[1]
|
Raina, P., Sikka, R., Gupta, H., Matharoo, K., Bali, S.K., Singh, V., et al. (2021) Association of eNOS and MCP-1 Genetic Variants with Type 2 Diabetes and Diabetic Nephropathy Susceptibility: A Case-Control and Meta-Analysis Study. Biochemical Genetics, 59, 966-996. https://doi.org/10.1007/s10528-021-10041-2
|
[2]
|
Li, M., Guo, Q., Cai, H., Wang, H., Ma, Z. and Zhang, X. (2019) MiR‐218 Regulates Diabetic Nephropathy via Targeting IKK‐β and Modulating NK‐κB‐Mediated Inflammation. Journal of Cellular Physiology, 235, 3362-3371. https://doi.org/10.1002/jcp.29224
|
[3]
|
郭凯, 成玮, 朱玉琴, 叶娜, 朱文锦, 周尊海. 糖尿病肾病药物治疗策略新进展[J]. 河北医药, 2025, 47(2): 302-306+312.
|
[4]
|
Mann, J.F., Schmieder, R.E., McQueen, M., Dyal, L., Schumacher, H., Pogue, J., et al. (2008) Renal Outcomes with Telmisartan, Ramipril, or Both, in People at High Vascular Risk (the ONTARGET Study): A Multicentre, Randomised, Double-Blind, Controlled Trial. The Lancet, 372, 547-553. https://doi.org/10.1016/s0140-6736(08)61236-2
|
[5]
|
谭莹, 余江毅. 基于“气虚生毒”学说辨治糖尿病肾病[J]. 辽宁中医药大学学报, 2022, 24(11): 109-113.
|
[6]
|
Cai, W., et al. (2013) Advanced Glycation End Products and Their Role in Chronic Diseases. Journal of Internal Medicine, 274, 299-311.
|
[7]
|
Lu, C., Ma, J., Su, J., Wang, X., Liu, W. and Ge, X. (2021) Serum Stromal Cell-Derived Factor-1 Levels Are Associated with Diabetic Kidney Disease in Type 2 Diabetic Patients. Endocrine Journal, 68, 1101-1107. https://doi.org/10.1507/endocrj.ej21-0039
|
[8]
|
马可可, 鞠营辉, 陈清青, 李维祖, 李卫平. 黄芪甲苷对2型糖尿病肾病大鼠肾组织PI3K/Akt/FoxO1信号调控的影响[J]. 中国实验方剂学杂志, 2019, 25(2): 74-81.
|
[9]
|
刘洛坤. 黄芪甲苷和人参皂苷Compound K改善咪唑丙酸促进糖尿病小鼠肾损伤的药效学研究[D]: [硕士学位论文]. 天津: 天津中医药大学, 2023.
|
[10]
|
娄文娇, 郭敬, 张帆, 等. 黄连素(小檗碱)治疗早期糖尿病肾病有效性和安全性系统回顾及Meta分析[J]. 中国中西医结合肾病杂志, 2022, 23(6): 510-513.
|
[11]
|
Tang, G., Li, S., Zhang, C., Chen, H., Wang, N. and Feng, Y. (2021) Clinical Efficacies, Underlying Mechanisms and Molecular Targets of Chinese Medicines for Diabetic Nephropathy Treatment and Management. Acta Pharmaceutica Sinica B, 11, 2749-2767. https://doi.org/10.1016/j.apsb.2020.12.020
|
[12]
|
Han, J., Li, P., Sun, H., et al. (2025) Integrated Metabolomics and Mass Spectrometry Imaging Analysis Reveal the Efficacy and Mechanism of Huangkui Capsule on Type 2 Diabetic Nephropathy. Phytomedicine, 138, Article ID: 156397. https://doi.org/10.1016/j.phymed.2025.156397
|
[13]
|
Liu, X., et al. (2018) Tanshinone IIA Attenuates Oxidative Stress and Apoptosis in Human Mesangial Cells via Activating Nrf2 Signaling Pathway. Journal of Ethnopharmacology, 221, 1-9.
|
[14]
|
Wang, X., et al. (2021) Tanshinone IIA Alleviates High-Glucose-Induced Oxidative Stress and Apoptosis in Human Renal Tubular Epithelial Cells via Activating Nrf2 Signaling. Free Radical Biology and Medicine, 162, 220-232.
|
[15]
|
Xie, F., Ling, X.L., Liu, Y., Feng, Y.L. and Dong, F.X. (2020) Meta-Analysis of Therapeutic Efficacy of Sodium Tanshinone IIA Sulfonate Injection in Treatment of Diabetic Kidney Disease. Chinese Journal of Modern Applied Pharmacy, 37, 2371-2377.
|
[16]
|
Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A.A., Li, W., et al. (2014) NAD(+)-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease. Cell Metabolism, 19, 1042-1049. https://doi.org/10.1016/j.cmet.2014.04.001
|
[17]
|
Bhardwaj, V., et al. (2015) Curcumin Inhibits NF-κB-Mediated Oxidative Stress and Inflammatory Response in Human Monocytes. Free Radical Biology and Medicine, 81, 12-23.
|
[18]
|
Sahebkar, A., et al. (2020) Efficacy and Safety of Curcumin in Patients with Diabetic Nephropathy: A Multicenter Randomized Controlled Trial. Journal of the American College of Cardiology, 76, 1735-1746.
|
[19]
|
左建娇, 魏萱, 施云涛, 等. 雷公藤多苷联合百令胶囊对Ⅳ期糖尿病肾病患者炎性因子的影响及安全性分析[J]. 转化医学杂志, 2023, 12(5): 231-234.
|
[20]
|
仝小林, 黄一珊. 糖尿病肾脏疾病中医药防治研究现状及发展对策[J]. 北京中医药大学学报, 2022, 45(12): 1189-1195.
|
[21]
|
刘璐. 基于JAK2/STAT3信号通路研究芍药苷抑制糖尿病肾脏巨噬细胞激活的分子机制[D]: [博士学位论文]. 北京: 北京中医药大学, 2019.
|
[22]
|
Lu, M., Yin, N., Liu, W., Cui, X., Chen, S. and Wang, E. (2017) Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. BioMed Research International, 2017, Article ID: 1516985. https://doi.org/10.1155/2017/1516985
|
[23]
|
Qi, X., Shen, T., Shang, L., et al. (2024) Protective Effect of Lycorine Hydrochloride Against Diabetic Nephropathy in High-Fat Diet and Streptozotocin-Induced Diabetic Mice. Pharmaceutical Science Advances, 2, Article ID: 100035.
|
[24]
|
Li, N., Zhao, T., Cao, Y., Zhang, H., Peng, L., Wang, Y., et al. (2021) Tangshen Formula Attenuates Diabetic Kidney Injury by Imparting Anti-Pyroptotic Effects via the TXNIP-NLRP3-GSDMD Axis. Frontiers in Pharmacology, 11, Article ID: 623489. https://doi.org/10.3389/fphar.2020.623489
|
[25]
|
Vanhove, T., Goldschmeding, R. and Kuypers, D. (2017) Kidney Fibrosis: Origins and Interventions. Transplantation, 101, 713-726. https://doi.org/10.1097/tp.0000000000001608
|
[26]
|
Brennan, E.P., Morine, M.J., Walsh, D.W., Roxburgh, S.A., Lindenmeyer, M.T., Brazil, D.P., et al. (2012) Next-Generation Sequencing Identifies TGF-β1-Associated Gene Expression Profiles in Renal Epithelial Cells Reiterated in Human Diabetic Nephropathy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822, 589-599. https://doi.org/10.1016/j.bbadis.2012.01.008
|
[27]
|
Sun, X., Yang, Y., Sun, X., Meng, H., Hao, W., Yin, J., et al. (2022) Krill Oil Turns off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. Journal of Agricultural and Food Chemistry, 70, 9865-9876. https://doi.org/10.1021/acs.jafc.2c02850
|
[28]
|
高利超, 徐兵, 刘永安, 等. 三七皂苷R1抑制TGF-β1/Smad3信号传导对糖尿病肾病大鼠肾脏纤维化和炎症细胞因子的调节作用研究[J]. 中国免疫学杂志, 2020, 36(10): 1188-1193.
|
[29]
|
刘晶, 范芳芳, 卢军, 等. 淡豆豉异黄酮调控TGF-β1/Smads信号通路改善小鼠糖尿病肾病[J]. 中医学报, 1-9.
|
[30]
|
钟娟, 青姚, 吴曙粤, 等. 厄贝沙坦通过诱导自噬减轻db/db小鼠肝脏脂肪变[J]. 中国病理生理杂志, 2018, 34(3): 521-527.
|
[31]
|
潘盼盼. 黄芪甲苷联合川芎嗪对糖尿病大鼠的肾脏保护作用及其基于Akt/mTOR的机制研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2018.
|
[32]
|
钟娟, 陈静, 青姚, 等. 川芎嗪通过抑制PI3K、Akt蛋白/mTOR通路诱导自噬改善糖尿病肾病大鼠肾损害[J]. 天津医药, 2019, 47(4): 395-400.
|
[33]
|
Jin, D., Liu, F., Yu, M., Zhao, Y., Yan, G., Xue, J., et al. (2022) Jiedu Tongluo Baoshen Formula Enhances Podocyte Autophagy and Reduces Proteinuria in Diabetic Kidney Disease by Inhibiting PI3K/Akt/mTOR Signaling Pathway. Journal of Ethnopharmacology, 293, Article ID: 115246. https://doi.org/10.1016/j.jep.2022.115246
|
[34]
|
Zhong, J., Qing, Y., Wu, S.Y., et al. (2018) Irbesartan Alleviates Hepatic Steatosis in db/db Mice by Inducing Autophagy. Chinese Journal of Pathophysiology, 34, 521-527.
|
[35]
|
Xie, S., Chen, M., Yan, B., He, X., Chen, X. and Li, D. (2014) Identification of a Role for the PI3K/Akt/mTOR Signaling Pathway in Innate Immune Cells. PLOS ONE, 9, e94496. https://doi.org/10.1371/journal.pone.0094496
|
[36]
|
Xu, K., Li, Y., Ljubimov, A.V. and Yu, F.X. (2009) High Glucose Suppresses Epidermal Growth Factor Receptor/Phosphatidylinositol 3-Kinase/Akt Signaling Pathway and Attenuates Corneal Epithelial Wound Healing. Diabetes, 58, 1077-1085. https://doi.org/10.2337/db08-0997
|
[37]
|
Wang, X., Jiang, L., Liu, X., Huang, Y., Wang, A., Zeng, H., et al. (2022) Paeoniflorin Binds to VEGFR2 to Restore Autophagy and Inhibit Apoptosis for Podocyte Protection in Diabetic Kidney Disease through PI3K-AKT Signaling Pathway. Phytomedicine, 106, Article ID: 154400. https://doi.org/10.1016/j.phymed.2022.154400
|
[38]
|
Hong, J., Li, W., Wang, L., Guo, H., Jiang, Y., Gao, Y., et al. (2017) Jiangtang Decoction Ameliorate Diabetic Nephropathy through the Regulation of PI3K/Akt-Mediated NF-κB Pathways in Kk-Ay Mice. Chinese Medicine, 12, 13. https://doi.org/10.1186/s13020-017-0134-0
|
[39]
|
Giacco, F. and Brownlee, M. (2010) Oxidative Stress and Diabetic Complications. Circulation Research, 107, 1058-1070. https://doi.org/10.1161/circresaha.110.223545
|
[40]
|
Li, X., Zhang, Y., Wang, Y., et al. (2020) Gegen Su (Pueraria Lactone) Alleviates Diabetic Nephropathy via SIRT1 Activation and NF-κB Suppression in STZ-Induced Mice. Journal of Ethnopharmacology, 255, Article ID: 112782.
|
[41]
|
He, J., Hong, Q., Chen, B., Cui, S., Liu, R., Cai, G., et al. (2021) Ginsenoside Rb1 Alleviates Diabetic Kidney Podocyte Injury by Inhibiting Aldose Reductase Activity. Acta Pharmacologica Sinica, 43, 342-353. https://doi.org/10.1038/s41401-021-00788-0
|
[42]
|
Chen, J., Yang, Y., Lv, Z., Shu, A., Du, Q., Wang, W., et al. (2020) Study on the Inhibitive Effect of Catalpol on Diabetic Nephropathy. Life Sciences, 257, Article ID: 118120. https://doi.org/10.1016/j.lfs.2020.118120
|
[43]
|
Zhong, Z., et al. (2022) Liuwei Dihuang Pill Alleviates Diabetic Nephropathy via Multi-Target Regulation of Nrf2/ROS and TGF-β/Smad Pathways. Phytomedicine, 98, Article ID: 154123.
|
[44]
|
谭颖颖, 屈直, 张琪, 等. 六味地黄丸含药血清减低高糖诱导的肾小管上皮细胞的氧化损伤和凋亡的研究[J]. 时珍国医国药, 2015, 26(7): 1566.
|
[45]
|
杨娟娟, 吕忠美, 王姝琴. 六味地黄丸联合辛伐他汀对肾阴亏损型糖尿病肾病病人炎症免疫指标和肾纤维化的影响[J]. 中西医结合心脑血管病杂志, 2022, 20(12): 2241-2241.
|
[46]
|
Chen, Y., Gong, Z., Cai, G., Gao, Q., Chen, X., Tang, L., et al. (2014) Efficacy and Safety of Flos Abelmoschus Manihot (Malvaceae) on Type 2 Diabetic Nephropathy: A Systematic Review. Chinese Journal of Integrative Medicine, 21, 464-472. https://doi.org/10.1007/s11655-014-1891-6
|
[47]
|
Zhao, J., Ai, J., Mo, C., Shi, W. and Meng, L. (2022) Comparative Efficacy of Seven Chinese Patent Medicines for Early Diabetic Kidney Disease: A Bayesian Network Meta-Analysis. Complementary Therapies in Medicine, 67, Article ID: 102831. https://doi.org/10.1016/j.ctim.2022.102831
|
[48]
|
Yang, X.Y., Wang, Y.W. and Shi, Z.K. (2018) Effect of Huangkui Capsule on the Expression of TGF-β1, α-SMA and ILK in Diabetes Nephropathy. China Continuing Medical Education, 10, 158-160.
|
[49]
|
Yu, H., Tang, H., Wang, M., Xu, Q., Yu, J., Ge, H., et al. (2023) Effects of Total Flavones of Abelmoschus manihot (L.) on the Treatment of Diabetic Nephropathy via the Activation of Solute Carriers in Renal Tubular Epithelial Cells. Biomedicine & Pharmacotherapy, 169, Article ID: 115899. https://doi.org/10.1016/j.biopha.2023.115899
|