[1]
|
World Health Organization (2024) WHO Bacterial Priority Pathogens List, 2024. World Health Organization.
|
[2]
|
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., et al. (2013) Antibiotic Resistance—The Need for Global Solutions. The Lancet Infectious Diseases, 13, 1057-1098. https://doi.org/10.1016/s1473-3099(13)70318-9
|
[3]
|
GBD 2021 Antimicrobial Resistance Collaborators (2024) Global Burden of Bacterial Antimicrobial Resistance 1990-2021: A Systematic Analysis with Forecasts to 2050. The Lancet, 404, 1199-1226.
|
[4]
|
Lovering, A.L., Safadi, S.S. and Strynadka, N.C.J. (2012) Structural Perspective of Peptidoglycan Biosynthesis and Assembly. Annual Review of Biochemistry, 81, 451-478. https://doi.org/10.1146/annurev-biochem-061809-112742
|
[5]
|
Goffin, C. and Ghuysen, J. (1998) Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs. Microbiology and Molecular Biology Reviews, 62, 1079-1093. https://doi.org/10.1128/mmbr.62.4.1079-1093.1998
|
[6]
|
Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A. and Charlier, P. (2008) The Penicillin-Binding Proteins: Structure and Role in Peptidoglycan Biosynthesis. FEMS Microbiology Reviews, 32, 234-258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
|
[7]
|
Ghosh, A.S., Chowdhury, C. and Nelson, D.E. (2008) Physiological Functions of D-Alanine Carboxypeptidases in Escherichia coli. Trends in Microbiology, 16, 309-317. https://doi.org/10.1016/j.tim.2008.04.006
|
[8]
|
Fishovitz, J., Taghizadeh, N., Fisher, J.F., Chang, M. and Mobashery, S. (2015) The Tipper—Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus (MRSA). Journal of the American Chemical Society, 137, 6500-6505. https://doi.org/10.1021/jacs.5b01374
|
[9]
|
Utsui, Y. and Yokota, T. (1985) Role of an Altered Penicillin-Binding Protein in Methicillin-And Cephem-Resistant Staphylococcus Aureus. Antimicrobial Agents and Chemotherapy, 28, 397-403. https://doi.org/10.1128/aac.28.3.397
|
[10]
|
Song, M.D., Wachi, M., Doi, M., Ishino, F. and Matsuhashi, M. (1987) Evolution of an Inducible Penicillin-Target Protein in Methicillin-Resistant Staphylococcus aureus by Gene Fusion. FEBS Letters, 221, 167-171. https://doi.org/10.1016/0014-5793(87)80373-3
|
[11]
|
Tomasz, A., Nachman, S. and Leaf, H. (1991) Stable Classes of Phenotypic Expression in Methicillin-Resistant Clinical Isolates of Staphylococci. Antimicrobial Agents and Chemotherapy, 35, 124-129. https://doi.org/10.1128/aac.35.1.124
|
[12]
|
Garcia-Alvarez, L., Holden, M.T., et al. (2011) Meticillin-Resistant Staphylococcus aureus with a Novel mecA Homologue in Human and Bovine Populations in the UK and Denmark: A Descriptive Study. The Lancet Infectious Diseases, 11, 595-603
|
[13]
|
Ito, T., Hiramatsu, K., Tomasz, A., de Lencastre, H., Perreten, V., Holden, M.T.G., et al. (2012) Guidelines for Reporting Novel mecA Gene Homologues. Antimicrobial Agents and Chemotherapy, 56, 4997-4999. https://doi.org/10.1128/aac.01199-12
|
[14]
|
Schwendener, S., Cotting, K. and Perreten, V. (2017) Novel Methicillin Resistance Gene mecD in Clinical Macrococcus caseolyticus Strains from Bovine and Canine Sources. Scientific Reports, 7, Article No. 43797. https://doi.org/10.1038/srep43797
|
[15]
|
Lim, D. and Strynadka, N.C.J. (2002) Structural Basis for the β Lactam Resistance of PBP2a from Methicillin-Resistant Staphylococcus aureus. Nature Structural & Molecular Biology, 9, 70-76.
|
[16]
|
Otero, L.H., Rojas-Altuve, A., Llarrull, L.I., Carrasco-López, C., Kumarasiri, M., Lastochkin, E., et al. (2013) How Allosteric Control of Staphylococcus aureus Penicillin Binding Protein 2a Enables Methicillin Resistance and Physiological Function. Proceedings of the National Academy of Sciences, 110, 16808-16813. https://doi.org/10.1073/pnas.1300118110
|
[17]
|
Haseeb, A., Ajit Singh, V., Teh, C.S.J. and Loke, M.F. (2019) Addition of Ceftaroline Fosamil or Vancomycin to PMMA: An in Vitro Comparison of Biomechanical Properties and Anti-MRSA Efficacy. Journal of Orthopaedic Surgery, 27, 1-9.
|
[18]
|
Lovering, A.L., Gretes, M.C., Safadi, S.S., Danel, F., de Castro, L., Page, M.G.P., et al. (2012) Structural Insights into the Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole. Journal of Biological Chemistry, 287, 32096-32102. https://doi.org/10.1074/jbc.m112.355644
|
[19]
|
Shalaby, M.W., Dokla, E.M.E., Serya, R.A.T. and Abouzid, K.A.M. (2020) Penicillin Binding Protein 2a: An Overview and a Medicinal Chemistry Perspective. European Journal of Medicinal Chemistry, 199, Article 112312. https://doi.org/10.1016/j.ejmech.2020.112312
|
[20]
|
Destache, C.J., Guervil, D.J. and Kaye, K.S. (2019) Ceftaroline Fosamil for the Treatment of Gram-Positive Endocarditis: CAPTURE Study Experience. International Journal of Antimicrobial Agents, 53, 644-649. https://doi.org/10.1016/j.ijantimicag.2019.01.014
|
[21]
|
Mahasenan, K.V., Molina, R., Bouley, R., Batuecas, M.T., Fisher, J.F., Hermoso, J.A., et al. (2017) Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. Journal of the American Chemical Society, 139, 2102-2110. https://doi.org/10.1021/jacs.6b12565
|
[22]
|
Geriak, M., Haddad, F., Rizvi, K., Rose, W., Kullar, R., LaPlante, K., et al. (2019) Clinical Data on Daptomycin Plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 63, e02483-18. https://doi.org/10.1128/aac.02483-18
|
[23]
|
Zasowski, E.J., Trinh, T.D., Claeys, K.C., Lagnf, A.M., Bhatia, S., Klinker, K.P., et al. (2021) Multicenter Cohort Study of Ceftaroline versus Daptomycin for Treatment of Methicillin-Resistant staphylococcus Aureus Bloodstream Infection. Open Forum Infectious Diseases, 9, ofab606. https://doi.org/10.1093/ofid/ofab606
|
[24]
|
Sader, H.S., Farrell, D.J., Flamm, R.K. and Jones, R.N. (2015) Activity of Ceftaroline and Comparator Agents Tested against Staphylococcus aureus from Patients with Bloodstream Infections in US Medical Centres (2009-13). Journal of Antimicrobial Chemotherapy, 70, 2053-2056. https://doi.org/10.1093/jac/dkv076
|
[25]
|
Biedenbach, D.J., Hoban, D.J., Reiszner, E., Lahiri, S.D., Alm, R.A., Sahm, D.F., et al. (2015) In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolates Collected in 2012 from Latin American Countries as Part of the AWARE Surveillance Program. Antimicrobial Agents and Chemotherapy, 59, 7873-7877. https://doi.org/10.1128/aac.01833-15
|
[26]
|
Farrell, D.J., Flamm, R.K., Sader, H.S. and Jones, R.N. (2013) Spectrum and Potency of Ceftaroline Tested against Leading Pathogens Causing Skin and Soft-Tissue Infections in Europe (2010). International Journal of Antimicrobial Agents, 41, 337-342. https://doi.org/10.1016/j.ijantimicag.2012.12.013
|
[27]
|
Schaumburg, F., Peters, G., Alabi, A., Becker, K. and Idelevich, E.A. (2015) Missense Mutations of PBP2a Are Associated with Reduced Susceptibility to Ceftaroline and Ceftobiprole in African MRSA. Journal of Antimicrobial Chemotherapy, 71, 41-44. https://doi.org/10.1093/jac/dkv325
|
[28]
|
Biedenbach, D.J., Alm, R.A., Lahiri, S.D., Reiszner, E., Hoban, D.J., Sahm, D.F., et al. (2016) In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrobial Agents and Chemotherapy, 60, 343-347. https://doi.org/10.1128/aac.01867-15
|
[29]
|
Guo, Y., Yang, Y., Zheng, Y., Wu, S., Yin, D., Zhu, D., et al. (2020) Comparative in Vitro Activities of Ceftaroline and Tedizolid against Clinical Strains of Staphylococcus aureus and Enterococcus: Results from the China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrobial Agents and Chemotherapy, 64, e01461-20. https://doi.org/10.1128/aac.01461-20
|
[30]
|
Jia, P., Zhu, Y., Zhang, H., Cheng, B., Guo, P., Xu, Y., et al. (2022) In Vitro Activity of Ceftaroline, Ceftazidime-Avibactam, and Comparators against Gram-Positive and-Negative Organisms in China: The 2018 Results from the ATLAS Program. BMC Microbiology, 22, Article No. 234. https://doi.org/10.1186/s12866-022-02644-5
|
[31]
|
Lee, H., Yoon, E., Kim, D., Kim, J.W., Lee, K., Kim, H.S., et al. (2018) Ceftaroline Resistance by Clone-Specific Polymorphism in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 62, e00485-18. https://doi.org/10.1128/aac.00485-18
|
[32]
|
Chan, L.C., Basuino, L., Diep, B., Hamilton, S., Chatterjee, S.S. and Chambers, H.F. (2015) Ceftobiprole-and Ceftaroline-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59, 2960-2963. https://doi.org/10.1128/aac.05004-14
|
[33]
|
Hamilton, S.M., Alexander, J.A.N., Choo, E.J., Basuino, L., da Costa, T.M., Severin, A., et al. (2017) High-Level Resistance of Staphylococcus Aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4). Antimicrobial Agents and Chemotherapy, 61, e02727-16. https://doi.org/10.1128/aac.02727-16
|
[34]
|
Greninger, A.L., Chatterjee, S.S., Chan, L.C., Hamilton, S.M., Chambers, H.F. and Chiu, C.Y. (2016) Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLOS ONE, 11, e0149541. https://doi.org/10.1371/journal.pone.0149541
|
[35]
|
Chan, L.C., Gilbert, A., Basuino, L., da Costa, T.M., Hamilton, S.M., dos Santos, K.R., et al. (2016) PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 60, 3934-3941. https://doi.org/10.1128/aac.00358-16
|
[36]
|
Lahiri, S.D., McLaughlin, R.E., Whiteaker, J.D., Ambler, J.E. and Alm, R.A. (2015) Molecular Characterization of MRSA Isolates Bracketing the Current EUCAST Ceftaroline-Susceptible Breakpoint Forstaphylococcus aureus: The Role of PBP2a in the Activity of Ceftaroline. Journal of Antimicrobial Chemotherapy, 70, 2488-2498. https://doi.org/10.1093/jac/dkv131
|
[37]
|
Alm, R.A., McLaughlin, R.E., Kos, V.N., Sader, H.S., Iaconis, J.P. and Lahiri, S.D. (2014) Analysis of Staphylococcus aureus Clinical Isolates with Reduced Susceptibility to Ceftaroline: An Epidemiological and Structural Perspective. Journal of Antimicrobial Chemotherapy, 69, 2065-2075. https://doi.org/10.1093/jac/dku114
|
[38]
|
Kelley, W.L., Jousselin, A., Barras, C., Lelong, E. and Renzoni, A. (2015) Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrobial Agents and Chemotherapy, 59, 1922-1930. https://doi.org/10.1128/aac.04068-14
|
[39]
|
Gostev, V., Kalinogorskaya, O., Kruglov, A., Lobzin, Y. and Sidorenko, S. (2018) Characterisation of Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Ceftaroline Collected in Russia during 2010-2014. Journal of Global Antimicrobial Resistance, 12, 21-23. https://doi.org/10.1016/j.jgar.2017.11.013
|
[40]
|
Long, S.W., Olsen, R.J., Mehta, S.C., Palzkill, T., Cernoch, P.L., Perez, K.K., et al. (2014) PBP2a Mutations Causing High-Level Ceftaroline Resistance in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Antimicrobial Agents and Chemotherapy, 58, 6668-6674. https://doi.org/10.1128/aac.03622-14
|