炎症指标对孤立性肺结节良恶性鉴别的价值分析
Analysis of the Value of Inflammatory Indices in the Differentiation of Benign and Malignant Isolated Pulmonary Nodules
摘要: 目的:比较良恶性孤立性肺结节(SPN)患者术前中性粒细胞与淋巴细胞比值(NLR)、全身炎症综合指数(AISI)、血小板与淋巴细胞比值(PLR)、血小板与白细胞比值(PWR)、单核细胞与淋巴细胞比值(MLR)、衍生中性粒细胞–淋巴细胞比率(dNLR)、系统免疫炎症指数(SII)、系统炎症反应指数(SIRI)和淋巴细胞与白细胞比率(LWR)的差异,并探讨其在肺结节良恶性鉴别诊断中的应用价值。方法:本研究将本院心胸外科手术的和经呼吸内科病理诊断的165例孤立性肺结节病人作为研究对象,将其纳入良性病变组(43例)与肺腺癌组(122例);计算其术前NLR、PLR、MLR、SII、SIRI、dNLR、PWR、AISI和LWR数据,分别比较两组之间的数据有无统计学差异,并分析各指标的诊断价值。结果:肺腺癌组NLR、PLR、SII、SIRI、dNLR和AISI均高于良性病变组(P值分别为0.009、0.042、0.001、0.026、0.003、0.002)。肺腺癌组的LWR低于良性病变组(P = 0.015)。MLR、PWR在肺腺癌组和良性病变组中的差异无统计学意义(P值分别为0.299、0.770)。结论:研究提示全身炎症指标在肺腺癌早期就开始发生变化,上述炎症指标检测对SPN良恶性的早期鉴别具有一定参考价值,其中SII是鉴别良恶性肺结节较为可观的预测指标,上述指标联合检测的诊断效能与SII差别不明显。
Abstract: Objective: To compare the preoperative neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory syndrome index (AISI), platelet-to-lymphocyte ratio (PLR), platelet-to-leukocyte ratio (PWR), monocyte-to-lymphocyte ratio (MLR), derived neutrophil-to-lymphocyte ratio (dNLR), systemic immunoinflammatory index (SII), Systemic Inflammatory Response Index (SIRI), and Lymphocyte-to-White Blood Cell Ratio (LWR), and to explore their value in differential diagnosis. Methods: In this study, 165 patients with isolated pulmonary nodules operated on by our cardiothoracic surgery and diagnosed pathologically by respiratory medicine were included in the benign lesion group (43 patients) and lung adenocarcinoma group (122 patients). We calculated the data of their preoperative NLR, PLR, MLR, SII, SIRI, dNLR, PWR, AISI, and LWR, respectively, and compared the data between the two groups for any statistical differences, and analyse the diagnostic value of each index. Results: NLR, PLR, SII, SIRI, dNLR and AISI were higher in the lung adenocarcinoma group than in the benign lesion group (P values of 0.009, 0.042, 0.001, 0.026, 0.003, 0.002, respectively). LWR was lower in the lung adenocarcinoma group than in the benign lesion group (P = 0.015). The difference between MLR and PWR in the lung adenocarcinoma group and the benign lesion group was not statistically significant (P-values of 0.299 and 0.770, respectively). Conclusion: The study suggests that systemic inflammatory indexes begin to change at the early stage of lung adenocarcinoma, and the above inflammatory indexes have certain reference value for the early identification of benign and malignant SPN, of which SII is a more predictive index for identifying benign and malignant nodules, and the diagnostic efficacy of the combination of the above indexes does not differ significantly from that of SII.
文章引用:张泽华, 陶一勤. 炎症指标对孤立性肺结节良恶性鉴别的价值分析[J]. 临床医学进展, 2025, 15(4): 3304-3312. https://doi.org/10.12677/acm.2025.1541300

1. 引言

肺癌在近几年内逐渐成为男性患恶性肿瘤死亡的主要原因,也是最常见的肿瘤之一。肺癌的早期基本表现是肺结节,而被检出的肺结节中有1%~12%的肺结节最终被确诊为早期肺癌[1]。孤立性肺结节(Solitary Pulmonary Nodule, SPN)是指肺实质内单发、类圆形、最大直径 < 30 mm的结节,不伴有淋巴结肿大、肺不张和肺炎等其他病变[2]。随着高分辨率成像方式的应用和对高危人群实施CT筛查,肺结节的检出率明显上升,虽然其中大部分肺结节是良性的,但准确识别恶性肺结节并正确治疗,对肺癌患者的生存非常有利。有研究表明,在恶性肺结节未侵袭前及时行手术治疗,术后5年生存率几乎100% [3]。因此,我们需要一种简单、廉价、较准确的鉴别良恶性肺结节的方法。

既往研究[4]表明,中性粒细胞与淋巴细胞比值(Neutrophil-to-lymphocyte ratio, NLR)、血小板与淋巴细胞比值(Platelet-to-Lymphocyte Ratio, PLR)、单核细胞与淋巴细胞比值(Monocyte-to-Lymphocyte Ratio, MLR)、系统免疫炎症指数(Systemic Immune-Inflammatory index, SII)和系统炎症反应指数(Systemic Inflammatory Response Index, SIRI)均在恶性肿瘤早期就已经出现改变,且与肿瘤进展及预后密切相关。NLR、PLR、MLR和SII已被发现在良恶性结节中具有差异性,衍生中性粒细胞–淋巴细胞比率(Derived Neutrophil-to-Lymphocyte Ratio, dNLR)、全身炎症综合指数(Aggregate Index of Systemic Inflammation, AISI)、淋巴细胞与白细胞比率(Lymphocyte-to-White blood cell Ratio, LWR)、血小板与白细胞比值(Platelet-to-White blood cell Ratio, PWR)和SIRI也被证明与肺癌的预后具有相关性,但目前仍不清楚它们是否具有鉴别良恶性肺结节的能力。本研究通过对孤立性肺结节患者资料的回顾性分析,探究术前NLR、PLR、MLR、SII、SIRI、dNLR、PWR、AISI和LWR在早期肺腺癌诊断中的价值。

2. 资料与方法

2.1. 临床资料

本研究将2016年1月~2024年12月在我院心胸外科住院手术的和经呼吸内科病理诊断的165例SPN病人作为研究对象,将其纳入良性病变组(43例)与肺腺癌组(122例)。计算该165例SPN患者的NLR、PLR、MLR、SII、SIRI、dNLR、PWR、AISI和LWR数据。纳入标准:①符合《肺结节规范化诊治专家共识》[5]中SPN的诊断标准;②所有病例均经外科手术治疗及组织病理学证实。排除标准:①有慢性肺部疾病的患者;②有糖尿病、冠心病的患者;③有感染性疾病的患者;④有其他恶性肿瘤的患者;⑤有血液疾病的患者;⑥有免疫系统疾病的患者;⑦术前1个月内献血或者术前3个月输血的患者;⑧服用影响炎症指标药物的患者;⑨缺乏临床数据的患者。该研究通过了本院伦理委员会的审查批准,该病例报道已获得病人的知情同意。

2.2. 指标检测

空腹采集静脉血样本,利用血球流水线xn + G8血液分析仪检测血细胞数值,并计算NLR、PLR、MLR、SII、SIRI、dNLR、PWR、AISI和LWR数值。

2.3. 统计分析

采用SPSS 26.0对所得的资料进行统计处理。应用夏皮洛-威尔克检验或柯尔莫戈洛夫-斯米诺夫检验对数据的正态性进行验证。计数资料用频数、百分比表示,用卡方检验进行比较;正态分布的计量资料以均数 ± 标准差( x ¯ ±s )表示,并以独立样本t检验进行比较;不符合正态分布的数据以中位数和四分位数间距M(P25, P75)表示,并以Kruskal-Wallis或Mann Whitney U检验进行比较。利用受试者工作特征曲线(ROC),计算各炎症指标的曲线下面积(AUC)、最佳截断值、特异度和灵敏度。以P < 0.05表示两组数据间有显著的统计学差异。

3. 结果

3.1. 基本资料比较

年龄在良性病变组[61.00 (53.00, 73.00)]和肺腺癌组[63.50 (54.75, 73.00)]中未见明显差别(P = 0.554),性别、病灶位置在良性病变组和肺腺癌组比较中无统计学差异(P值分别为0.145、0.153),肺腺癌组的病灶直径[18.00 (12.00, 26.00)]大于良性病变组[13.00 (9.00, 18.00)] (P = 0.001)。见表1

Table 1. General information comparison

1. 一般资料比较

特征

良性病变组

肺腺癌组

统计值

P

例数

43

122

年龄()

61.00 (53.00, 73.00)

63.50 (54.75, 73.00)

Z = 0.592

0.554

性别[(%)]

χ2 = 2.125

0.145

26 (60.5%)

58 (47.5%)

17 (39.5%)

64 (52.5%)

病灶位置[(%)]

χ2 = 2.044

0.153

左肺

13 (30.2%)

52 (42.6%)

右肺

30 (69.8%)

70 (57.4%)

病灶大小(mm)

13.00 (9.00, 18.00)

18.00 (12.00, 26.00)

Z = 3.297

0.001

吸烟史[(%)]

χ2 = 3.751

0.053

16 (37.2%)

27 (22.1%)

27 (62.8%)

95 (77.9%)

3.2. 肺腺癌组和良性病变组的炎症指标比较

肺腺癌组NLR [2.23 (1.77, 2.82)]高于良性病变组NLR [1.80 (1.54, 2.48)] (P = 0.009)。肺腺癌组PLR [124.54 (91.34, 155.39)]高于良性病变组PLR [109.70 (83.95, 134.15)] (P = 0.042)。肺腺癌组SII [414.70 (294.68, 568.26)]高于良性病变组SII [316.41 (218.32, 428.29)] (P = 0.001)。肺腺癌组SIRI [0.78 (0.56, 1.14)]高于良性病变组SIRI [0.64 (0.41, 1.01)] (P = 0.026)。肺腺癌组Dnlr [1.66 (1.29, 2.15)]高于良性病变组dNLR [1.35 (1.17, 1.70)] (P = 0.003)。肺腺癌组AISI [157.86 (93.87, 216.86)]高于良性病变组AISI [111.01 (60.21, 151.67)] (P = 0.002)。肺腺癌组LWR (0.28 ± 0.07)低于良性病变组LWR (0.31 ± 0.08) (P = 0.015)。MLR、PWR在肺腺癌组和良性病变组中的差异无统计学意义(P值分别为0.299、0.770) (表2)。

Table 2. Comparison of inflammatory indicators between the lung adenocarcinoma group and the benign lesion group

2. 肺腺癌组和良性病变组的炎症指标比较

项目

良性病变组

肺腺癌组

统计值

P

NLR

1.80 (1.54, 2.48)

2.23 (1.77, 2.82)

Z = 2.604

0.009

PLR

109.70 (83.95, 134.15)

124.54 (91.34, 155.39)

Z = 2.029

0.042

MLR

0.22 (0.15, 0.29)

0.22 (0.18, 0.30)

Z = 1.039

0.299

SⅡ

316.41 (218.32, 428.29)

414.70 (294.68, 568.26)

Z = 3.449

0.001

SIRI

0.64 (0.41, 1.01)

0.78 (0.56, 1.14)

Z = 2.227

0.026

dNLR

1.35 (1.17, 1.70)

1.66 (1.29, 2.15)

Z = 2.973

0.003

PWR

34.38 ± 13.69

34.98 ± 10.83

F = 2.171

0.770

AISI

111.01 (60.21, 151.67)

157.86 (93.87, 216.86)

Z = 3.063

0.002

LWR

0.31 ± 0.08

0.28 ± 0.07

F = 0.319

0.015

3.3. 炎症指标对肺结节良恶性鉴别的诊断效能

NLR、PLR、SII、SIRI、dNLR、AISI和LWR的ROC曲线下面积分别为0.634、0.604、0.677、0.614、0.653、0.657、0.623,最佳截断值分别为1.872、116.152、358.095、0.526、1.446、155.373、0.303,诊断灵敏度分别为69.7%、56.6%、65.6%、79.5%、68.9%、52.5%、64.8%,诊断特异度分别为60.5%、62.8%、67.4%、44.2%、62.8%、79.1%、65.1%。见图1表3

Figure 1. ROC curve of differentiating benign and malignant pulmonary nodules by inflammatory indicators

1. 炎症指标对肺结节良恶性鉴别的ROC曲线

Table 3. Differential diagnosis of benign and malignant pulmonary nodules by inflammatory indicators

3. 炎症指标对肺结节良恶性的鉴别诊断效能

指标

AUC

敏感度(%)

特异度(%)

95% CI

最佳cut-off

约登指数

NLR

0.634

69.7

60.5

0.534~0.733

1.872

0.302

PLR

0.604

56.6

62.8

0.508~0.700

116.152

0.194

SII

0.677

65.6

67.4

0.586~0.768

358.095

0.330

SIRI

0.614

79.5

44.2

0.511~0.718

0.526

0.237

dNLR

0.653

68.9

62.8

0.559~0.747

1.446

0.317

AISI

0.657

52.5

79.1

0.562~0.752

155.373

0.316

LWR

0.623

64.8

65.1

0.521~0.724

0.303

0.299

3.4. 炎症指标联合检测对早期肺腺癌的诊断效能

选取上述炎症指标中AUC较大的三项指标(SII、AISI和dNLR)做联合检测,评估炎症指标联合检测对早期肺腺癌诊断效能。结果显示SII + AISI、SII + dNLR、AISI + dNLR和SII + AISI + dNLR的ROC曲线下面积分别为0.676、0.679、0.673、0.677,诊断灵敏度分别为62.3%、65.6%、73.0%、62.3%,诊断特异度分别为69.8%、67.4%、58.1%、69.8%。见图2表4

Figure 2. The ROC curve of benign and malignant pulmonary nodules was detected by the combination of inflammatory indicators

2. 炎症指标联合检测对肺结节良恶性鉴别的ROC曲线

Table 4. Differential diagnosis of benign and malignant pulmonary nodules by combined detection of inflammatory indicators

4. 炎症指标联合检测对肺结节良恶性的鉴别诊断效能

指标

AUC

敏感度(%)

特异度(%)

95% CI

约登指数

SII + AISI

0.676

62.3

69.8

0.585~0.767

0.321

SII + dNLR

0.679

65.6

67.4

0.588~0.769

0.330

AISI + dNLR

0.673

73.0

58.1

0.576~0.770

0.311

SII + AISI + dNLR

0.677

62.3

69.8

0.586~0.767

0.321

4. 讨论

随着CT成像技术的提升和广泛的应用,越来越多的肺结节被检出,经早期识别并积极治疗的恶性肺结节可获得较理想的预后[6]。病理检查是恶性肺结节目前主要的确诊手段,肺结节的良恶性的鉴别在医学中仍是一个巨大挑战[7]。研究[8]发现,肿瘤的发生发展与炎症各个阶段密切相关,长期的炎症反应可刺激细胞DNA损伤累积,从而促进肿瘤的形成,在肿瘤微环境下,细胞DNA损伤不断积累,可加重肿瘤炎症反应,肿瘤微环境中的炎症促进了血管生成、肿瘤侵袭和转移,破坏了适应性和先天免疫反应。

中性粒细胞可以加剧机体炎症反应及干扰功能,不利于恶性肿瘤的控制与治疗[9]。中性粒细胞又被命名为多形核白细胞(Polymorphonuclear leukocytes, PMN),可形成中性粒细胞胞外陷阱(Neutrophil extracellular traps, NETs),NETs通过促进肿瘤细胞的增殖、侵袭、转移、血管形成以及肿瘤中的血栓形成参与肿瘤进展[10] [11]。肿瘤细胞通过分泌多种炎性因子,促进PMN的募集,有利于在缺氧条件下NETs的形成,肿瘤细胞和NETs可以产生整合素-β1,有助于NETs捕获肿瘤细胞,肿瘤微环境中的IL-6、IL-8和肿瘤坏死因子等炎症细胞因子,均可刺激PMN释放NETs [12]。NETs能够捕获循环肿瘤细胞(CTCs),它可以形成一种物理屏障,使得免疫细胞无法识别肿瘤细胞,从而保护了癌细胞并促进了它的转移[13]

活化的血小板在微环境中释放促生长因子、趋化因子、蛋白水解酶和微颗粒等分泌因子,并通过刺激这些因子的表达,创造一个有利于血管新生的环境[14]。PLT可减少局部肿瘤细胞的凋亡,血小板α-颗粒是促进肿瘤转移的多种生长因子和细胞因子的来源,PLT释放转化生长因子-β1 (TGF-β1),促进肿瘤细胞在转移过程中向远处外渗和播散[15]。血管内皮生长因子(VEGF)是一种强效促血管生成蛋白,血小板被认为是VEGF的主要血清来源,活化的血小板会从其质膜上脱落微颗粒,微颗粒表达组织因子后,触发凝血酶的产生,最终导致VEGF分泌,促进肿瘤血管生成[16]

肿瘤相关巨噬细胞(TAMs)是一种先天性免疫细胞,它们可以支持或抑制肿瘤的生长,这取决于它们的表型和功能[17]。TAMs在肿瘤进展中扮演双重角色,可概括为肿瘤促进活性和肿瘤抑制活性,来自外周血单核细胞TAMs一旦被肿瘤分泌的吸引物招募到肿瘤微环境,就会在各种刺激下发生类似M1或M2的活化[18]。M1型巨噬细胞主要通过介导抗体依赖性细胞毒性、产生活性氧(ROS)和肿瘤坏死因子(TNF)的方式在肿瘤免疫微环境(TIME)中发挥抗肿瘤作用,而M2型巨噬细胞则通过激活肿瘤血管生成、免疫抑制、癌细胞侵袭和转移以及重塑细胞外基质(ECM)的方式表现出肿瘤促进活性[19]

自然杀伤(NK)细胞是先天性免疫系统的淋巴细胞,NK细胞在转化生长因子-β的作用下可转化为ILC1样细胞,这些细胞被证明可以促进肿瘤的发展,NK细胞主要通过两种机制消灭细胞靶标:直接细胞毒性和产生细胞因子[20]。肿瘤浸润B淋巴细胞(TIL-B)可以分泌抗肿瘤抗体,在肺癌中,TIL-B衍生的IgG能够降低肿瘤细胞的适应性[21]。TH1细胞是由CD4+ T细胞中诱导出的,临床前肿瘤模型显示,TH1细胞是抗肿瘤免疫中功能强大的细胞之一,在许多不同类型的肿瘤中,TH1细胞的存在与更好的临床疗效相关[22] [23]

新型炎症指标均可反应恶性肿瘤的风险程度,对各种肿瘤具较高的预测价值[24]。高NLR反映了中性粒细胞募集和激活状态的相对增强,淋巴细胞的功能下降和数量的降低[25]。高PLR提示由于肿瘤细胞释放的炎症因子而引起血小板数量的增多,血小板维持微环境的高凝状态对循环肿瘤细胞保护作用的加强,而淋巴细胞受到免疫抑制状态的影响导致数量上的降低[26]。系统免疫炎症指数(SII)是中性粒细胞数值和血小板数值的乘积与淋巴细胞数值的比值,该数值的升高反映了中性粒细胞、血小板相关的促肿瘤炎症相对增强和淋巴细胞依赖的抗肿瘤免疫相对减弱[27]。系统炎症反应指数(SIRI)是中性粒细胞、单核细胞和淋巴细胞的有效组合,其与多种恶性肿瘤的病理特征和预后密切相关[28]。全身炎症综合指数(AISI)的分子由中性粒细胞计数、血小板计数和单核细胞计数的乘积组成,反映了中性粒细胞、血小板和单核细胞对肿瘤的综合促进作用,分母由淋巴细胞计数组成,能够反映免疫抑制状态对淋巴细胞的影响。本研究发现肺腺癌组的术前NLR、PLR、SII、SIRI、dNLR和AISI均高于良性病变组,说明在肺腺癌的早期阶段抗肿瘤免疫功能已经开始受损,炎症指标在肺腺癌早期已经发生变化并对肺腺癌的诊断具有一定的参考价值。尽管有研究[29] [30]表明MLR对非小细胞肺癌具有独立预测价值,术前MLR水平检测是早期肺癌患者术后复发的一种新的检测因子。但在本研究中,MLR在肺腺癌组和良性病变组中没有显著的差别。SII对肺结节良恶性鉴别的AUC最高,而联合检测对肺部良性病变和肺腺癌的鉴别能力与SII相比未见明显提升,可能因为SII包含了三项炎症细胞指标,能够精确地反映促癌炎性反应与抗肿瘤免疫之间的关系。

本研究样本量较小,未能验证MLR是否对早期肺腺癌具有诊断意义;感染、慢性肺部疾病等可能引起炎症指标变化的疾病均可影响诊断的准确性,故该鉴别方法的应用范围具有一定的局限性;本研究实验组为肺腺癌组,未评估炎症指标在其他病理类型肺癌(如鳞癌、小细胞肺癌)中的鉴别诊断价值;炎症指标检测结果也可能受一些其他因素的影响,导致指标变异过大影响鉴别诊断的准确性;肺结节中也存在部分炎性肿块,仅通过炎性指标可能无法精确鉴别肺结节良恶性;联合应用多个指标的诊断效能并未显著提升,表明各指标之间可能存在信息冗余;本研究收集的肺结节相对较大,炎症指标相对较小的肺结节可能具有更低的诊断效能。虽然血常规炎症指标对早期肺癌的诊断效能不及病理活检技术,但炎症指标的检测具有简便、创伤性小、可重复、成本低廉、易于解释和易于测量的优点,在条件较差的基层医院容易开展,对早期肺腺癌的诊断、干预具有一定的参考作用。

综上所述,炎症指标NLR、PLR、SII、SIRI、dNLR和AISI对早期肺腺癌具有一定的诊断价值,炎症指标检测可为肺结节病人复查周期和后续治疗提供参考依据。

NOTES

*通讯作者。

参考文献

[1] Barnett, J., Belsey, J., Tavare, A.N., Saini, A., Patel, A., Hayward, M., et al. (2019) Pre-Surgical Lung Biopsy in Management of Solitary Pulmonary Nodules: A Cost Effectiveness Analysis. Journal of Medical Economics, 22, 1307-1311.
https://doi.org/10.1080/13696998.2019.1665322
[2] Hou, H., Yu, S., Xu, Z., Zhang, H., Liu, J. and Zhang, W. (2020) Prediction of Malignancy for Solitary Pulmonary Nodules Based on Imaging, Clinical Characteristics and Tumor Marker Levels. European Journal of Cancer Prevention, 30, 382-388.
https://doi.org/10.1097/cej.0000000000000637
[3] 尹永杰, 苏世红, 徐爱晖. 肺结节直径等因素与其侵袭性的关系[J]. 临床肺科杂志, 2023, 28(4): 523-528.
[4] 万辉, 高美玲, 林洁, 等. 不同类型的肺部磨玻璃结节患者术前免疫炎症指标和癌胚抗原的比较[J]. 温州医科大学学报, 2022, 52(7): 557-561.
[5] 云南省传染性疾病临床医学中心, 云南省医院协会呼吸内科专业委员会, 昆明市医学会肺结节早诊早治专业委员会, 等. 肺结节规范化诊治专家共识[J]. 结核与肺部疾病杂志, 2024, 5(5): 388-397.
[6] Zhang, Y., Chen, Z., Hu, H. and Chen, H. (2022) Surgical Strategies for Pre-and Minimally Invasive Lung Adenocarcinoma 3.0: Lessons Learned from the Optimal Timing of Surgical Intervention. Seminars in Thoracic and Cardiovascular Surgery, 34, 311-314.
https://doi.org/10.1053/j.semtcvs.2020.12.009
[7] 倪盼盼, 张丽. 孤立性肺结节良恶性鉴别相关炎症指标的研究进展[J]. 现代医学与健康研究电子杂志, 2020, 4(12): 101-104.
[8] 牛涛, 周逢海. 炎症与肿瘤微环境[J]. 中南大学学报(医学版), 2023, 48(12): 1899-1913.
[9] Drpa, G., Sutic, M., Baranasic, J., Jakopovic, M., Samarzija, M., Kukulj, S., et al. (2020) Neutrophil-to-Lymphocyte Ratio Can Predict Outcome in Extensive-Stage Small Cell Lung Cancer. Radiology and Oncology, 54, 437-446.
https://doi.org/10.2478/raon-2020-0054
[10] Zha, C., Meng, X., Li, L., Mi, S., Qian, D., Li, Z., et al. (2020) Neutrophil Extracellular Traps Mediate the Crosstalk between Glioma Progression and the Tumor Microenvironment via the HMGB1/RAGE/IL-8 Axis. Cancer Biology and Medicine, 17, 154-168.
https://doi.org/10.20892/j.issn.2095-3941.2019.0353
[11] Itatani, Y., Yamamoto, T., Zhong, C., Molinolo, A.A., Ruppel, J., Hegde, P., et al. (2020) Suppressing Neutrophil-Dependent Angiogenesis Abrogates Resistance to Anti-VEGF Antibody in a Genetic Model of Colorectal Cancer. Proceedings of the National Academy of Sciences of the United States of America, 117, 21598-21608.
https://doi.org/10.1073/pnas.2008112117
[12] Adrover, J.M., McDowell, S.A.C., He, X., Quail, D.F. and Egeblad, M. (2023) Networking with Cancer: The Bidirectional Interplay between Cancer and Neutrophil Extracellular Traps. Cancer Cell, 41, 505-526.
https://doi.org/10.1016/j.ccell.2023.02.001
[13] Ronchetti, L., Boubaker, N.S., Barba, M., Vici, P., Gurtner, A. and Piaggio, G. (2021) Neutrophil Extracellular Traps in Cancer: Not Only Catching Microbes. Journal of Experimental & Clinical Cancer Research, 40, Article No. 231.
https://doi.org/10.1186/s13046-021-02036-z
[14] Bravaccini, S., Boldrin, E., Gurioli, G., Tedaldi, G., Piano, M.A., Canale, M., et al. (2024) The Use of Platelets as a Clinical Tool in Oncology: Opportunities and Challenges. Cancer Letters, 607, Article ID: 217044.
https://doi.org/10.1016/j.canlet.2024.217044
[15] Jie, Z., Rui, W., Chenxiao, Y., et al. (2023) Blocking Tumor-Platelet Crosstalk to Prevent Tumor Metastasis via Reprograming Glycolysis Using Biomimetic Membrane-Hybridized Liposomes. Journal of Controlled Release: Official Journal of the Controlled Release Society, 366, 328-341.
[16] Yitian, L., Yuan, Z, .Yong, D., et al. (2021) Platelet-Mediated Tumor Metastasis Mechanism and the Role of Cell Adhesion Molecules. Critical Reviews in Oncology/Hematology, 167, Article ID: 103502.
[17] Pittet, M.J., Michielin, O. and Migliorini, D. (2022) Clinical Relevance of Tumour-Associated Macrophages. Nature Reviews Clinical Oncology, 19, 402-421.
https://doi.org/10.1038/s41571-022-00620-6
[18] Wu, K.Y., Lin, K.J., Li, X.Y., et al. (2020) Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Frontiers in immunology, 11, Article 1731.
[19] Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021) Crosstalk between Cancer-Associated Fibroblasts and Immune Cells in the Tumor Microenvironment: New Findings and Future Perspectives. Molecular Cancer, 20, Article No. 131.
https://doi.org/10.1186/s12943-021-01428-1
[20] Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y. and Fantin, V.R. (2024) Natural Killer Cell Therapies. Nature, 626, 727-736.
https://doi.org/10.1038/s41586-023-06945-1
[21] Laumont, C.M. and Nelson, B.H. (2023) B Cells in the Tumor Microenvironment: Multi-Faceted Organizers, Regulators, and Effectors of Anti-Tumor Immunity. Cancer Cell, 41, 466-489.
https://doi.org/10.1016/j.ccell.2023.02.017
[22] Wang, J., Lou, Y., Wang, S., Zhang, Z., You, J., Zhu, Y., et al. (2024) IFNγ at the Early Stage Induced after Cryo-Thermal Therapy Maintains CD4+ Th1-Prone Differentiation, Leading to Long-Term Antitumor Immunity. Frontiers in Immunology, 15, Article 1345046.
https://doi.org/10.3389/fimmu.2024.1345046
[23] Montauti, E., Oh, D.Y. and Fong, L. (2024) CD4+ T Cells in Antitumor Immunity. Trends in Cancer, 10, 969-985.
https://doi.org/10.1016/j.trecan.2024.07.009
[24] Song, M., Zhang, Q., Song, C., Liu, T., Zhang, X., Ruan, G., et al. (2022) The Advanced Lung Cancer Inflammation Index Is the Optimal Inflammatory Biomarker of Overall Survival in Patients with Lung Cancer. Journal of Cachexia, Sarcopenia and Muscle, 13, 2504-2514.
https://doi.org/10.1002/jcsm.13032
[25] Singel, K.L. and Segal, B.H. (2016) Neutrophils in the Tumor Microenvironment: Trying to Heal the Wound That Cannot Heal. Immunological Reviews, 273, 329-343.
https://doi.org/10.1111/imr.12459
[26] Franco, A.T., Corken, A. and Ware, J. (2015) Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood, 126, 582-588.
https://doi.org/10.1182/blood-2014-08-531582
[27] 万梦园. 系统免疫炎症指数与胰腺癌患者预后的相关性分析[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
[28] 周江晖. 联合检测外周血相关指标及血清肿瘤标志物在预测食管癌预后中的价值研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2023.
[29] Selcuk, S., Duygu, B. and Tarkan, Y. (2018) Prognostic Values of Various Hematological Variables as Markers of Systemic Inflammation in Metastatic Lung Cancer. Journal of Cancer Research and Therapeutics, 16, 731-736.
[30] Shoji, F., Kozuma, Y., Toyokawa, G., Yamazaki, K. and Takeo, S. (2020) Complete Blood Cell Count-Derived Inflammatory Biomarkers in Early-Stage Non-Small-Cell Lung Cancer. Annals of Thoracic and Cardiovascular Surgery, 26, 248-255.
https://doi.org/10.5761/atcs.oa.19-00315