[1]
|
Hinman, J.D. (2014) The Back and Forth of Axonal Injury and Repair after Stroke. Current Opinion in Neurology, 27, 615-623. https://doi.org/10.1097/wco.0000000000000149
|
[2]
|
王艺霏, 何佳佳, 田浩. 非侵入性脑刺激在脑卒中康复中的研究进展[J]. 中国康复, 2021, 36(11): 684-689.
|
[3]
|
徐亚萍, 谢敏杰. 星形胶质细胞在脑白质缺血性损伤后髓鞘再生的研究进展[J]. 神经损伤与功能重建, 2021, 16(3): 154-156+179.
|
[4]
|
杨冉, 申艳佳, 陈渺, 等. 间充质干细胞促进脑缺血后神经修复[J]. 中国新药杂志, 2020, 29(22): 2576-2579.
|
[5]
|
Pei, W., Meng, F., Deng, Q., Zhang, B., Gu, Y., Jiao, B., et al. (2021) Electroacupuncture Promotes the Survival and Synaptic Plasticity of Hippocampal Neurons and Improvement of Sleep Deprivation‐induced Spatial Memory Impairment. CNS Neuroscience & Therapeutics, 27, 1472-1482. https://doi.org/10.1111/cns.13722
|
[6]
|
许能贵, 汪帼斌, 易玮, 等. 电针对不同时间段局灶性脑缺血大鼠缺血区皮层突触素P38和GAP-43表达的影响 [J]. 中国针灸, 2004, 20(2): 85-89.
|
[7]
|
李代顺, 余茜. 功能磁共振研究卒中后肢体运动功能重塑机制[J]. 实用医院临床杂志, 2015(1): 173-176.
|
[8]
|
朱博超, 李彦杰, 秦合伟, 等. 针刺通过TLR4/NF-KB信号通路调控炎症反应治疗中枢神经系统疾病的作用机制研究进展[J]. 中医药导报, 2023, 29(2): 160-165.
|
[9]
|
Huang, J., Qin, X., Cai, X. and Huang, Y. (2020) Effectiveness of Acupuncture in the Treatment of Parkinson’s Disease: An Overview of Systematic Reviews. Frontiers in Neurology, 11, Article 917. https://doi.org/10.3389/fneur.2020.00917
|
[10]
|
Wu, J.Y., Qiu, P.H. and Xu, D. (2022) Advances in the Mechanism of Action of Acupuncture in Regulating Synaptic Plasticity. Academic Journal of Medicine & Health Sciences, 3, 7-12.
|
[11]
|
邓楚玉, 唐纯志. 针刺治疗孤独症谱系障碍的作用机制[J]. 中华中医药杂志, 2024, 39(3): 1394-1397.
|
[12]
|
Mekbib, D.B., Zhao, Z., Wang, J., Xu, B., Zhang, L., Cheng, R., et al. (2020) Proactive Motor Functional Recovery Following Immersive Virtual Reality-Based Limb Mirroring Therapy in Patients with Subacute Stroke. Neurotherapeutics, 17, 1919-1930. https://doi.org/10.1007/s13311-020-00882-x
|
[13]
|
Huang, X., Naghdy, F., Naghdy, G. and Du, H. (2017) Clinical Effectiveness of Combined Virtual Reality and Robot Assisted Fine Hand Motion Rehabilitation in Subacute Stroke Patients. 2017 International Conference on Rehabilitation Robotics (ICORR), London, 17-20 July 2017, 511-515. https://doi.org/10.1109/icorr.2017.8009299
|
[14]
|
Cervera, M.A., Soekadar, S.R., Ushiba, J., Millán, J.D.R., Liu, M., Birbaumer, N., et al. (2018) Brain-Computer Interfaces for Post-Stroke Motor Rehabilitation: A Meta-Analysis. Annals of Clinical and Translational Neurology, 5, 651-663. https://doi.org/10.1002/acn3.544
|
[15]
|
Dąbrowski, J., Czajka, A., Zielińska-Turek, J., Jaroszyński, J., Furtak-Niczyporuk, M., Mela, A., et al. (2019) Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plasticity, 2019, 1-10. https://doi.org/10.1155/2019/9708905
|
[16]
|
Xing, Y. and Bai, Y. (2020) A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Molecular Neurobiology, 57, 4218-4231. https://doi.org/10.1007/s12035-020-02021-1
|
[17]
|
Brown, R.E. (2020) Donald O. Hebb and the Organization of Behavior: 17 Years in the Writing. Molecular Brain, 13, Article No. 55. https://doi.org/10.1186/s13041-020-00567-8
|
[18]
|
Kumar, A., Pareek, V., Faiq, M.A., et al. (2019) Adult Neurogenesis in Humans: A Review of Basic Concepts, History, Current Research, and Clinical Implications. Innovations in Clinical Neuroscience, 16, 30-37.
|
[19]
|
Guggisberg, A.G., Koch, P.J., Hummel, F.C. and Buetefisch, C.M. (2019) Brain Networks and Their Relevance for Stroke Rehabilitation. Clinical Neurophysiology, 130, 1098-1124. https://doi.org/10.1016/j.clinph.2019.04.004
|
[20]
|
Lindenberg, R., Renga, V., Zhu, L.L., Betzler, F., Alsop, D. and Schlaug, G. (2010) Structural Integrity of Corticospinal Motor Fibers Predicts Motor Impairment in Chronic Stroke. Neurology, 74, 280-287. https://doi.org/10.1212/wnl.0b013e3181ccc6d9
|
[21]
|
Rahayu, U.B., Wibowo, S., Setyopranoto, I. and Hibatullah Romli, M. (2020) Effectiveness of Physiotherapy Interventions in Brain Plasticity, Balance and Functional Ability in Stroke Survivors: A Randomized Controlled Trial. Neuro Rehabilitation, 47, 463-470. https://doi.org/10.3233/nre-203210
|
[22]
|
Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., et al. (2014) Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nature Reviews Neurology, 10, 597-608. https://doi.org/10.1038/nrneurol.2014.162
|
[23]
|
Cichon, N., Wlodarczyk, L., Saluk-Bijak, J., Bijak, M., Redlicka, J., Gorniak, L., et al. (2021) Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. Journal of Clinical Medicine, 10, Article 3778. https://doi.org/10.3390/jcm10173778
|
[24]
|
Wu, L., Dong, Y., Zhu, C. and Chen, Y. (2023) Effect and Mechanism of Acupuncture on Alzheimer’s Disease: A Review. Frontiers in Aging Neuroscience, 15, Article 1035376. https://doi.org/10.3389/fnagi.2023.1035376
|
[25]
|
Wu, Z., Huang, Y., Wang, T., Deng, C., Xu, Z. and Tang, C. (2023) Effect of Acupuncture on Neuroinflammation in Animal Models of Alzheimer’s Disease: A Preclinical Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience, 15, Article 1110087. https://doi.org/10.3389/fnagi.2023.1110087
|
[26]
|
兰永利, 周知然, 韦芳, 等. 针灸预处理调控TLR4/MyD88/NF-κB信号通路抗大鼠胃黏膜损伤机制研究[J]. 陕西中医, 2023, 44(10): 1349-1353+1359.
|
[27]
|
徐子绚, 宋杰, 王平, 等. 针刺调节胆碱能神经递质对血管性痴呆大鼠神经保护作用的机制[J]. 中华中医药杂志, 2024, 39(11): 5833-5838.
|
[28]
|
Nam, M., Ahn, K. and Choi, S. (2015) Acupuncture: A Potent Therapeutic Tool for Inducing Adult Neurogenesis. Neural Regeneration Research, 10, 33-35. https://doi.org/10.4103/1673-5374.150643
|
[29]
|
Li, P., Zhao, J., Wei, X., Luo, L., Chu, Y., Zhang, T., et al. (2024) Acupuncture May Play a Key Role in Anti-Depression through Various Mechanisms in Depression. Chinese Medicine, 19, Article No. 135. https://doi.org/10.1186/s13020-024-00990-2
|
[30]
|
Mohamed, A.Z., Eun, S., Lee, J., Wu, Y., Yang, J., Zhu, Y., et al. (2015) Short-Term Effect of Acupuncture on Functional Brain Connectivity of Bell’s Palsy. Integrative Medicine Research, 4, 87. https://doi.org/10.1016/j.imr.2015.04.135
|
[31]
|
Wu, H., Kan, H., Li, C., Park, K., Zhu, Y., Mohamed, A.Z., et al. (2015) Effect of Acupuncture on Functional Connectivity of Anterior Cingulate Cortex for Bell’s Palsy Patients with Different Clinical Duration. Evidence-Based Complementary and Alternative Medicine, 2015, 1-7. https://doi.org/10.1155/2015/646872
|
[32]
|
尹海燕, 乔秀兰, 卢圣锋, 等. 针灸对SAMP8小鼠嗅球神经干细胞向胶质细胞分化的影响[J]. 成都医学院学报, 2009, 4(3): 173-176.
|
[33]
|
姜桂美, 贾超, 赖新生. 针刺对阿尔茨海默病模型大鼠神经细胞凋亡的影响[J]. 上海针灸杂志, 2006, 25(12): 33-36.
|
[34]
|
Hao, J., Xie, H., Harp, K., et al. (2021) Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review. Archives of Physical Medicine and Rehabilitation, 2021, 1-19.
|
[35]
|
Li, Z., Han, X., Sheng, J. and Ma, S. (2015) Virtual Reality for Improving Balance in Patients after Stroke: A Systematic Review and Meta-Analysis. Clinical Rehabilitation, 30, 432-440. https://doi.org/10.1177/0269215515593611
|
[36]
|
Aramaki, A.L., Sampaio, R.F., Reis, A.C.S., Cavalcanti, A. and Dutra, F.C.M.S.E. (2019) Virtual Reality in the Rehabilitation of Patients with Stroke: An Integrative Review. Arquivos de Neuro-Psiquiatria, 77, 268-278. https://doi.org/10.1590/0004-282x20190025
|
[37]
|
Zhang, Q., Fu, Y., Lu, Y., Zhang, Y., Huang, Q., Yang, Y., et al. (2021) Impact of Virtual Reality-Based Therapies on Cognition and Mental Health of Stroke Patients: Systematic Review and Meta-Analysis. Journal of Medical Internet Research, 23, e31007. https://doi.org/10.2196/31007
|
[38]
|
Szczepańska-Gieracha, J., Cieslik, B., Rutkowski, S., et al. (2020) What Can Virtual Reality Offer to Stroke Patients? A Narrative Review of the Literature. Neurologia i Neurochirurgia Polska, 54, 326-333.
|
[39]
|
Veerbeek, J.M., Langbroek-Amersfoort, A.C., van Wegen, E.E.H., Meskers, C.G.M. and Kwakkel, G. (2016) Effects of Robot-Assisted Therapy for the Upper Limb after Stroke. Neurorehabilitation and Neural Repair, 31, 107-121. https://doi.org/10.1177/1545968316666957
|
[40]
|
杨兰, 周小云, 许坚, 等. 等速肌力训练结合上肢康复机器人对脑卒中恢复期偏瘫患者上肢功能恢复、生活质量及神经可塑性的影响下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动的影响机器人辅助手部运动神经康复系统的进展与趋势研究[J]. 机器人外科学杂志(中英文), 2024, 5(6): 1111-1115.
|
[41]
|
李希, 王秉翔, 李娜, 等. 下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动的影响机器人辅助手部运动神经康复系统的进展与趋势研究[J]. 山东大学学报(医学版), 2023, 61(3): 121-126.
|
[42]
|
程绮颖, 王友好, 杜强, 等. 机器人辅助手部运动神经康复系统的进展与趋势研究[J]. 中国体视学与图像分析, 2021, 26(1): 24-38.
|
[43]
|
Remsik, A., Young, B., Vermilyea, R., Kiekhoefer, L., Abrams, J., Evander Elmore, S., et al. (2016) A Review of the Progression and Future Implications of Brain-Computer Interface Therapies for Restoration of Distal Upper Extremity Motor Function after Stroke. Expert Review of Medical Devices, 13, 445-454. https://doi.org/10.1080/17434440.2016.1174572
|
[44]
|
Jeunet, C., Glize, B., Mcgonigal, A., et al. (2018) Using EEG-Based Brain Computer Interface and Neurofeedback Targeting Sensorimotor Rhythms to Improve Motor Skills: Theoretical Background, Applications and Prospects. Neurophysiologie Clinique, 48, 329-338.
|
[45]
|
Ushiba, J. and Soekadar, S.R. (2016) Brain-Machine Interfaces for Rehabilitation of Poststroke Hemiplegia. In: Progress in Brain Research, Elsevier, 163-183. https://doi.org/10.1016/bs.pbr.2016.04.020
|
[46]
|
Cantillo-Negrete, J., Carino-Escobar, R.I., Carrillo-Mora, P., Rodriguez-Barragan, M.A., Hernandez-Arenas, C., Quinzaños-Fresnedo, J., et al. (2021) Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients’ Neurorehabilitation: A Crossover Feasibility Study. Frontiers in Human Neuroscience, 15, Article 656975. https://doi.org/10.3389/fnhum.2021.656975
|
[47]
|
Liu, M. and Ushiba, J. (2022) Brain-Machine Interface (BMI)-Based Neurorehabilitation for Post-Stroke Upper Limb Paralysis. The Keio Journal of Medicine, 71, 82-92. https://doi.org/10.2302/kjm.2022-0002-oa
|
[48]
|
Behboodi, A., Lee, W.A., Hinchberger, V.S. and Damiano, D.L. (2022) Determining Optimal Mobile Neurofeedback Methods for Motor Neurorehabilitation in Children and Adults with Non-Progressive Neurological Disorders: A Scoping Review. Journal of Neuro Engineering and Rehabilitation, 19, Article No. 104. https://doi.org/10.1186/s12984-022-01081-9
|
[49]
|
Badoiu, A., Mitran, S.I., Catalin, B., Balseanu, T.A., Popa-Wagner, A., Gherghina, F.L., et al. (2023) From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke—A Narrative Review. Neural Plasticity, 2023, 1-23. https://doi.org/10.1155/2023/5044065
|
[50]
|
Guo, Z., Jin, Y., Bai, X., Jiang, B., He, L., McClure, M.A., et al. (2021) Distinction of High and Low-Frequency Repetitive Transcranial Magnetic Stimulation on the Functional Reorganization of the Motor Network in Stroke Patients. Neural Plasticity, 2021, 1-11. Https://doi.org/10.1155/2021/8873221
|
[51]
|
Sebastianelli, L., Versace, V., Martignago, S., Brigo, F., Trinka, E., Saltuari, L., et al. (2017) Low-Frequency rTMS of the Unaffected Hemisphere in Stroke Patients: A Systematic Review. Acta Neurologica Scandinavica, 136, 585-605. https://doi.org/10.1111/ane.12773
|
[52]
|
de Jesus, D.R., Favalli, G.P.D.S., Hoppenbrouwers, S.S., Barr, M.S., Chen, R., Fitzgerald, P.B., et al. (2014) Determining Optimal rTMS Parameters through Changes in Cortical Inhibition. Clinical Neurophysiology, 125, 755-762. https://doi.org/10.1016/j.clinph.2013.09.011
|
[53]
|
Koch, G., Esposito, R., Motta, C., Casula, E.P., Di Lorenzo, F., Bonnì, S., et al. (2020) Improving Visuo-Motor Learning with Cerebellar Theta Burst Stimulation: Behavioral and Neurophysiological Evidence. NeuroImage, 208, Article 116424. https://doi.org/10.1016/j.neuroimage.2019.116424
|
[54]
|
Cha, B., Kim, J., Kim, J.M., Choi, J., Choi, J., Kim, K., et al. (2022) Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation for Post-Stroke Vascular Cognitive Impairment: A Prospective Pilot Study. Frontiers in Neurology, 13, Article 813597. https://doi.org/10.3389/fneur.2022.813597
|
[55]
|
Jackson, M.P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L.C., et al. (2016) Animal Models of Transcranial Direct Current Stimulation: Methods and Mechanisms. Clinical Neurophysiology, 127, 3425-3454. https://doi.org/10.1016/j.clinph.2016.08.016
|
[56]
|
Gong, Y., Long, X.M., Xu, Y., et al. (2020) Effects of Repetitive Transcranial Magnetic Stimulation Combined with Transcranial Direct Current Stimulation on Motor Function and Cortex Excitability in Subacute Stroke Patients: A Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 34, 1095-1105.
|
[57]
|
Elsner, B., Kugler, J., Pohl, M. and Mehrholz, J. (2019) Transcranial Direct Current Stimulation (tDCS) for Improving Aphasia in Adults with Aphasia after Stroke. Cochrane Database of Systematic Reviews, 2019, CD009760. https://doi.org/10.1002/14651858.cd009760.pub4
|
[58]
|
Zong, X., Li, Y., Liu, C., Qi, W., Han, D., Tucker, L., et al. (2020) Theta-Burst Transcranial Magnetic Stimulation Promotes Stroke Recovery by Vascular Protection and Neovascularization. Theranostics, 10, 12090-12110. https://doi.org/10.7150/thno.51573
|
[59]
|
Satani, N., Cai, C., Giridhar, K., McGhiey, D., George, S., Parsha, K., et al. (2019) World-Wide Efficacy of Bone Marrow Derived Mesenchymal Stromal Cells in Preclinical Ischemic Stroke Models: Systematic Review and Meta-Analysis. Frontiers in Neurology, 10, Article 405. https://doi.org/10.3389/fneur.2019.00405
|
[60]
|
Li, W., Shi, L., Hu, B., Hong, Y., Zhang, H., Li, X., et al. (2021) Mesenchymal Stem Cell-Based Therapy for Stroke: Current Understanding and Challenges. Frontiers in Cellular Neuroscience, 15, Article 628940. https://doi.org/10.3389/fncel.2021.628940
|
[61]
|
Venkat, P., Chopp, M. and Zhang, Z.G. (2020) Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Improve Blood-Brain Barrier Integrity and Promote Neural Repair in Type 2 Diabetic Rats with Stroke. Frontiers in Cellular Neuroscience, 14, Article 123.
|
[62]
|
Cui, C., Ye, X., Chopp, M., Venkat, P., Zacharek, A., Yan, T., et al. (2016) miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats. Stem Cells Translational Medicine, 5, 1656-1667. https://doi.org/10.5966/sctm.2015-0349
|
[63]
|
Maltman, D.J., Hardy, S.A. and Przyborski, S.A. (2011) Role of Mesenchymal Stem Cells in Neurogenesis and Nervous System Repair. Neurochemistry International, 2011, Article 351560. https://doi.org/10.1016/j.neuint.2011.06.008
|
[64]
|
Levy, M.L., Crawford, J.R., Dib, N., et al. (2019) Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. Stem Cells Translational Medicine, 8, 999-1007.
|
[65]
|
Savitz, S.I., Yavagal, D., Rappard, G., Likosky, W., Rutledge, N., Graffagnino, C., et al. (2019) A Phase 2 Randomized, Sham-Controlled Trial of Internal Carotid Artery Infusion of Autologous Bone Marrow-Derived ALD-401 Cells in Patients with Recent Stable Ischemic Stroke (Recover-Stroke). Circulation, 139, 192-205. https://doi.org/10.1161/circulationaha.117.030659
|
[66]
|
Muir, K.W., Bulters, D., Willmot, M., Sprigg, N., Dixit, A., Ward, N., et al. (2020) Intracerebral Implantation of Human Neural Stem Cells and Motor Recovery after Stroke: Multicentre Prospective Single-Arm Study (Pisces-2). Journal of Neurology, Neurosurgery & Psychiatry, 91, 396-401. https://doi.org/10.1136/jnnp-2019-322515
|
[67]
|
Chen, Q., Shen, W., Sun, H., Zhang, H., Liu, C., Chen, Z., et al. (2022) The Effect of Coupled Inhibitory-Facilitatory Repetitive Transcranial Magnetic Stimulation on Shaping Early Reorganization of the Motor Network after Stroke. Brain Research, 1790, Article 147959. https://doi.org/10.1016/j.brainres.2022.147959
|
[68]
|
杜静, 胡汉通, 赵晓峰. VEGF信号通道在针刺治疗缺血性脑卒中的相关研究[J]. 中国针灸, 2016(5): 358-382.
|
[69]
|
马菡, 杨海霞, 郭秀琴, 等. 针灸调控血管内皮生长因子防治疾病研究进展[J]. 中国中医药图书情报杂志, 2023, 47(5): 228-232.
|
[70]
|
Zhang, Z., Lu, T., Li, S., Zhao, R., Li, H., Zhang, X., et al. (2024) Acupuncture Extended the Thrombolysis Window by Suppressing Blood-Brain Barrier Disruption and Regulating Autophagy-Apoptosis Balance after Ischemic Stroke. Brain Sciences, 14, Article 399. https://doi.org/10.3390/brainsci14040399
|