Progranulin通过调控巨噬细胞极化对烟曲霉菌性角膜炎发挥保护作用的研究
Research on a Protective Role of Progranulin in Aspergillus fumigatus Keratitis by Modulating Macrophage Polarization
DOI: 10.12677/acm.2025.1541268, PDF, HTML, XML,   
作者: 贺 铜, 段慧瑾, 刘婧仪, 亓平丽*:青岛大学青岛医学院,山东 青岛;青岛大学附属医院眼科,山东 青岛
关键词: PGRN角膜炎烟曲霉菌巨噬细胞极化抗炎PGRN Keratitis Aspergillus fumigatus Macrophage Polarization Anti-Inflammation
摘要: 目的:探究progranulin (颗粒蛋白前体,PGRN)在烟曲霉菌角膜炎中发挥抗炎作用的调控机制。方法:建立烟曲霉菌小鼠角膜炎模型,前节照相和临床评分分析PGRN对小鼠角膜病变程度的影响;HE染色检测小鼠角膜组织中炎症细胞的数量;利用CCK-8实验,检测不同浓度梯度的PGRN对小鼠巨噬细胞(RAW264.7)的安全性;实时定量聚合酶链反应(RT-PCR)检测烟曲霉菌感染的细胞中,PGRN对诱导型一氧化氮合酶(iNOS)、趋化因子(CCL2)、精氨酸酶1 (Arg-1) mRNA表达的影响;采用流式细胞术检测PGRN对M2/M1比值的影响。结果:PGRN减轻小鼠烟曲霉菌角膜炎病变程度;PGRN减轻小鼠角膜组织中炎症细胞的浸润;PGRN对RAW264.7细胞无毒;10 ng/ml PGRN处理RAW264.7后显著降低iNOS、CCL2的mRNA表达水平,升高Arg-1的mRNA水平,且PGRN增加了M2/M1的比值。结论:PGRN可能通过调节巨噬细胞极化在烟曲霉菌角膜炎中发挥抗炎作用。
Abstract: Objective: To investigate the regulatory mechanism by which progranulin (PGRN) exerts anti-inflammatory effects in Aspergillus fumigatus keratitis. Methods: A mouse keratitis model of A. fumigatus was established, and the effects of PGRN on the degree of corneal lesions in mice were analyzed by anterior segment photography and clinical scoring; HE staining was used to detect the number of inflammatory cells in the corneal tissues of mice; using the CCK-8 assay, the safety of PGRN at different concentration gradients on mouse macrophages (RAW264.7) was examined; and real-time quantitative polymerase chain reaction (RT-PCR) detected the effects of PGRN on the mRNA expression of inducible nitric oxide synthase (iNOS), chemokine (CCL2), and arginase 1 (Arg-1) in Aspergillus fumigatus-infected cells; and the effects of PGRN on the M2/M1 ratio were detected by flow cytometry. Results: PGRN attenuated the extent of mouse Aspergillus fumigatus keratitis lesions; PGRN reduced the infiltration of inflammatory cells in mouse corneal tissues; PGRN was nontoxic to RAW264.7 cells; 10 ng/ml PGRN treatment of RAW264.7 significantly decreased the mRNA expression levels of iNOS and CCL2, and markedly elevated the mRNA level of Arg-1, and PGRN increased the M2/M1 ratio. Conclusion: PGRN may exert anti-inflammatory effects in Aspergillus fumigatus keratitis by regulating macrophage polarization.
文章引用:贺铜, 段慧瑾, 刘婧仪, 亓平丽. Progranulin通过调控巨噬细胞极化对烟曲霉菌性角膜炎发挥保护作用的研究[J]. 临床医学进展, 2025, 15(4): 3024-3032. https://doi.org/10.12677/acm.2025.1541268

1. 引言

真菌性角膜炎(fumigatus keratitis, FK)是一种由致病真菌侵袭角膜引起的眼部感染性疾病[1]。由于激素的过度使用、角膜接触镜使用不当、植物性眼外伤等因素,真菌性角膜炎的发病率不断上升[2]-[5]。真菌感染后,宿主为抵御真菌的侵袭启动防御机制,释放炎症因子,炎症因子的过度释放又加重组织损伤[6]。目前临床应用的一线抗真菌药物那他霉素,不但在药物稳定性、毒性以及耐药性等方面均存在较大局限性,而且有促炎作用[7] [8],因此在抗真菌的同时进行抗炎治疗也对烟曲霉菌角膜炎的愈后具有十分重要的意义。

Progranulin (PGRN)是一种富含半胱氨酸的生长因子,广泛存在于上皮细胞、巨噬细胞以及其他的组织和细胞中[9]。PGRN可以调节正常组织的生长发育,并参与宿主的防御反应。PGRN对骨关节炎[10]、炎症性肠病[11]、牛皮癣[12]和各种自身免疫性疾病[13] [14]表现出抗炎作用。PGRN与巨噬细胞极化密切相关,如坏死性小肠结肠炎[15]、急性肺损伤[16]、牙周炎[17]等多种疾病模型中,PGRN可以通过促进巨噬细胞向M2极化来改善疾病进展。

巨噬细胞是参与机体防御过程中免疫炎症的关键组成部分[18],当巨噬细胞应对不同刺激时,分化为M1型和M2型这两种作用相反、差异显著的表型。M1型与M2型巨噬细胞的平衡对于机体炎症反映的调控至关重要[19]。我们团队已有研究发现,PGRN通过增强自噬减轻真菌性角膜炎的炎症反应[20]。本研究进一步探讨PGRN是否通过调控巨噬细胞极化在烟曲霉菌角膜炎中发挥抗炎作用。

2. 材料与方法

2.1. 实验材料

RAW264.7细胞来源于中国科学院上海分院,并被培养于添加了10%体积分数的胎牛血清的DMEM培养基中。

CCK-8检测试剂盒由MCE公司提供;RNA exproreagent由艾科瑞生物公司提供。CD86、CD206抗体由Biolegend公司提供。重组PGRN蛋白购自R&D Systems,规格为50 ug,使用无菌PBS稀释至所需浓度。

2.2. 实验方法

2.2.1. 真菌制备

编号为3.0772的AF菌株,源自中国普通微生物菌种保藏管理中心。将烟曲霉菌菌株接种于固体培养基,37℃环境中培养,3~4天后向培养基加入适量无菌PBS溶液后刮取烟曲霉菌菌落孢子,过滤后收集于离心管内,置于4℃冰箱储存。取烟曲霉菌孢子放置在锥形瓶中,并配置了沙氏培养液以供其生长,放置于37℃、120 r/min的培养箱中放置4~7 d,至锥形瓶中出现团状菌落。于超净工作台中研磨收取菌丝,离心机(4℃,5000 rpm)离心15分钟后去除上清液,用无菌PBS洗涤后再次离心,重复三次。加入适量75%乙醇,充分震荡后置于4℃冰箱过夜。次日重复离心、PBS洗涤过程三次,最后加入高糖DMEM溶液,震荡混匀后分装并储存于−20℃冰箱,得到烟曲霉菌灭活菌丝。

2.2.2. 小鼠的分组及处理

本实验选用了由济南朋悦实验动物繁育有限公司提供的健康、SPF级别的8周龄雌性C57BL/6小鼠作为研究模型。将小鼠随机分为2组,每组不少于12只。对实验小鼠行腹腔麻醉后于小鼠右眼角膜基质内注入2 μL烟曲霉菌孢子(1 × 107 CFU/L),左眼不作处理。分别于感染前第1天和感染后第1天给予小鼠右眼结膜下注射PBS或PGRN (100 ng/mL),左眼不作处理。分别于真菌感染后第1、3、5天使用裂隙灯观察小鼠角膜炎症情况,并进行临床评分[21]。感染后第三天,取小鼠眼球放置于固定液中进行后续实验。

2.2.3. 细胞分组及处理

将RAW264.7细胞接种于6或12孔板上,待细胞密度达到80%时,给予无菌PBS、10 ng/mL PGRN预处理,时间为1 h,分别于每孔加入60 μL烟曲霉菌灭活菌丝,处理12 h。收集不同分组的细胞进行后面的实验。

2.2.4. CCK-8实验

遵照无菌原则,96孔板内均匀铺上RAW264.7细胞,37℃,5% CO2培养箱为细胞适宜生长环境,将细胞放置其中培养。随后,向各孔中加入不同浓度的PGRN(检测浓度分别为10、20、40、80、160、320 ng/mL),将重组蛋白与细胞继续培养24小时,期间保持细胞处于适宜的环境。满足处理时间后,在避光环境中,加入10 μL CCK-8试剂至细胞中。待加入2 h后,将培养板放在酶标仪中,设置波长为450 nm,测量各孔的吸光度值。

2.2.5. 定量实时聚合酶链反应(RT-PCR)

经过处理的细胞,首先移除其上清液,随后使用PBS溶液进行三次洗涤。接着,向每孔中加入RNA裂解液,对细胞进行充分研磨后,转移至2 mL的EP管中。完成总RNA的提取后,进行浓度的测定。最后,采用南京诺唯赞公司生产的HiScript III RT SuperMix试剂进行反转录操作得到cDNA原液,然后加入所需基因的引物后,使用RT-PCR机器进行扩增。用于检测M1相关表型(iNOS)和M2相关表型(Arg-1)以及炎症因子CCL2的mRNA表达水平。引物序列如表1

Table 1. Mouse primer and sequence

1. 小鼠引物及序列

引物名称

引物序列

β-actin (mouse)

F:AGGCATTGTGATGGACTCCG

R:AGCTCAGTAACAGTCCGCCTA

INOS (mouse)

F:TGTCTGCAGCACTTGGATCAG

R:AAACTTCGGAAGGGAGCAATG

CCL2 (mouse)

F:CAGCAGGTGTCCCAAAGAAG

R:ATTTGGTTCCGATCCAGGTT

Arg-1 (mouse)

F:TGGGTGACTCCCTGCATATCT

R:TTCCATCACCTTGCCAATCC

2.2.6. 流式细胞术

小鼠巨噬细胞RAW264.7被均匀地接种在6孔板上,并按照前述方法进行培养,直至细胞密度达到约80%时,进行后续处理。一组为空白对照组,不进行任何额外处理;设立两组各加入等体积的无菌PBS溶液和10 ng/mL的PGRN与细胞培养1小时,随后加入灭活菌丝,时间为12小时。达到处理时间后,将板内培养液丢弃,使用无菌PBS溶液对处理过的细胞进行洗涤,洗掉细胞表面的培养液及真菌。加入无菌PBS溶液,将处理好的细胞收集,放置在容量为2 mL的EP管中。随后,对管内细胞进行反复重悬、固定及穿膜处理,加入需标记的抗体(CD86FITC和CD206APC)。于避光条件下共同孵育,时间30分钟。完成孵育后,对细胞进行洗涤、重新悬浮,并最终加入500 μL的无菌PBS溶液。流式细胞仪检测细胞。

2.2.7. HE染色

取感染真菌性角膜炎第3天的小鼠的眼球在40 g/L甲醛溶液中固定2 d,石蜡包埋,切片,PBS浸洗3遍,苏木精染色,自来水冲洗3遍;盐酸乙醇分化20 s,自来水冲洗;氨水中和1 min,自来水冲洗;伊红染色30 s,自来水冲洗3遍;依次浸入不同体积分数乙醇及无水乙醇中脱水,浸入二甲苯中透明5 min,中性树胶封片,晾干。使用光学显微镜观察并拍照(400倍)。

3. 统计学分析

数据分析采用SPSS26.0与GraphPad Prism 9.0统计软件。本研究中的所有实验均进行最少三次重复操作,确保数据准确性。计量数据以均值 ± 标准差( x ¯ ±s )表示,采用重复测量设计分析小鼠角膜临床评分,多组数据间比较则采取单因素方差分析,进一步两两比较采用LSD-t检验。统计学显著性水平设定为P < 0.05。

4. 结果

4.1. PGRN减轻烟曲霉菌角膜炎的病变程度

为了验证PGRN在烟曲霉菌性角膜炎中的抗炎作用,我们设计小鼠在烟曲霉菌感染前1天及感染后1天,分别接受结膜下注射PBS溶液或浓度为100 ng/mL的PGRN。观察烟曲霉菌感染后第1、3、5天小鼠角膜溃疡程度,并进行临床评分。结果发现,PGRN真菌感染组的小鼠角膜混浊面积、水肿程度明显轻于PBS真菌感染组(如图1(A))。临床评分显示,PGRN真菌感染组的临床评分也明显低于PBS真菌感染组,差异具有统计学意义(FD1 = 20.862, P < 0.001; FD3 = 35.244, P < 0.001; FD5 = 47.647, P < 0.001) (如图1(B))。以上结果显示PGRN可以减轻烟曲霉菌角膜炎的病变程度。

注:A为PBS组和PBRG组感染后第1、3、5天的前节照相,B为小鼠角膜临床评分比较(***P < 0.001)。重复测量设计的方差分析显示:F组别 = 80.620,P < 0.001;F时间 = 27.842,P < 0.001;F组别×时间 = 5.345,P < 0.05。

Figure 1. Comparison of corneal inflammatory conditions and clinical scores among different groups

1. 不同分组角膜炎症情况及临床评分的比较

4.2. PGRN减轻小鼠角膜组织中炎症细胞的浸润

关于PGRN对烟曲霉菌感染的小鼠角膜组织的炎症细胞浸润的影响,我们取烟曲霉菌感染后第三天小鼠眼球进行HE染色。结果显示相比较于PBS真菌感染组,PGRN真菌感染组的炎症细胞数量明显减少(如图2)。

注:经PGRN处理后,烟曲霉菌性角膜炎小鼠角膜组织内炎症细胞明显减少(400倍) (n = 6)。

Figure 2. In a mouse model of fungal keratitis, PGRN mitigated the infiltration of inflammatory cells in corneal tissue

2. 在小鼠真菌性角膜炎模型中,PGRN可以减轻角膜组织中炎症细胞的浸润

4.3. PGRN抑制烟曲霉菌感染的RAW264.7细胞的炎症反应

为了观察PGRN是否对细胞活性有影响,用不同浓度PGRN (10、20、40、80、160、320 ng/ml)与RAW264.7细胞共同孵育24 h,采用CCK-8检测PGRN对细胞的影响,结果显示10~320 ng/mLd的PGRN对细胞无毒性(如图3),差异具有统计学意义(F = 63.33, P < 0.05)。接下来的实验我们使用浓度为10 ng/ml的PGRN处理细胞。进一步研究PGRN对烟曲霉菌感染的RAW264.7细胞炎症因子的影响,结果表明,烟曲霉菌感染细胞后,iNOS、CCL2、Arg-1的mRNA水平明显上升;与PBS加菌感染组相比,PGRN加菌感染组中,iNOS、CCL2的mRNA表达水平显著下降,而Arg-1 mRNA表达水平进一步上升(P < 0.01) (如表2)。实验结果表明PGRN可以抑制RAW264.7细胞感染烟曲霉菌后引起的炎症反应。iNOS和Arg-1为巨噬细胞极化标志物,接下来的实验我们深入研究PGRN与巨噬细胞极化的关系。

注:不同浓度的PGRN对RAW264.7细胞活性的影响(与正常组相比较,***P < 0.001)。

Figure 3. PGRN had no toxic effect on RAW264.7 cells

3. PGRN对RAW264.7细胞无毒性作用

Table 2. Comparison of gene expression levels of inflammation-related factors in cells of each group (n = 6, x ¯ ±s )

2. 各组细胞中炎症相关因子基因表达水平的比较(n = 6, x ¯ ±s )

组别

iNOS

CCL2

Arg-1

PBS

1.0100 ± 0.14588

1.0050 ± 0.11845

1.0167 ± 0.19315

AF + PBS

29.0450 ± 2.13881

23.4333 ± 6.03561

1.5467 ± 0.49637

AF + PGRN

4.0900 ± 0.42143

4.1217 ± 0.58969

2.3667 ± 0.26440

注:各指标三组间比较,F = 23.550~891.316,P < 0.001。

4.4. PGRN促进RAW264.7细胞向M2极化

采用流式细胞技术对正常组、PBS加菌感染组、PGRN加菌感染组中M2与M1巨噬细胞比例的变化进行了测定,来深入研究PGRN与巨噬细胞极化间的关系。实验结果显示(如图4),与正常对照组相比,PBS加菌感染组M1 (CD86+ CD206−)所占比例增多;与PBS加菌感染组相比,PGRN加菌感染组中,M1 (CD86+ CD206−)所占比例显著降低,差异具有统计学意义。同时,与PBS加菌感染组相比,PGRN 加菌感染组中,M2 (CD206 + CD86−)所占比例显著增多,差异具有统计学意义。并且,与PBS加菌感染组相比,PGRN加菌感染组中,M2/M1比例显著增多,差异具有统计学意义。

注:流式细胞术检测不同分组中M1型、M2型巨噬细胞数量和百分比(**P < 0.01, ***P < 0.001)。

Figure 4. PGRN promotes M2-type polarization of macrophages after Aspergillus fumigatus infection

4. PGRN促进烟曲霉菌感染后的巨噬细胞向M2型极化

5. 讨论

烟曲霉菌是FK中最常见的病原体之一,FK的发病过程与宿主防御机制和免疫反应密切相关[22]。当角膜组织被真菌入侵后,机体做出一系列反应,产生炎症因子及趋化因子,诱导大量炎症细胞向角膜损组织聚集[23] [24]。适度的炎症反应能够激发宿主的主动防御机制,有效清除病原微生物;当炎症反应过度时,它会对组织造成破坏,并导致不同程度的视力损害[25]。因此,寻找烟曲霉菌角膜炎抗炎方法及具体机制具有十分重要的临床意义。

PGRN在调控组织发育、促进组织再生、增强宿主防御等方面发挥着不可或缺的作用[26] [27]。最新研究表明,负载PGRN的智能涂层通过缓释PGRN能够促进角膜上皮再生,减轻角膜碱烧伤的角膜水肿程度,增强角膜愈合[28]。本研究结果显示,PGRN显著减轻烟曲霉菌感染的小鼠角膜混浊面积、溃疡程度,同时降低临床评分。这表明PGRN对烟曲霉菌角膜炎发挥保护作用。此外,HE染色结果发现PGRN明显减少小鼠角膜组织中炎症细胞的浸润。提示PGRN通过减轻炎症细胞浸润来减轻烟曲霉菌感染引起的角膜损伤。

众所周知,巨噬细胞在真菌感染引起的炎症反应中发挥重要作用。M1型巨噬细胞于传递抗原、促进炎症反应、病原体清除以及抗肿瘤功能当中发挥着主导作用;而M2型巨噬细胞则在抑制炎症、加速组织修复、进行免疫调节等诸多方面起着关键作用[29]-[31]。有研究发现,PGRN能够通过抑制巨噬细胞M1极化,减轻肠道损伤在小鼠结肠炎中发挥保护性作用[15]。在急性肺损伤中,PGRN通过影响巨噬细胞M1/M2型极化改善疾病预后[16]。以上研究说明PGRN与巨噬细胞极化密切相关,通过调控巨噬细胞极化在疾病的发生发展过程中表现出保护作用。为进一步探究PGRN在真菌性角膜炎中是否也通过影响巨噬细胞的功能发挥抗炎作用,我们选择RAW264.7细胞建立真菌感染细胞模型进行体外实验。CCK8结果表明PGRN对RAW264.7细胞的活性无毒性。后续实验均选择10 ng/mL作为PGRN的浓度。我们的结果显示,PGRN抑制烟曲霉菌感染RAW264.7细胞中M1标记物iNOS及促炎因子CCL2的mRNA表达水平,促进了M2标记物Arg-1的mRNA表达水平。巨噬细胞表面展现两种标志性的分子,即CD86与CD206,它们被用于区分巨噬细胞的不同表型及其功能状态[32]。M1型巨噬细胞中CD86的表达会有所上升,CD206在M2型巨噬细胞中的表达水平较高。我们用流式细胞仪检测PGRN对烟曲霉菌感染的RAW264.7细胞中的巨噬细胞影响,结果显示,PGRN处理后,烟曲霉菌感染的RAW264.7细胞中,CD206 + CD86-M2型巨噬细胞表达上调,而CD86 + CD206-M1型巨噬细胞表达下调。以上结果表明PGRN能通过诱导烟曲霉菌感染的巨噬细胞从M1型转化成M2型,发挥抗炎作用。

综上所述,PGRN通过调控巨噬细胞由M1向M2极化在烟曲霉菌角膜炎中发挥抗炎作用,从而改善疾病的预后。PGRN在烟曲霉菌角膜炎中的其他抗炎机制及对角膜组织损伤的作用仍需要深入探讨。

NOTES

*通讯作者。

参考文献

[1] Niu, L., Liu, X., Ma, Z., Yin, Y., Sun, L., Yang, L., et al. (2020) Fungal Keratitis: Pathogenesis, Diagnosis and Prevention. Microbial Pathogenesis, 138, Article 103802.
https://doi.org/10.1016/j.micpath.2019.103802
[2] Soleimani, M., Izadi, A., Khodavaisy, S., Santos, C.O.D., Tehupeiory-Kooreman, M.C., Ghazvini, R.D., et al. (2023) Fungal Keratitis in Iran: Risk Factors, Clinical Features, and Mycological Profile. Frontiers in Cellular and Infection Microbiology, 13, Article 1094182.
https://doi.org/10.3389/fcimb.2023.1094182
[3] Mpakosi, A., Siopi, M., Vrioni, G., Orfanidou, M., Argyropoulou, A., Christofidou, M., et al. (2022) Filamentous Fungal Keratitis in Greece: A 16-Year Nationwide Multicenter Survey. Mycopathologia, 187, 439-453.
https://doi.org/10.1007/s11046-022-00666-1
[4] Tananuvat, N., Upaphong, P., Tangmonkongvoragul, C., Niparugs, M., Chaidaroon, W. and Pongpom, M. (2021) Fungal Keratitis at a Tertiary Eye Care in Northern Thailand: Etiology and Prognostic Factors for Treatment Outcomes. Journal of Infection, 83, 112-118.
https://doi.org/10.1016/j.jinf.2021.05.016
[5] Brown, L., Leck, A.K., Gichangi, M., Burton, M.J. and Denning, D.W. (2021) The Global Incidence and Diagnosis of Fungal Keratitis. The Lancet Infectious Diseases, 21, e49-e57.
https://doi.org/10.1016/s1473-3099(20)30448-5
[6] Heinekamp, T., Schmidt, H., Lapp, K., Pähtz, V., Shopova, I., Köster-Eiserfunke, N., et al. (2014) Interference of Aspergillus Fumigatus with the Immune Response. Seminars in Immunopathology, 37, 141-152.
https://doi.org/10.1007/s00281-014-0465-1
[7] Sharma, N., Bagga, B., Singhal, D., Nagpal, R., Kate, A., Saluja, G., et al. (2022) Fungal Keratitis: A Review of Clinical Presentations, Treatment Strategies and Outcomes. The Ocular Surface, 24, 22-30.
https://doi.org/10.1016/j.jtos.2021.12.001
[8] Raj, N., Vanathi, M., Ahmed, N.H., Gupta, N., Lomi, N. and Tandon, R. (2021) Recent Perspectives in the Management of Fungal Keratitis. Journal of Fungi, 7, Article 907.
https://doi.org/10.3390/jof7110907
[9] Jian, J., Konopka, J. and Liu, C. (2013) Insights into the Role of Progranulin in Immunity, Infection, and Inflammation. Journal of Leukocyte Biology, 93, 199-208.
https://doi.org/10.1189/jlb.0812429
[10] Tang, W., Lu, Y., Tian, Q., Zhang, Y., Guo, F., Liu, G., et al. (2011) The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic against Inflammatory Arthritis in Mice. Science, 332, 478-484.
https://doi.org/10.1126/science.1199214
[11] Wei, F., Zhang, Y., Zhao, W., Yu, X. and Liu, C. (2014) Progranulin Facilitates Conversion and Function of Regulatory T Cells under Inflammatory Conditions. PLOS ONE, 9, e112110.
https://doi.org/10.1371/journal.pone.0112110
[12] Huang, K., Chen, A., Zhang, X., Song, Z., Xu, H., Cao, J., et al. (2015) Progranulin Is Preferentially Expressed in Patients with Psoriasis Vulgaris and Protects Mice from Psoriasis-Like Skin Inflammation. Immunology, 145, 279-287.
https://doi.org/10.1111/imm.12446
[13] Thurner, L., Stöger, E., Fadle, N., Klemm, P., Regitz, E., Kemele, M., et al. (2014) Proinflammatory Progranulin Antibodies in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 59, 1733-1742.
https://doi.org/10.1007/s10620-014-3089-3
[14] Jian, J., Li, G., Hettinghouse, A. and Liu, C. (2018) Progranulin: A Key Player in Autoimmune Diseases. Cytokine, 101, 48-55.
https://doi.org/10.1016/j.cyto.2016.08.007
[15] Mo, D., Qiu, Y., Tian, B., Liu, X., Chen, Y., Zou, G., et al. (2024) Progranulin Mitigates Intestinal Injury in a Murine Model of Necrotizing Enterocolitis by Suppressing M1 Macrophage Polarization. Cell Biology International, 48, 1520-1532.
https://doi.org/10.1002/cbin.12209
[16] Chen, Y., Wang, C., Xie, K., Lei, M., Chai, Y., Xu, F., et al. (2020) Progranulin Improves Acute Lung Injury through Regulating the Differentiation of Regulatory T Cells and Interleukin-10 Immunomodulation to Promote Macrophage Polarization. Mediators of Inflammation, 2020, 1-15.
https://doi.org/10.1155/2020/9704327
[17] Zhang, L., Nie, F., Zhao, J., Li, S., Liu, W., Guo, H., et al. (2024) PGRN Is Involved in Macrophage M2 Polarization Regulation through TNFR2 in Periodontitis. Journal of Translational Medicine, 22, Article No. 407.
https://doi.org/10.1186/s12967-024-05214-7
[18] Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795.
https://doi.org/10.1172/jci59643
[19] Yunna, C., Mengru, H., Lei, W. and Weidong, C. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article 173090.
https://doi.org/10.1016/j.ejphar.2020.173090
[20] Qi, P., Liu, X., Li, C., Xu, Q., Hu, L., Duan, H., et al. (2024) Progranulin Protects against Aspergillus fumigatus Keratitis by Attenuating the Inflammatory Response through Enhancing Autophagy. ACS Infectious Diseases, 10, 2826-2835.
https://doi.org/10.1021/acsinfecdis.4c00236
[21] Wu, T.G., Wilhelmus, K.R. and Mitchell, B.M. (2003) Experimental Keratomycosis in a Mouse Model. Investigative Opthalmology & Visual Science, 44, 210-216.
https://doi.org/10.1167/iovs.02-0446
[22] Mills, B., Radhakrishnan, N., Karthikeyan Rajapandian, S.G., Rameshkumar, G., Lalitha, P. and Prajna, N.V. (2021) The Role of Fungi in Fungal Keratitis. Experimental Eye Research, 202, Article 108372.
https://doi.org/10.1016/j.exer.2020.108372
[23] Yang, H., Wang, Q., Han, L., Yang, X., Zhao, W., Lyu, L., et al. (2020) Nerolidol Inhibits the LOX-1/Il-1β Signaling to Protect against the Aspergillus Fumigatus Keratitis Inflammation Damage to the Cornea. International Immunopharmacology, 80, Article 106118.
https://doi.org/10.1016/j.intimp.2019.106118
[24] Jiang, N., Zhang, L., Zhao, G., Lin, J., Wang, Q., Xu, Q., et al. (2020) Indoleamine 2,3-Dioxygenase Regulates Macrophage Recruitment, Polarization and Phagocytosis in Aspergillus fumigatus Keratitis. Investigative Opthalmology & Visual Science, 61, 28.
https://doi.org/10.1167/iovs.61.8.28
[25] Niu, Y., Zhao, G., Li, C., Lin, J., Jiang, N., Che, C., et al. (2018) Aspergillus fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression through the Pathway of PAR-2/ERK1/2 in Cornea. Investigative Opthalmology & Visual Science, 59, 166-175.
https://doi.org/10.1167/iovs.17-21887
[26] Saeedi-Boroujeni, A., Purrahman, D., Shojaeian, A., Poniatowski, Ł.A., Rafiee, F. and Mahmoudian-Sani, M. (2023) Progranulin (PGRN) as a Regulator of Inflammation and a Critical Factor in the Immunopathogenesis of Cardiovascular Diseases. Journal of Inflammation, 20, Article No. 1.
https://doi.org/10.1186/s12950-023-00327-0
[27] Zhang, T., Feng, T., Wu, K., Guo, J., Nana, A.L., Yang, G., et al. (2023) Progranulin Deficiency Results in Sex-Dependent Alterations in Microglia in Response to Demyelination. Acta Neuropathologica, 146, 97-119.
https://doi.org/10.1007/s00401-023-02578-w
[28] Yan, D., Ouyang, W., Lin, J. and Liu, Z. (2023) Smart Coating by Thermo-Sensitive Pluronic F-127 for Enhanced Corneal Healing via Delivery of Biological Macromolecule Progranulin. International Journal of Biological Macromolecules, 253, Article 127586.
https://doi.org/10.1016/j.ijbiomac.2023.127586
[29] Abe, C., Bhaswant, M., Miyazawa, T. and Miyazawa, T. (2023) The Potential Use of Exosomes in Anti-Cancer Effect Induced by Polarized Macrophages. Pharmaceutics, 15, Article 1024.
https://doi.org/10.3390/pharmaceutics15031024
[30] Atri, C., Guerfali, F.Z. and Laouini, D. (2018) Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences, 19, 1801.
https://doi.org/10.3390/ijms19061801
[31] Wang, C., Ma, C., Gong, L., Guo, Y., Fu, K., Zhang, Y., et al. (2021) Macrophage Polarization and Its Role in Liver Disease. Frontiers in Immunology, 12, Article 803037.
https://doi.org/10.3389/fimmu.2021.803037
[32] Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260.
https://doi.org/10.3389/fimmu.2022.867260