.nlm.nih.gov/23289511/
|
[24]
|
Conte, M., Baldin, A., Russo, M., Storti, L., Caldara, A., Cozza, H., et al. (2014) Effects of High-Intensity Interval vs. Continuous Moderate Exercise on Intraocular Pressure. International Journal of Sports Medicine, 35, 874-878. https://doi.org/10.1055/s-0033-1364025
|
[25]
|
Zhang, Z., Wang, X., Jonas, J.B., Wang, H., Zhang, X., Peng, X., et al. (2013) Valsalva Manoeuver, Intra-Ocular Pressure, Cerebrospinal Fluid Pressure, Optic Disc Topography: Beijing Intracranial and Intra-Ocular Pressure Study. Acta Ophthalmologica, 92, e475-e480. https://doi.org/10.1111/aos.12263
|
[26]
|
Tseng, V.L., Yu, F. and Coleman, A.L. (2020) Association between Exercise Intensity and Glaucoma in the National Health and Nutrition Examination Survey. Ophthalmology Glaucoma, 3, 393-402. https://pubmed.ncbi.nlm.nih.gov/32741639/
|
[27]
|
Williams, P.T. (2009) Relationship of Incident Glaucoma versus Physical Activity and Fitness in Male Runners. Medicine & Science in Sports & Exercise, 41, 1566-1572. https://pubmed.ncbi.nlm.nih.gov/19568204/
|
[28]
|
Gedde, S.J., Vinod, K., Wright, M.M., Muir, K.W., Lind, J.T., Chen, P.P., et al. (2021) Primary Open-Angle Glaucoma Preferred Practice Pattern®. Ophthalmology, 128, 71-150. https://doi.org/10.1016/j.ophtha.2020.10.022
|
[29]
|
Okuno, T., Sugiyama, T., Kohyama, M., Kojima, S., Oku, H. and Ikeda, T. (2005) Ocular Blood Flow Changes after Dynamic Exercise in Humans. Eye, 20, 796-800. https://doi.org/10.1038/sj.eye.6702004
|
[30]
|
Portmann, N., Gugleta, K., Kochkorov, A., Polunina, A., Flammer, J. and Orgul, S. (2011) Choroidal Blood Flow Response to Isometric Exercise in Glaucoma Patients and Patients with Ocular Hypertension. Investigative Opthalmology & Visual Science, 52, 7068-7073. https://doi.org/10.1167/iovs.11-7758
|
[31]
|
Chrysostomou, V., Galic, S., Wijngaarden, P., Trounce, I.A., Steinberg, G.R. and Crowston, J.G. (2016) Exercise Reverses Age‐Related Vulnerability of the Retina to Injury by Preventing Complement‐Mediated Synapse Elimination via a BDNF‐Dependent Pathway. Aging Cell, 15, 1082-1091. https://doi.org/10.1111/acel.12512
|
[32]
|
Li, M., Song, Y., Zhao, Y., Yan, X. and Zhang, H. (2017) Influence of Exercise on the Structure of the Anterior Chamber of the Eye. Acta Ophthalmologica, 96, e247-e253. https://doi.org/10.1111/aos.13564
|
[33]
|
Yan, X., Li, M. and Zhang, H. (2018) Relationship between Post-Exercise Changes in the Lens and Schlemm’s Canal: A Swept-Source Optical Coherence Tomography Study. Current Eye Research, 43, 1351-1356. https://doi.org/10.1080/02713683.2018.1498523
|
[34]
|
Martin, B., Harris, A., Hammel, T. and Malinovsky, V. (1999) Mechanism of Exercise-Induced Ocular Hypotension. Investigative Ophthalmology & Visual Science, 40, 1011-1015.
|
[35]
|
Harris, A., Malinovsky, V. and Martin, B. (1994) Correlates of Acute Exercise-Induced Ocular Hypotension. Investigative Ophthalmology & Visual Science, 35, 3852-3857.
|
[36]
|
Hayashi, N., Someya, N. and Fukuba, Y. (2010) Effect of Intensity of Dynamic Exercise on Pupil Diameter in Humans. Journal of Physiological Anthropology, 29, 119-122. https://doi.org/10.2114/jpa2.29.119
|
[37]
|
Ikegami, K., Shigeyoshi, Y. and Masubuchi, S. (2020) Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System. Investigative Opthalmology & Visual Science, 61, Article 26. https://doi.org/10.1167/iovs.61.3.26
|
[38]
|
Weinreb, R.N. and Khaw, P.T. (2004) Primary Open-Angle Glaucoma. The Lancet, 363, 1711-1720. https://doi.org/10.1016/s0140-6736(04)16257-0
|
[39]
|
Last, J.A., Pan, T., Ding, Y., Reilly, C.M., Keller, K., Acott, T.S., et al. (2011) Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork. Investigative Opthalmology & Visual Science, 52, 2147-2152. https://doi.org/10.1167/iovs.10-6342
|
[40]
|
Passo, M.S. (1991) Exercise Training Reduces Intraocular Pressure among Subjects Suspected of Having Glaucoma. Archives of Ophthalmology, 109, 1096-1098. https://doi.org/10.1001/archopht.1991.01080080056027
|
[41]
|
Fujiwara, K., Yasuda, M., Hata, J., Yoshida, D., Kishimoto, H., Hashimoto, S., et al. (2019) Long-term Regular Exercise and Intraocular Pressure: The Hisayama Study. Graefe’s Archive for Clinical and Experimental Ophthalmology, 257, 2461-2469. https://doi.org/10.1007/s00417-019-04441-9
|
[42]
|
Spaulding, H.R. and Yan, Z. (2022) AMPK and the Adaptation to Exercise. Annual Review of Physiology, 84, 209-227. https://doi.org/10.1146/annurev-physiol-060721-095517
|