MRSA中PBP2a与头孢洛林相互作用的研究进展
Research Progress on the Interaction between PBP2a and Ceftaroline in MRSA
摘要: 耐甲氧西林金黄色葡萄球菌(MRSA)是金黄色葡萄球菌的一种多重耐药菌株,在1961年首次由英国报道。MRSA的高发病率、高死亡率及多重耐药特点,使其一问世便受到人们的广泛关注。mecA基因编码的青霉素结合蛋2a (PBP2a)正是赋予MRSA广谱耐β-内酰胺类抗生素的关键蛋白。头孢洛林作为第五代头孢菌素,具有广谱抗菌活性,尤其对MRSA表现出显著的抗菌效果。头孢洛林能结合PBP2a变构位点,诱导蛋白质发生构象变化,使活性位点充分暴露,并与活性位点结合,抑制PBP2a的酶活性。这种双重作用机制增强了头孢洛林对MRSA的抗菌活性,使其成为一把针对MRSA的利器。但早在头孢洛林上市(2010年,美国食品和药物监督管理局批准上市)前的1998年,就已发现高水平耐头孢洛林MRSA。人们意识到头孢洛林并不能一劳永逸地解决MRSA,需要更深层次地探究二者之间作用机制,以更好运用好头孢洛林这一武器,延缓MRSA对其广泛耐药的时间。
Abstract: Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant variant of S. aureus, was initially documented in the United Kingdom in 1961. Characterized by its elevated morbidity, mortality rates, and resistance to multiple antibiotic classes, MRSA rapidly emerged as a major global health threat following its discovery. The molecular basis of its broad-spectrum β-lactam resistance is attributed to the penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. Ceftaroline fosamil, a fifth-generation cephalosporin approved by the U.S. Food and Drug Administration (FDA) in 2010, demonstrates exceptional antibacterial efficacy against MRSA through a unique dual mechanism involving both allosteric modulation and active site inhibition. By binding to the allosteric domain of PBP2a, ceftaroline induces conformational changes that expose the catalytic pocket, enabling subsequent interaction with the active site to irreversibly block its transpeptidase activity—a critical enzyme for bacterial cell wall biosynthesis. This dual-targeting strategy significantly enhances the compound’s bactericidal potency, establishing it as a cornerstone therapy for MRSA infections. Paradoxically, surveillance studies revealed the existence of high-level ceftaroline-resistant MRSA strains as early as 1998, predating the drug’s clinical approval by over a decade. These observations underscore the limitations of relying solely on ceftaroline as a definitive solution for MRSA management. The premature emergence of resistance necessitates a deeper investigation into the dynamic molecular interactions between ceftaroline and its bacterial targets, particularly the structural plasticity of PBP2a and compensatory mutations in auxiliary resistance determinants. Elucidating these mechanisms at atomic resolution is imperative for optimizing therapeutic regimens, designing next-generation β-lactams, and ultimately delaying the trajectory toward pan-resistance in MRSA populations.
文章引用:刘盛泉, 田代印. MRSA中PBP2a与头孢洛林相互作用的研究进展[J]. 临床医学进展, 2025, 15(4): 3340-3348. https://doi.org/10.12677/acm.2025.1541304

1. 简介

耐甲氧西林金黄色葡萄球菌(MRSA)是一种对甲氧西林及其他多种β-内酰胺类抗生素具有耐药性的多重耐药菌,是引起人类感染最常见的病原学之一。因其高度耐药性和广泛传播性,被WOH列为高度优先级的耐药菌[1]。MRSA可引起多种感染,包括皮肤和软组织感染、肺炎、血流感染、心内膜炎、骨髓炎等,严重时可导致败血症和多器官衰竭[2]。MRSA对多种抗生素的耐药性,导致临床治疗选择有限,往往需要使用更强效的抗生素(如万古霉素、利奈唑胺等),但这些药物也可能引发副作用或进一步诱导耐药性。MRSA感染的治疗周期长、费用高,给医疗系统和个人带来沉重的经济负担。仅2021年,全球归因于MRSA的死亡人数约13万例,MRSA相关的死亡人数达到55万例[3]。这一严峻的现实,促使人们去研究MRSA,尤其是PBP2a的耐药机制。

2. 青霉素结合蛋白(Penicillin-Binding Proteins, PBPs)

2.1. 肽聚糖的结构

金黄色葡萄球菌(Staphylococcus aureus)是一种革兰氏阳性细菌,其细胞壁主要由肽聚糖(peptidoglycan)构成。肽聚糖是细菌细胞壁的主要结构成分,两种单糖(N-乙酰葡萄糖胺,GlcNAc;N-乙酰胞壁酸,MurNAc)交替连接形成的多糖链,再通过短肽桥(通常由4~5个氨基酸组成)将这些多糖链相互交联,形成一个三维网状结构。肽聚糖的合成是一个复杂的过程,涉及多个步骤和酶类,而青霉素结合蛋白(Penicillin-Binding Proteins, PBPs)则是其中的关键酶[4]

2.2. PBPs的功能

青霉素结合蛋白(PBPs)主要分为两大类:高分子量(HMM) PBPs和低分子量(LMM) PBPs。HMM PBPs是多模块的膜锚定酶,根据其N端结构域的结构和功能进一步分为两类:A类和B类,这两类之间没有重叠。A类酶是双功能酶,包含一个转肽酶结构域和转糖基酶结构域。B类HMM酶是单功能酶,仅有转肽酶结构域,而其N端域通常与非青霉素结合功能相关[5]。LMM PBPs主要是可溶性酶,参与羧肽酶“修剪”反应。PBPs主要功能结构域如下:

1) 转肽酶结构域:负责催化肽聚糖链之间的交联反应。具体来说,PBPs将一条肽聚糖链上的短肽末端与另一条链上的短肽末端连接起来,形成肽桥,从而增强细胞壁的稳定性。转肽酶活性位点由三个特定基序组成:SXXK (催化性的丝氨酸和赖氨酸)、(S/Y) XN和(K/H) (S/T) G组成[6]

2) 转糖基酶结构域:负责将单糖单元(GlcNAc和MurNAc)添加到正在生长的肽聚糖链上,从而延长多糖链。

3) 羧肽酶结构域:修剪肽聚糖链的肽侧链,参与细胞壁的修饰和重塑[7]

2.3. β-内酰胺类抗生素与PBPs的作用机制

在1965年,Tipper和Strominger提出了其著名假说,即β-内酰胺类抗生素通过抑制青霉素结合蛋白(PBPs)的转肽酶活性,阻断细菌细胞壁的合成,从而导致细菌死亡。β-内酰胺类抗生素与肽聚糖末端的酰基-D-丙氨酰-D-丙氨酸的结构相似性为PBP转肽酶(和羧基肽酶)结构域失活提供了机制基础。当β-内酰胺类抗生素结合在转肽酶/羧肽酶PBP结构域时,用于催化转肽酶的相同丝氨酸亲核试剂攻击β-内酰胺环的羰基,导致丝氨酸酰化。与D-丙氨酰-D-丙氨酸衍生的瞬时酰基酶复合物相比,这种β-内酰胺类抗生素衍生的酰基酶复合物是稳定的,它不能进行转肽化,并且经过非常缓慢的水解来再生游离丝氨酸。这种功能上不可逆的酰化会阻止生物合成PBPs的转肽酶活性和参与细胞壁结构成熟的PBPs的羧肽酶活性[8]

3. PBP2a

3.1. PBP2a的发现

在1985年,Utsui和Yokota证实了PBP改变赋予金黄色葡萄球菌对甲氧西林和头孢菌素耐药,并命名为PBP2a [9]。随后,该团队发现在耐药菌株中,赋予其耐药表型的基因仅存在于“外源区域”。该基因的克隆和表达导致PBP2a的异源表达。Song等人对该基因进行测序后确认该基因编码PBP,其后该基因被命名为mecA [10],Tomasz实验室证实了其在甲氧西林耐药性中的作用[11],并进行了转座子诱变实验证实mecA基因赋予了金葡菌对甲氧西林耐药。其后,mecA基因同源物也相继被报道:mecC基因(2007年) [12]、mecB基因(2009年) [13]、mecD基因(2017年) [14]

3.2. PBP2a的结构基础

2002年,Lim和Strynadka发表了可溶形式PBP2a的第一个晶体结构(PDB ID: 1 VQQ),揭开了PBP2a蛋白组学研究的序幕。该蛋白为一种长链蛋白,由三部分构成。转肽酶结构域(残基327 → 668),非青霉素结合结构域(nPB) (残基27 → 326)以及N末端延伸亚结构域(残基27 → 138)。全长蛋白还含有跨膜锚定片段(残基1 → 23),可以在不影响β-内酰胺类抗生素结合动力学的情况下去除该片段[15]

位于转肽酶结构域的转肽酶活性位点与其他转肽酶具有相似的结构折叠。但由于封闭的活性位点骨架,其对β-内酰胺类抗生素的亲和力不同,需要β3折叠的不利移动才能使抗生素接近催化性Ser 403。这是PBP2a能广泛抗耐β-内酰胺类抗生素的结构基础[16] [17]

PBP2a的另一个结构显著特征是受变构控制。在对PBP 2a-头孢洛林复合物的研究中,在叶状结构1 (残基166 → 240)、叶状结构2 (残基258 → 277)、叶状结构3 (残基364 → 390)和N末端延伸结构域顶部的交叉点处发现了位于非青霉素结构域的变构位点。新生肽聚糖与位于非青霉素结合结构域的变构位点结合,引发构象变化,打开活性位点以协助底物结合。同时这也是第五代头孢头孢菌素能杀灭MRSA的结构基础[16] [18]

3.3. PBP2a-PBP2复合体

PBP2a本身缺乏转糖基化酶活性,无法仅靠自身完成肽聚糖的合成。因此,在MRSA中,虽β-内酰胺类抗生素抑制了PBPs的转肽酶活性,但PBP2a通过静电荷与PBP2形成二聚体,以提供转肽酶结构域。此时,MRSA中细胞壁的生物合成完全依赖于PBP 2a转肽酶与PBP 2转糖基化酶结构域的协同作用[19]

4. 头孢洛林

4.1. 基本信息

头孢洛林是新型的第五代头孢菌素类抗生素,可杀灭多种耐药革兰氏阳性和常见革兰氏阴性菌,如耐甲氧西林金黄色葡萄球菌(MRSA)、耐多药肺炎链球菌(MDRSP)和耐青霉素肺炎链球菌(PRSP)。2010年由美国FDA批准上市、2012年由欧洲EMA年批准上市。指南中提到,在治疗MSSA (甲氧西林敏感金黄色葡萄球菌)感染时应避免使用万古霉素。

高剂量万古霉素治疗可能导致MRSA对万古霉素产生耐药性。体外研究表明,β-内酰胺类抗生素与糖肽类或脂肽类抗生素(如万古霉素或达托霉素)联合使用可提高头孢洛林的敏感性。因此[20],具有抗MRSA活性的头孢洛林是治疗MRSA的替代选择。

4.2. 头孢洛林与PBP2a的作用机制

第一个头孢洛林与PBP2a的变构位点结合,使PBP2a构象变化导致活性位点打开,此时第二个头孢洛林可与转肽酶结构域结合,抑制其活性。最终抑制肽聚糖合成,杀灭细菌。

1) 在变构位点可观察到第一个头孢洛林的R2基团分别与Arg298形成阳离子-π相互作用、与Asn146形成氢键、与Tyr105形成π-π相互作用。

2) 在活性位点可观察到第二个头孢洛林的R2基团与Tyr446形成π-π相互作用、羧酸根分别与Ser462和Ser598形成氢键、头孢烯骨架与Thr600形成氢键、R1基团分别与Glu602和Gly520形成氢键。

活性位点内的运动主要发生在α2~α3环(从Tyr446的Cα原子向上移动约2.5 Å)、β3~β4环【由于该环的高度流动性,底物-PBP2a结构中未被观察到,而在头孢洛林-PBP2a复合体中可观察到Arg612的Cα与Gln607的Cα之间的距离突出约10 Å】以及β5~α10环。这些运动为抗生素/配体的结合创造了空间[19]

特别是在β3链和α2螺旋N端观察到的活性位点构象变化与丝氨酸酰化同时发生。在没有头孢洛林的情况下,S403距离较远,因此无法作为亲核试剂发挥作用。

头孢洛林与活性位点的结合引起Q521、E602和R612之间的相互作用,避免剧烈的构象变化,R612……D635盐桥被破坏,R612侧链移动与E602结合形成新的盐桥。最后α2~α3环上的Y446 (似乎是活性位点的守门人)与M641相互作用,关闭活性位点,使头孢洛林保持在一个狭窄的间隙内[16]

3) 盐桥间相互作用:在一项针对活性位点开放过程中沿靶向分子动力学模拟轨迹的动态盐桥相互作用的活性。列举了任何时刻距离小于3.2 Å的盐桥配对。共有125个残基(Asp、Glu、Lys、Arg和His)参与了79个盐桥的形成。其中,59个盐桥在TMD过程中波动超过3 Å,表明盐桥的动态断裂和形成。TMD识别出了一些新的盐桥相互作用,这些在静态晶体结构中未被观察到。这些新的盐桥包括E150-K153和E294-K273,两者均位于变构位点附近。在既往的报道中,E150K突变可引起MRSA临床分离株对头孢洛林耐药。最后,该研究分析了所有PBP2a X射线结构中的盐桥相互作用,将这些结构分为两组:一组是抗生素酰化状态(开放构象),另一组是类载脂蛋白状态(闭合构象)。一些盐桥仅在酰化状态下存在,表明在从闭合到开放构象转变过程中盐桥重新形成的模式。在催化位点和变构位点均观察到了独特的盐桥[21]

这种独特的机制,使头孢洛林相较于既往的β-内酰胺类抗生素,对PBP2a有了更强的亲和力,进而能更好地发挥灭菌作用。

4.3. 头孢洛林的临床治疗现状

一项比较头孢洛林联合达托霉素与标准单药治疗(万古霉素或达托霉素)在MRSA感染中的开放标签RCT因标准组死亡人数过多而提前终止[22]。因此,头孢洛林仅有回顾性数据。在“CAPTURE”研究中,MRSA心内膜炎患者的临床成功率为77.3% [20]。同样,Zasowski等人证明头孢洛林在避免MRSA菌血症患者治疗失败方面不劣于达托霉素(p = 0.264) [23]。但在头孢洛林有着良好的临床治疗效果的同时,耐头孢洛林MRSA也接踵而至。

5. 耐药突变研究现状

5.1. 耐头孢洛林MRSA的流行病学

在研究中,北美临床感染中98.4%的耐药性金黄色葡萄球菌分离株对头孢洛林素敏感[24],而拉丁美洲为83.3% [25],欧洲为83% [26],来自非洲4个国家的小型研究中为16.7% [27],亚洲/南太平洋国家为78.8% [28]。耐药性流行率的地理差异可能部分是世界各地耐药性金黄色葡萄球菌菌株类型分布差异的结果。

目前头孢洛林尚未在中国上市,因此国内对头孢洛林耐药MRSA菌株的报道较少,多来自中国抗菌药物监测网(CHINET),在其2018年的监测报道中,共纳入411株MRSA临床分离株,其中剂量依赖性敏感(MIC值 = 2 μg/ml) 8株,耐药(MIC值 = 4 μg/ml) 1株[29]。同样在2018年,另一项来自中国17个中心的“ATLAS”计划中,共纳入155株MRSA临床分离株,MRSA对头孢洛林敏感达83.9%,而剂量依赖性敏感16.1%,未鉴定出耐头孢洛林MRSA [30]

5.2. PBP2a多态性对MRSA耐药性的影响

头孢洛林的耐药性通常是由于mecA基因的错义突变或终止突变,导致PBP2a的氨基酸序列发生变化。根据PBP2a不同的区域,PBP2a的突变位点也可分为两类。一类是位于青霉素结合域的突变,因其距离PBP2a的活性位点较近,往往对MRSA耐药性产生更大的影响,表现为对头孢洛林的高水平耐药。而位于非青霉素结合域的突变,其对头孢洛林耐药性的影响不一。这可能与不同突变位点对变构位点的影响大小有关,见表1

Table 1. Typical PBP2a mutations associated with ceftaroline resistance

1. 与头孢洛林耐药性相关的典型PBP2a突变

突变点位

ST分型

参考文献

Asn104Lys

ST5

[31]

Val117Ile

ST5

[31]

Met122Ile

ST5

[36]

Asp139Trp

ST764

[28]

Asn146Lys

ST5、ST8、ST15、ST111、ST247、ST764、ST228、ST239

[27] [28] [31] [36]-[38]

Glu150Lys

ST5、ST22、ST239、ST247

[36] [38]

Glu170Lys

ST5

[28]

Val117Ile

ST5

[31]

Asn204Lys

ST239、ST241、ST15

[27] [28] [39]

Asp208Glu

ST239

[39]

Ser225Arg

ST6、ST8、ST45

[27]

Ala228Val

ST5

[28] [31]

Asn236Lys

ST5、ST8

[28] [36]

Glu239Lys

ST5、ST5、ST22、ST228、ST239

[36]-[40]

Gly246Glu

ST239、ST247、ST22

[27] [39]

Lys281Arg

ST5

[28]

Lys290Gln

ST5

[28]

His351Asn

ST239

[28]

His351Gln

ST5

[28]

Leu357Ile

ST5

[31]

Tyr446Asn

N

[40]

Glu447Lys

ST5、ST228

[31] [36] [37] [40]

Ile563Thr

ST5、ST228

[28] [31] [36]

Ser649Ala

ST5

[31]

但突变往往不是单独发生的,在临床分离株中常常发现双重突变,甚至三重突变PBP2a。在韩国的一项研究中,发现了PBP2a中的8个氨基酸取代,包括青霉素结合域(PBD)中的4个氨基酸取代(L357I、E447K、I563T和S649A)和PBP2a非PBD (nPBD)中的4个氨基酸取代(N104K、V117I、N146K和A228V)与头孢洛林耐药性相关。并且提出PBP2a中取代的积累导致头孢洛林MICs的升高:1至2 mg/L的1次取代,2至4 mg/L的2或3次取代,以及4或16 mg/L的5次取代。MRSA中的头孢洛林耐药可能是克隆特异性PBP2a多态性以及PBD和nPBD中替换的结果,并且头孢洛林MICs升高与替换位点和替换积累有关[31]

5.3. 影响MRSA耐头孢洛林的其它因素

但有趣的是,当常用的实验室菌株COL在头孢洛林中进行传代培养时,出现了高水平头孢洛林耐药性(>32或64 µg/ml),并伴随着编码PBP2、PBP4、gdpP基因的突变,而mecA基因并未发生突变。这再次表明耐药机制与PBP2a突变无关[32]。类似地,另一项头孢洛林传代研究显示,一些菌株在mecA基因未发生任何变化的情况下产生了耐药性,而其他菌株则出现了多种多样的单点或双点mecA突变[33]

因此,尽管大多数耐头孢洛林的MRSA临床分离株的耐药表型源于青霉素结合蛋白PBP2a的错义突变,但需关注其他遗传变异对耐药性的协同作用,尤其是编码PBP4蛋白的基因。研究显示,缺乏mecA基因的实验室传代金黄色葡萄球菌仍可表现出高水平耐药性。进一步分析发现,此类菌株均存在PBP4相关遗传改变,包括PBP4蛋白的错义突变及其基因启动子区域的碱基替换[34]。Basuino团队通过构建缺乏mecA和blaZ基因(后者编码可水解β-内酰胺类抗生素的丝氨酸β-内酰胺酶)的野生型菌株模型,系统比较了PBP4不同突变类型的耐药贡献。药敏实验表明,PBP4错义突变仅轻微影响耐药水平,而启动子区域的突变可通过上调PBP4表达显著增强耐药性,这提示金黄色葡萄球菌对头孢洛林的耐药机制具有复杂的多靶点调控特征[35]

6. 总结

自1961年首株MRSA发现以来,临床上MRSA的检出率逐年升高。目前,MRSA已成为全球发生率最高的院内感染病原菌之一。其耐药性的不断提高与抗菌药物的广泛使用甚至滥用密切相关,应给予足够的重视,并应严格控制对抗菌药物的使用。合理用药。第5代头孢菌素的出现似乎为MRSA的治疗带来了一丝曙光,但耐药MRSA的出现为人们敲响了警钟。这场与细菌的战争仍然漫长。从1958年万古霉素上市,到2002年耐万古霉素的金黄色葡萄球菌(VRSA)出现,仅间隔44年。只有更深入地从基因、蛋白质的角度去理解MRSA与头孢洛林的相互作用,才能更好地运用这一“新式武器”,避免无药可用的困境。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] World Health Organization (2024) WHO Bacterial Priority Pathogens List, 2024. World Health Organization.
[2] Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., et al. (2013) Antibiotic Resistance—The Need for Global Solutions. The Lancet Infectious Diseases, 13, 1057-1098.
https://doi.org/10.1016/s1473-3099(13)70318-9
[3] GBD 2021 Antimicrobial Resistance Collaborators (2024) Global Burden of Bacterial Antimicrobial Resistance 1990-2021: A Systematic Analysis with Forecasts to 2050. The Lancet, 404, 1199-1226.
[4] Lovering, A.L., Safadi, S.S. and Strynadka, N.C.J. (2012) Structural Perspective of Peptidoglycan Biosynthesis and Assembly. Annual Review of Biochemistry, 81, 451-478.
https://doi.org/10.1146/annurev-biochem-061809-112742
[5] Goffin, C. and Ghuysen, J. (1998) Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs. Microbiology and Molecular Biology Reviews, 62, 1079-1093.
https://doi.org/10.1128/mmbr.62.4.1079-1093.1998
[6] Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A. and Charlier, P. (2008) The Penicillin-Binding Proteins: Structure and Role in Peptidoglycan Biosynthesis. FEMS Microbiology Reviews, 32, 234-258.
https://doi.org/10.1111/j.1574-6976.2008.00105.x
[7] Ghosh, A.S., Chowdhury, C. and Nelson, D.E. (2008) Physiological Functions of D-Alanine Carboxypeptidases in Escherichia coli. Trends in Microbiology, 16, 309-317.
https://doi.org/10.1016/j.tim.2008.04.006
[8] Fishovitz, J., Taghizadeh, N., Fisher, J.F., Chang, M. and Mobashery, S. (2015) The Tipper—Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus (MRSA). Journal of the American Chemical Society, 137, 6500-6505.
https://doi.org/10.1021/jacs.5b01374
[9] Utsui, Y. and Yokota, T. (1985) Role of an Altered Penicillin-Binding Protein in Methicillin-And Cephem-Resistant Staphylococcus Aureus. Antimicrobial Agents and Chemotherapy, 28, 397-403.
https://doi.org/10.1128/aac.28.3.397
[10] Song, M.D., Wachi, M., Doi, M., Ishino, F. and Matsuhashi, M. (1987) Evolution of an Inducible Penicillin-Target Protein in Methicillin-Resistant Staphylococcus aureus by Gene Fusion. FEBS Letters, 221, 167-171.
https://doi.org/10.1016/0014-5793(87)80373-3
[11] Tomasz, A., Nachman, S. and Leaf, H. (1991) Stable Classes of Phenotypic Expression in Methicillin-Resistant Clinical Isolates of Staphylococci. Antimicrobial Agents and Chemotherapy, 35, 124-129.
https://doi.org/10.1128/aac.35.1.124
[12] Garcia-Alvarez, L., Holden, M.T., et al. (2011) Meticillin-Resistant Staphylococcus aureus with a Novel mecA Homologue in Human and Bovine Populations in the UK and Denmark: A Descriptive Study. The Lancet Infectious Diseases, 11, 595-603
[13] Ito, T., Hiramatsu, K., Tomasz, A., de Lencastre, H., Perreten, V., Holden, M.T.G., et al. (2012) Guidelines for Reporting Novel mecA Gene Homologues. Antimicrobial Agents and Chemotherapy, 56, 4997-4999.
https://doi.org/10.1128/aac.01199-12
[14] Schwendener, S., Cotting, K. and Perreten, V. (2017) Novel Methicillin Resistance Gene mecD in Clinical Macrococcus caseolyticus Strains from Bovine and Canine Sources. Scientific Reports, 7, Article No. 43797.
https://doi.org/10.1038/srep43797
[15] Lim, D. and Strynadka, N.C.J. (2002) Structural Basis for the β Lactam Resistance of PBP2a from Methicillin-Resistant Staphylococcus aureus. Nature Structural & Molecular Biology, 9, 70-76.
[16] Otero, L.H., Rojas-Altuve, A., Llarrull, L.I., Carrasco-López, C., Kumarasiri, M., Lastochkin, E., et al. (2013) How Allosteric Control of Staphylococcus aureus Penicillin Binding Protein 2a Enables Methicillin Resistance and Physiological Function. Proceedings of the National Academy of Sciences, 110, 16808-16813.
https://doi.org/10.1073/pnas.1300118110
[17] Haseeb, A., Ajit Singh, V., Teh, C.S.J. and Loke, M.F. (2019) Addition of Ceftaroline Fosamil or Vancomycin to PMMA: An in Vitro Comparison of Biomechanical Properties and Anti-MRSA Efficacy. Journal of Orthopaedic Surgery, 27, 1-9.
[18] Lovering, A.L., Gretes, M.C., Safadi, S.S., Danel, F., de Castro, L., Page, M.G.P., et al. (2012) Structural Insights into the Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole. Journal of Biological Chemistry, 287, 32096-32102.
https://doi.org/10.1074/jbc.m112.355644
[19] Shalaby, M.W., Dokla, E.M.E., Serya, R.A.T. and Abouzid, K.A.M. (2020) Penicillin Binding Protein 2a: An Overview and a Medicinal Chemistry Perspective. European Journal of Medicinal Chemistry, 199, Article 112312.
https://doi.org/10.1016/j.ejmech.2020.112312
[20] Destache, C.J., Guervil, D.J. and Kaye, K.S. (2019) Ceftaroline Fosamil for the Treatment of Gram-Positive Endocarditis: CAPTURE Study Experience. International Journal of Antimicrobial Agents, 53, 644-649.
https://doi.org/10.1016/j.ijantimicag.2019.01.014
[21] Mahasenan, K.V., Molina, R., Bouley, R., Batuecas, M.T., Fisher, J.F., Hermoso, J.A., et al. (2017) Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. Journal of the American Chemical Society, 139, 2102-2110.
https://doi.org/10.1021/jacs.6b12565
[22] Geriak, M., Haddad, F., Rizvi, K., Rose, W., Kullar, R., LaPlante, K., et al. (2019) Clinical Data on Daptomycin Plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 63, e02483-18.
https://doi.org/10.1128/aac.02483-18
[23] Zasowski, E.J., Trinh, T.D., Claeys, K.C., Lagnf, A.M., Bhatia, S., Klinker, K.P., et al. (2021) Multicenter Cohort Study of Ceftaroline versus Daptomycin for Treatment of Methicillin-Resistant staphylococcus Aureus Bloodstream Infection. Open Forum Infectious Diseases, 9, ofab606.
https://doi.org/10.1093/ofid/ofab606
[24] Sader, H.S., Farrell, D.J., Flamm, R.K. and Jones, R.N. (2015) Activity of Ceftaroline and Comparator Agents Tested against Staphylococcus aureus from Patients with Bloodstream Infections in US Medical Centres (2009-13). Journal of Antimicrobial Chemotherapy, 70, 2053-2056.
https://doi.org/10.1093/jac/dkv076
[25] Biedenbach, D.J., Hoban, D.J., Reiszner, E., Lahiri, S.D., Alm, R.A., Sahm, D.F., et al. (2015) In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolates Collected in 2012 from Latin American Countries as Part of the AWARE Surveillance Program. Antimicrobial Agents and Chemotherapy, 59, 7873-7877.
https://doi.org/10.1128/aac.01833-15
[26] Farrell, D.J., Flamm, R.K., Sader, H.S. and Jones, R.N. (2013) Spectrum and Potency of Ceftaroline Tested against Leading Pathogens Causing Skin and Soft-Tissue Infections in Europe (2010). International Journal of Antimicrobial Agents, 41, 337-342.
https://doi.org/10.1016/j.ijantimicag.2012.12.013
[27] Schaumburg, F., Peters, G., Alabi, A., Becker, K. and Idelevich, E.A. (2015) Missense Mutations of PBP2a Are Associated with Reduced Susceptibility to Ceftaroline and Ceftobiprole in African MRSA. Journal of Antimicrobial Chemotherapy, 71, 41-44.
https://doi.org/10.1093/jac/dkv325
[28] Biedenbach, D.J., Alm, R.A., Lahiri, S.D., Reiszner, E., Hoban, D.J., Sahm, D.F., et al. (2016) In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrobial Agents and Chemotherapy, 60, 343-347.
https://doi.org/10.1128/aac.01867-15
[29] Guo, Y., Yang, Y., Zheng, Y., Wu, S., Yin, D., Zhu, D., et al. (2020) Comparative in Vitro Activities of Ceftaroline and Tedizolid against Clinical Strains of Staphylococcus aureus and Enterococcus: Results from the China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrobial Agents and Chemotherapy, 64, e01461-20.
https://doi.org/10.1128/aac.01461-20
[30] Jia, P., Zhu, Y., Zhang, H., Cheng, B., Guo, P., Xu, Y., et al. (2022) In Vitro Activity of Ceftaroline, Ceftazidime-Avibactam, and Comparators against Gram-Positive and-Negative Organisms in China: The 2018 Results from the ATLAS Program. BMC Microbiology, 22, Article No. 234.
https://doi.org/10.1186/s12866-022-02644-5
[31] Lee, H., Yoon, E., Kim, D., Kim, J.W., Lee, K., Kim, H.S., et al. (2018) Ceftaroline Resistance by Clone-Specific Polymorphism in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 62, e00485-18.
https://doi.org/10.1128/aac.00485-18
[32] Chan, L.C., Basuino, L., Diep, B., Hamilton, S., Chatterjee, S.S. and Chambers, H.F. (2015) Ceftobiprole-and Ceftaroline-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59, 2960-2963.
https://doi.org/10.1128/aac.05004-14
[33] Hamilton, S.M., Alexander, J.A.N., Choo, E.J., Basuino, L., da Costa, T.M., Severin, A., et al. (2017) High-Level Resistance of Staphylococcus Aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4). Antimicrobial Agents and Chemotherapy, 61, e02727-16.
https://doi.org/10.1128/aac.02727-16
[34] Greninger, A.L., Chatterjee, S.S., Chan, L.C., Hamilton, S.M., Chambers, H.F. and Chiu, C.Y. (2016) Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLOS ONE, 11, e0149541.
https://doi.org/10.1371/journal.pone.0149541
[35] Chan, L.C., Gilbert, A., Basuino, L., da Costa, T.M., Hamilton, S.M., dos Santos, K.R., et al. (2016) PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 60, 3934-3941.
https://doi.org/10.1128/aac.00358-16
[36] Lahiri, S.D., McLaughlin, R.E., Whiteaker, J.D., Ambler, J.E. and Alm, R.A. (2015) Molecular Characterization of MRSA Isolates Bracketing the Current EUCAST Ceftaroline-Susceptible Breakpoint Forstaphylococcus aureus: The Role of PBP2a in the Activity of Ceftaroline. Journal of Antimicrobial Chemotherapy, 70, 2488-2498.
https://doi.org/10.1093/jac/dkv131
[37] Alm, R.A., McLaughlin, R.E., Kos, V.N., Sader, H.S., Iaconis, J.P. and Lahiri, S.D. (2014) Analysis of Staphylococcus aureus Clinical Isolates with Reduced Susceptibility to Ceftaroline: An Epidemiological and Structural Perspective. Journal of Antimicrobial Chemotherapy, 69, 2065-2075.
https://doi.org/10.1093/jac/dku114
[38] Kelley, W.L., Jousselin, A., Barras, C., Lelong, E. and Renzoni, A. (2015) Missense Mutations in PBP2A Affecting Ceftaroline Susceptibility Detected in Epidemic Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clonotypes ST228 and ST247 in Western Switzerland Archived since 1998. Antimicrobial Agents and Chemotherapy, 59, 1922-1930.
https://doi.org/10.1128/aac.04068-14
[39] Gostev, V., Kalinogorskaya, O., Kruglov, A., Lobzin, Y. and Sidorenko, S. (2018) Characterisation of Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Ceftaroline Collected in Russia during 2010-2014. Journal of Global Antimicrobial Resistance, 12, 21-23.
https://doi.org/10.1016/j.jgar.2017.11.013
[40] Long, S.W., Olsen, R.J., Mehta, S.C., Palzkill, T., Cernoch, P.L., Perez, K.K., et al. (2014) PBP2a Mutations Causing High-Level Ceftaroline Resistance in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Antimicrobial Agents and Chemotherapy, 58, 6668-6674.
https://doi.org/10.1128/aac.03622-14