周细胞在中枢神经系统疾病中的研究进展
Research Progress on Pericytes in Central Nervous System Diseases
摘要: 周细胞作为神经血管单元(NVU)的核心成分,在维持中枢神经系统(CNS)稳态中具有不可替代的地位。其独特的解剖学定位(包裹脑毛细血管基底膜)使其成为连接中枢神经系统与循环系统的关键界面,通过调控血脑屏障(BBB)选择性通透、脑血流分布及神经代谢支持,保障神经元功能完整性。周细胞缺失或功能异常与多种CNS疾病的发生发展密切相关,周细胞在不同脑区及病理状态下表现出显著异质性,其功能失调可能成为CNS疾病精准治疗的关键靶点。本文系统梳理周细胞在CNS中的重要性,重点探讨其在疾病发生中的核心作用及作为治疗靶点的潜力,为相关领域研究提供理论依据。
Abstract: As a core component of the neurovascular unit (NVU), pericytes play an irreplaceable role in maintaining central nervous system (CNS) homeostasis. Their unique anatomical location, wrapping around the basement membrane of brain capillaries, positions them as a critical interface connecting the CNS and circulatory system. Through regulating blood-brain barrier (BBB) permeability, cerebral blood flow distribution, and neuro-metabolic support, pericytes ensure neuronal functional integrity. Pericyte loss or dysfunction is closely associated with the pathogenesis of multiple CNS disorders. Notably, pericytes exhibit significant heterogeneity across brain regions and pathological states, making their functional dysregulation a potential key target for precision therapy in CNS diseases. This review systematically summarizes the importance of pericytes in the CNS, focusing on their core roles in disease development and therapeutic potential, providing a theoretical foundation for future research in this field.
文章引用:潘浩, 杨晓帆, 杨光路. 周细胞在中枢神经系统疾病中的研究进展[J]. 临床医学进展, 2025, 15(4): 3357-3368. https://doi.org/10.12677/acm.2025.1541306

1. 引言

中枢神经系统(Central Nervous System, CNS)作为人体最为复杂且关键的系统之一,承担着调节机体各项生理功能、感知外界环境变化以及控制行为活动等重要职责。在哺乳动物中,维持CNS的正常结构对于生命活动起着至关重要的作用,这有赖于正常的脑血管功能[1],而位于中枢神经系统与循环系统之间的神经血管单元(neurovascular unit, NVU)的则是维持正常的脑血管功能的前提[2],有助于维持中枢神经系统内环境的稳定。周细胞是一种覆盖全身微血管壁的可收缩细胞,在大脑中,它们与内皮细胞、星形胶质细胞终足、小胶质细胞及神经元共同形成神经血管单元,以维持高度选择性的血脑屏障并建立大脑内稳态[1] [3],这一解剖学的定位使得周细胞位于调节中枢神经系统的关键地位。血脑屏障将中枢神经系统与血液分割开来,血脑屏障完整性的丧失是细菌性脑膜炎致病的关键事件[4],此外,也有研究表明,周细胞缺乏会引起严重的中枢神经系统疾病,这也进一步证明了周细胞对于中枢神经系统的重要性[5]。本综述旨在于探讨目前关于周细胞在中枢神经系统疾病中,尤其是在神经炎症中的研究进展。

2. 周细胞的生物学特征

2.1. 周细胞的命名及来源

周细胞最初于1871年和1873年被Eberth及Rouget所描述,认为它是在毛细血管外部呈孤立分布的细胞,在毛细血管的外侧、部分毛细血管上和毛细血管分支等处具有突起的形态,被称为“壁细胞”或“Rouget细胞”,直到1923年Zimmermann才将其命名为“周细胞”,即一种存在于微血管周围的特定细胞[6]。周细胞的这种定义,包括它们的不同亚型在内,在之后研究周细胞超微结构和中能的文献中被广泛应用。

周细胞在胚胎时期即可产生,广泛分布于全身各个组织器官,其在不同组织的数量也不尽相同,根据其与内皮细胞的比例计算,于血脑屏障处的密度最大,周细胞:内皮细胞可达1:1,而在皮肤和肺血管处为1:10,在骨骼肌血管上仅仅为1:100 [7]。现有研究认为不同的组织或者器官中的周细胞其可能起源于不同的胚胎[8]。有学者认为,周细胞属于血管壁细胞,来源于间充质干细胞[9]。一系列鸟类嵌合研究证明中枢神经系统中的周细胞来源于不同的发育起源,在这些研究中认为,前脑的周细胞来源于神经外胚层,而中胚层间充质干细胞则发育成中脑、脑干、脊髓的周细胞[10]-[12]。这些研究尽管已经认识到大脑中周细胞起源于不同胚胎,但对于周细胞在大脑中发挥何种作用有待进一步探索。

2.2. 周细胞的形态及标志

尽管周细胞在形态上存在异质性,但在通常情况下,周细胞常有一个大而圆的细胞体,胞体上存在一些大大的突起,被称为初级突起或分支,一些更小的突起从初级突起上延伸出来,即次级突起,这些突起覆盖着包括毛细血管前微动脉、毛细血管和毛细血管后微静脉在内的微血管[13]。周细胞突起主要有两种不同的形态。螺旋状周细胞:其突起像线一样的单股结构,沿着毛细血管的管腔扭曲,形成螺旋状结构,网状周细胞的突起则是像渔网一样形成围绕整个血管的网状鞘[14]。分布在不同微血管上的周细胞形态也不同[14] [15]。当周细胞细胞体位于毛细血管前微动脉等上游微血管及微血管的分叉点时被称为连接周细胞,呈网状包裹着微血管,这类周细胞较其他类型周细胞表达α-平滑肌肌动蛋白(α-SMA)更多,表现出更强的收缩性。而毛细血管中段的周细胞胞体分布于毛细血管的肢端,成螺旋状包绕血管。位于毛细血管后的周细胞则呈星状包绕[16]。此外,Martinez等人还发现了一种与上述典型周细胞不同形态的新型周细胞,这种周细胞除了典型形态外还具有从胞体深处的细管状突起,将相邻毛细血管上的周细胞连接起来,并形成了一种被称为“细胞间隧道纳米管(IP-TNTs)”的结构,这种周细胞通过IP-TNTs以钙信号传导的方式调节相邻毛细血管内的血流,从而调节局部神经元活动的能量需求[17]。尽管不同位置的周细胞形态不同,但周细胞都通过3种主要类型的细胞间连接与内皮细胞相连。第一种就是钉–槽(peg-socket)接触,周细胞上能够伸出一些特定突起结构被称为peg,这些突起可以插入到内皮细胞上相应的结构(socket)中,从而实现细胞间的紧密连接和信号传递等功能。第二种连接是间隙连接,其形成于peg-socket接触处,并通过离子和各种分子的扩散从而使得相邻细胞的细胞质之间进行化学信号传递。第三种就是称为粘附斑的点状粘附连接,通过肌动蛋白丝束将细胞彼此连接[18]

近年来,脑微血管周细胞的超微结构已被大家广泛熟知,尽管根据细致的超微结构鉴定周细胞是最准确的,但是这种方式不是在所有的实验中都适合。所以,周细胞的生物学标记物对于研究其生物学特性及在疾病中的功能具有十分重要的作用。

不同组织中的周细胞起源不同,及时在同一组织中的周细胞也存在一定的差异,这种差异不仅表现在细胞形态上,其表达的分子标记表达谱也同样具有异质性,这也往往揭示他们的功能异质性。

现已发现多种周细胞的标记物,目前常用的周细胞标记物有:PDGFRβ (Pdgfrb) [19] [20],即血小板衍生生长因子受体β。在血管成熟过程中,周细胞大量表达PDGFRβ,这对于皮肤伤口愈合时成纤维细胞和周细胞的募集至关重要,不过它也在一些基质细胞如血管平滑肌细胞、成纤维细胞中表达。另一个周细胞的特异性标记物是神经/神经胶质抗原2 (NG2),这是一种在新生血管生成早期新生周细胞表达的跨膜蛋白聚糖[21]。不过它并非周细胞所特有,在少突胶质前体细胞等细胞中也存在。一项敲除转基因小鼠PDGFR-β和NG2基因的研究表明,这两项标记物的周细胞覆盖率降低以及血管完整性显著缺陷,进一步强调了它们在维持血管结构中的关键作用[22] [23]α-平滑肌肌动蛋白(α-SMA)表达有差异,如视网膜毛细血管部分节段的周细胞、毛细血管前和后的周细胞表达丰富,而中毛细血管周细胞不表达,但它同时也是平滑肌细胞的标记物,这也反映了部分周细胞和平滑肌细胞来源可能相同[24] [25]。一项在小鼠模型上使用单细胞RNA测序技术分析的研究确定了几个组织特异性的周细胞标记物,包括肺中的Kcnk3、心脏中的Rgs4、肾脏中的Myh11和Kcna5以及膀胱中的Pcp4l1,Higd1b在肺和心脏中都有表达通过比较人类肺细胞图谱和人类心脏单细胞RNAseq数据库的数据,进一步验证了这些标记物,揭示了这些标记物在不同组织中周细胞交叉表达[26]。由于没有单一标记物能特异性标记所有周细胞,常需结合解剖定位、细胞形态以及至少两种周细胞分子标记物的共表达来准确鉴定周细胞。

3. 周细胞的功能

3.1. 周细胞参与血管的生成并维持其稳态

周细胞是重要的壁细胞,对引导新生血管的生长以及维持血管的完整性具有十分重要的作用。血管生成是一个从已有的血管形成心血管的生理或病理过程,这个过程的核心是周细胞在血管壁上与内皮细胞一系列相互作用。血管生成的第一步就是周细胞从形成血管壁的内皮细胞上脱离以触发内皮细胞向周围基质迁移已形成新的血管,随后周细胞通过PDGFR-β信号通路再次被内皮细胞分泌的PDGF-B招募,并通过N-钙粘蛋白介导与内皮细胞的黏附,促进血管成熟和基底膜以维持其稳定[27] [28]。敲除小鼠的PDGF-B或PDGFRβ后,血管形态表现出严重缺陷,包括血管的周细胞覆盖率下降、内皮细胞增生以及出现包括微动脉瘤在内的其他异常血管形态,这导致了微血管广泛的渗漏[22] [23]。一项研究显示:转化生长因子-β (TGF-β)不仅诱导间充质细胞向平滑肌细胞/周细胞谱系分化,在体外血管生成的三维(3D)模型中还起到稳定毛细血管样结构的作用,而2型转化生长因子-β受体(TGFBR2)突变会导致皮肤血管中的周细胞发育缺陷[28] [29]。最近的一项研究揭示了周细胞在血管生成过程中通过形态学动态变化引导血管分支与桥接的过程[30]。研究显示,生长激素受体(GHR)缺失后,周细胞中与迁移相关的基因(S1pr1和Ang1)的表达显著下调,而Ang2和Serpinf1的表达则显著上调,而GHR阳性周细胞亚群(PTCs)可以通过丝状伪足感知血管延伸方向,在分叉处密集分布并包裹内皮细胞形成血管桥接结构,这种动态行为依赖Notch配体Dll4等信号分子。研究人员同时完善三维重建和活体成像进一步发现,GHR阳性周细胞与内皮细胞存在四种协同模式:直接桥接相邻血管、引导内皮迁移、包裹形成管腔及调控内皮增殖。这些结果表明,GHR阳性周细胞通过与邻近内皮细胞相互作用来调节血管生成。综上,周细胞通过动态形态调控、分子信号网络及与内皮细胞相互作用,在血管生成与稳态维持中扮演着重要的角色,当周细胞功能出现异常是常会导致多种疾病的发生。

3.2. 周细胞对维持血脑屏障的完整与稳定具有重要作用

血脑屏障(BBB)是中枢神经系统(CNS)与外周循环之间动态变化的一个屏障,将中枢神经系统和外周循环分割开来,通过紧密连接和黏附连接严格控制着离子运输和营养物质的流入,同时限制有害物质的进入,并选择性地限制免疫细胞的迁移,以及循环细胞在血液和脑实质之间的渗透,从而维持大脑稳态[31] [32]。血脑屏障的这种严格完整性由神经血管单元(NVU)控制,神经血管单元是由各种细胞类型组成的集合,如内皮细胞、周细胞、星形胶质细胞、神经元、小胶质细胞和血管周围巨噬细胞[33]-[35]

在生理状态下,周细胞通过一系列途径维持血脑屏障的通透性,对于调节和维持血脑屏障的完整性起着关键作用。首先,周细胞可以控制胞吞转运以及调节紧密连接和黏附连接的完整性,并且通过释放信号因子来调节内皮细胞的数量及调节星形胶质细胞终足的位置[36] [37]。周细胞的缺失会导致内皮细胞之间紧密连接的形成失败,从而导致血脑屏障通透性异常增加[38]。一项研究采用PDGFRβ/NG2双启动子驱动的条件性敲除模型(ΔPDGFRβ/NG2),发现将周细胞特异性清除后会导致血脑屏障的急性破坏,这与周细胞分泌的神经营养因子(PTN)数量减少导致神经元凋亡增多有关,而在生理情况下PTN常常通过激活PI3K/Akt信号通路抑制神经元线粒体凋亡途径以维持神经元存活[39]。一项永久性闭塞的大鼠模型的实验显示,缺血后仅一小时,基质金属蛋白酶(MMPs)就会大量分泌从而降解细胞外基质(ECM)和紧密连接(TJs),特别是MMP-9,这也会导致周细胞从基底膜脱离[40] [41]。由于血脑屏障通透性增强和周细胞覆盖减少促进了大分子穿过血管壁进入脑细胞外间隙,从而改变了渗透梯度,因水分大量被渗入脑实质引起脑肿胀并增加颅内压,进而引起血管源性水肿的发生。

另一项研究通过构建人内皮细胞(ECs)与牛原代周细胞(CBP)或人永生化周细胞(CHP)的非接触共培养模型,结合3'-端靶向转录组测序技术(MACE),系统探究了周细胞调控血脑屏障(BBB)形成的分子机制[42]。该实验在Transwell系统建立动态共培养模型,通过荧光标记物Lucifer Yellow (LY)的通透性实验证实,共培养显著降低了内皮细胞的通透性,这表明周细胞分泌的可溶性因子可诱导增强血脑屏障的功能。转录组数据分析显示,共培养促使CLDN3、CLDN5等紧密连接相关基因显著上调,而PLVAP、ICAM1等血管通透性基因表达下调,其中人周细胞组(CHP)较牛周细胞组(CBP)诱导更显著,表明种属差异可能影响周细胞–内皮细胞互作。该实验后续功能验证显示,共培养使一种在血脑屏障中通过消耗ATP而发挥关键的外排泵功能,以限制多种内源性和外源性物质(如药物、毒素)进入中枢神经系统的P-糖蛋白(P-gp)活性增强43%,表明周细胞存在时更有利于血脑屏障发挥其屏障功能。近期的一项探究衰老引起的血脑屏障损伤研究同样证明周细胞与血脑屏障的关系密切相关[43]。该研究通过单细胞测序技术发现自然衰老小鼠的周细胞数量显著减少,且CX43在周细胞中的表达显著下调,CX43缺失进一步破坏周细胞与内皮细胞的信号传递,导致ZO-1等紧密连接蛋白减少,验证了周细胞的功能退化是衰老相关血脑屏障功能障碍的重要因素之一。

3.3. 周细胞参与大脑血流调节

自1871年Eberth以及1873年Rouget发现周细胞以来,周细胞就被认为可以调节毛细血管血流。由于周细胞突起和细胞体与相邻的毛细血管内皮细胞(cECs)紧密接触促使人们很早就猜测它们在控制血流中起到关键的作用[44] [45],这一猜想也被越来越多的研究相继证明。研究显示不同代谢需求和不同血流分布的器官中周细胞根据特定局部能量需求而调节微血管血流,这一过程中涉及周细胞的形态变化及响应一系列包括神经递质和激素在内的生化刺激。在这里我们重点探讨周细胞在具有高能量需求的大脑中通过精确调节血流支持神经元的作用。

大脑皮层的血管结构由大脑表面的软脑膜动脉组成,这些动脉分成支各级小动脉最终形成一个极其密集且曲折的毛细血管网,这一网络按约占脑血管系统的90% [46],并且与神经元紧密交织,周细胞及其突起包绕着这个网络的大部分外壁,因此这里的周细胞可以在第一时间接收和处理有关局部神经元活动的信息,并相应地调节血流。由于颅骨的局限性,主要供血动脉和小动脉的扩张会影响颅内压并损害大脑[47],因此需要避免这种情况的发生。为避免灌注剧烈波动带来的潜在危害,大脑已经进化出复杂的机制来调节局部血管直径和血流速度,人们发现在这个过程中周细胞起着主要作用。

大脑皮层的小动脉最初发出的3~4级分支毛细血管被可收缩的周细胞包绕,这些周细胞表达α-SMA,其长长的突起包裹着下面的毛细血管,覆盖了血管外表面的高达约95%,在局部血流的逐分支控制中起着重要作用[48]-[51]。随着毛细血管网的不断分级,之后的毛细血管上覆盖的是网状周细胞和细丝状周细胞,相较于可收缩周细胞,网状周细胞表达α-SMA水平较低,细丝周细胞更是极少表达α-SMA [14] [16],虽然可收缩周细胞收缩功能更强,但网状周细胞及细丝周细胞对毛细血管直径控制的时间更长,并且可以更精细的控制直径的大小[52]。周细胞通过多种机制调节脑内血流。在脑内,当神经元活动增强,细胞外钾离子浓度升高,激活毛细血管内皮细胞上的Kir2.1钾离子通道,产生外向超极化电流[53]-[55],该电流通过缝隙连接在毛细血管网络中快速传播,到达上游的收缩性周细胞,使它们放松进而导致血管舒张,增加脑内血流[50] [51] [56]。同时,周细胞还能通过钙离子信号调节血流,神经元活动会使近端毛细血管内皮细胞的钙离子升高,生成一氧化氮(NO),NO扩散到周细胞,促进其收缩机制放松,以控制下游毛细血管的血流[52] [57]。此外,也有研究证明,当局部葡萄糖等能量底物减少时,脑内第5级之后的毛细血管分支上的细丝周细胞可作为代谢哨兵,通过peg-socket间隙连接刺激内皮细胞,调节毛细血管电信号,从而控制血流,以满足神经元的能量需求[58] [59]

4. 周细胞在中枢神经系统疾病中的作用

4.1. 中枢神经系统感染中的周细胞

中枢神经系统感染是指由病毒、细菌、真菌、寄生虫等病原微生物侵犯脑和脊髓的实质、被膜或血管等结构,引发的急慢性炎症性或非炎症性疾病[60]。周细胞现已成为参与中枢神经系统感染过程的重要参与者,主要通过参与免疫反应及维持血脑屏障结构的稳定性在中枢神经系统感染中发挥重要作用。

首先,周细胞包绕在血管周围,这使其处于免疫调节前哨站的理想位置[3] [61]。在中枢神经系统感染过程中,周细胞通过多种方式调节免疫细胞活性和炎症因子释放,发挥一系列免疫调节作用。周细胞拥有一系列模式识别受体(PRR),这使得它们能够感知传染源的保守分子模式(即病原体相关分子模式)和组织损伤过程中释放的细胞成分(即损伤相关分子模式),在膜结合的PRR中,最具特征的是位于细胞膜或细胞器膜上的Toll样受体(TLR),在细胞质PRR中,最重要的一种是NOD (核苷酸结合寡聚结构域)样受体(NLR)家族[62]。在人脑周细胞未受到刺激时TLR4的表达水平较低,使用LPS处理后会增加其表达[63]。TLR4可以识别细菌的脂多糖(LPS),当周细胞表面的TLR4与LPS结合后,可以激活下游的髓样分化因子88 (MyD88)依赖的信号通路,导致核因子-κB (NF-κB)活化,进而促进促炎细胞因子的表达和分泌[64]。另一项研究显示,游离长链脂肪酸(LCFA)也可以激活TLR4-NfκB介导的大脑周细胞促炎级联反应,并且LCFA介导的激活对周细胞具有特异性,这导致了神经微血管系统崩溃和神经炎症[63]。在受到炎症刺激后,周细胞可以通过释放相应的细胞因子和趋化因子集(如白细胞介素6 (IL-6)、C-C基序趋化因子配体2 (CCL2)和C-X-C基序趋化因子配体1 (CXCL1))来响应暴露于PAMP或炎症介质[65],这可能有助于引导循环中的白细胞迁移到感染部位。一项体外研究结果显示,当受到肺炎链球菌的刺激时,周细胞会促进中性粒细胞穿过体外内皮屏障迁移,而屏障的通透性却保持不变[66]。通过肺炎球菌脑膜炎的体内实验进一步验证了,周细胞会促进白细胞从血液迁移到中枢神经系统的过程[65]

其次,在生理状态下,周细胞通过与内皮细胞之间一系列联系,在维持血脑屏障的完整性中发挥着重要作用[67] [68],这对于防止包括病原体在内的有害物质进入中枢神经系统至关重要。然而,当周细胞受到各种病理因素的影响时其功能会发生紊乱,导致血脑屏障通透性增加,病原体更容易突破血脑屏障进入脑组织,引发严重的中枢神经系统感染。在体外血脑屏障模型中,在受到脑膜病原体流感嗜血杆菌的刺激后,周细胞功能障碍和损伤会导致屏障破坏[69]

周细胞在不同病原体侵袭进入中枢神经系统的过程均发挥重要的作用。

一项体外实验显示,日本脑炎病毒(JEV)感染周细胞后,虽不造成明显细胞毒性,但会使其释放生物活性分子,尤其是白细胞介素6 (IL-6)的大量增加,进而激活内皮细胞的泛素蛋白酶体,导致紧密连接蛋白ZO-1的降解,使得内皮屏障完整性被破坏,最终引发血脑屏障受损,从而导致脑炎的发生[70]

在肺炎球菌脑膜炎中,肺炎球菌与周细胞表面的模式识别受体结合,导致周细胞释放多种细胞因子,如CXCL13、M-CSF、G-CSF和IL-6。这些细胞因子可以吸引白细胞,促进炎症反应。此外,肺炎球菌的主要毒力因子肺炎球菌溶素可以直接损伤周细胞,导致细胞死亡和缺失,从而破坏血脑屏障的完整性,导致血管通透性增加,白细胞浸润增多,最终加剧肺炎球菌脑膜炎[65]

大肠杆菌感染会刺激脑微血管内皮细胞(BBEC)中细胞质和Ca2+非依赖性磷脂酶A2(cPLA2和iPLA2)的活性,导致前列腺素E2 (PGE2)和血管内皮生长因子(VEGF)的产生增加,PGE2和VEGF能够负向调节周细胞的存活,增加血脑屏障的通透性。VEGFR-1的阻断或PLA2抑制剂的添加可以减少周细胞的丢失,保护血脑屏障的完整性,从而减少大肠杆菌的入侵[71]

在2019冠状病毒(COVID-19)感染患者的大脑中,严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)的感染主要集中在表达血管紧张素转化酶2 (ACE2)受体的周细胞上。SARS-CoV-2进入周细胞后,会在细胞内复制,产生病毒dsRNA。这些dsRNA可以作为病毒复制的中间产物,也可以作为细胞内的一种病原体相关分子模式,激活细胞的固有免疫反应,从而激活周细胞的模式识别受体,从而启动炎症反应,并吸引免疫细胞如T细胞和巨噬细胞到达感染部位。此外,被感染的周细胞会受损脱落,导致血脑屏障被破坏,这可能是病毒进入中枢神经系统以及引起神经系统症状的途径,同时造成血液中的纤维蛋白原渗漏到脑组织中,引起脑组织局部微血栓形成,影响脑组织的血液供应,导致脑组织缺血、缺氧,甚至神经元损伤[72]

各种证据提示周细胞在病原体入侵中枢神经系统过程中发挥着重要的作用,目前的研究主要集中于病原体入侵后周细胞参与的免疫反应,以及周细胞受损后引起的血脑屏障通透性下降从而加剧病原体进入中枢神经系统,其中具体机制尚不明朗,有待进一步探究周细胞在中枢神经系统感染中的作用机制。

4.2. 阿尔兹海默症中的周细胞

阿尔茨海默症(AD)是一种复杂的进行性神经退行性疾病,以认知功能障碍和行为障碍为特征,是痴呆的首要原因[73]。AD的两种典型神经病理学变化包括由脑实质中β-淀粉样蛋白(Aβ)沉积形成的神经斑块和由超磷酸化tau蛋白积累形成的构成神经纤维缠结(NFTs)的细胞内Tau [74] [75]。正常情况下,周细胞作为神经血管单元的重要组成部分,承担着多项关键功能。然而在AD中,周细胞的结构和功能均会出现明显的异常。研究发现,周细胞损伤或丢失与AD显著相关,在AD患者和小鼠模型中观察到大脑或视网膜周细胞的进行性变性[76] [77]。Aβ是AD病理过程中的关键物质,周细胞参与Aβ的清除,但Aβ的积累也会损害周细胞[78]。周细胞通过多种方式清除Aβ。研究表明周细胞上表达的低密度脂蛋白受体相关蛋白-1 (LRP-1)能够结合Aβ,介导Aβ的清除,LRP-1的抗体则会抑制这一过程[78] [79]。周细胞可表达晚期糖基化终末产物受体(RAGE),这是一种免疫球蛋白家族的一种多配体受体,他的可溶性形式sRAGE可与Aβ结合,形成sRAGE-Aβ,促进Aβ清除[80] [81]。然而,Aβ也会通过多种途径对周细胞产生毒性作用。Aβ1-42(寡聚体和单体)可激活周细胞中的还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶4 (NOX4)而产生活性氧(ROS),进而诱导下游内皮素(ET)的生成,ET可与周细胞上的内皮素A型受体(ETA-R)结合,引发毛细血管强烈收缩[82] [83],导致脑血流量(CBF)的减少,最终造成神经元功能障碍和认知能力下降[84] [85];同时,Aβ1-42还能激活基质金属蛋白酶9 (MMP-9),促使神经/神经胶质抗原2 (NG2)从周细胞表面脱落[86],导致周细胞脱离,破坏BBB的完整性。Aβ1-40则可通过CD36/PINK/Parkin途径诱导周细胞发生线粒体自噬依赖性铁死亡,影响周细胞的增殖和存活[87]。总之,周细胞功能障碍与Aβ沉积相互影响,形成恶性循环。周细胞的丢失会破坏BBB的完整性,影响Aβ的清除,使Aβ1-40和Aβ1-42水平升高,加剧Aβ的沉积;而Aβ的沉积又进一步损害周细胞的功能,最终导致神经元丢失和认知能力下降。

阿尔兹海默症与周细胞间存在着紧密且复杂的关联。作为脑血管的重要组成部分,周细胞能维持血管结构稳定,精准调控脑血流,并在血脑屏障构建与维护中发挥关键作用。而在AD患者的脑周细胞功能受损,致使BBB完整性被破坏,β-淀粉样蛋白清除受阻,大量沉积。这不仅干扰神经元间正常信号转导,还引发神经炎症,加剧神经元损伤。目前针对AD中周细胞的研究为治疗带来了新希望,未来需进一步明确周细胞亚型分类和功能,为AD的治疗提供更精准的策略。

5. 结语与展望

随着对周细胞的深入研究,其重要性日益凸显,如今已揭示其在神经发育、神经血管单元稳态维系及各类疾病发生发展中的关键作用。在生理状态下,周细胞可以精确调控脑血管收缩和舒张、维持血脑屏障的完整性,并且与脑内其他细胞的相互作用,为中枢神经系统营造稳定内环境。然而在中枢神经系统炎症等病理状况下,周细胞的功能异常会加剧疾病的进展,这无疑为疾病诊疗提供了极具价值的靶点。然而,现在对于周细胞的了解仍不够深入。其在不同疾病中的动态变化规律、参与的信号通路在复杂环境中的交互机制,尤其在中枢神经系统感染中,周细胞感知病原体入侵及启动防御的机制,还有不同病原体感染下其反应的特异性,都亟待明确。

随着单细胞测序、基因编辑和高分辨率成像等前沿技术的发展与应用,我相信有望全面探索周细胞在中枢神经系统中的作用。届时,开发靶向周细胞的精准治疗策略,如研制特异性药物调节其功能、运用细胞疗法修复受损周细胞,将为中枢神经系统疾病治疗带来突破。

NOTES

*通讯作者。

参考文献

[1] Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2011) Central Nervous System Pericytes in Health and Disease. Nature Neuroscience, 14, 1398-1405.
https://doi.org/10.1038/nn.2946
[2] Sweeney, M.D., Ayyadurai, S. and Zlokovic, B.V. (2016) Pericytes of the Neurovascular Unit: Key Functions and Signaling Pathways. Nature Neuroscience, 19, 771-783.
https://doi.org/10.1038/nn.4288
[3] Alarcon-Martinez, L., Yemisci, M. and Dalkara, T. (2021) Pericyte Morphology and Function. Histology and Histopathology, 36, 633-643.
[4] Kim, B.J., Hancock, B.M., Bermudez, A., Cid, N.D., Reyes, E., van Sorge, N.M., et al. (2015) Bacterial Induction of Snail1 Contributes to Blood-Brain Barrier Disruption. Journal of Clinical Investigation, 125, 2473-2483.
https://doi.org/10.1172/jci74159
[5] Winkler, E.A., Sagare, A.P. and Zlokovic, B.V. (2014) The Pericyte: A Forgotten Cell Type with Important Implications for Alzheimer’S Disease? Brain Pathology, 24, 371-386.
https://doi.org/10.1111/bpa.12152
[6] Meijer, E.M., van Dijk, C.G.M., Kramann, R., Verhaar, M.C. and Cheng, C. (2022) Implementation of Pericytes in Vascular Regeneration Strategies. Tissue Engineering Part B: Reviews, 28, 1-21.
https://doi.org/10.1089/ten.teb.2020.0229
[7] Caporali, A., Martello, A., Miscianinov, V., Maselli, D., Vono, R. and Spinetti, G. (2017) Contribution of Pericyte Paracrine Regulation of the Endothelium to Angiogenesis. Pharmacology & Therapeutics, 171, 56-64.
https://doi.org/10.1016/j.pharmthera.2016.10.001
[8] Armulik, A., Genové, G. and Betsholtz, C. (2011) Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell, 21, 193-215.
https://doi.org/10.1016/j.devcel.2011.07.001
[9] Zhao, H., Feng, J., Seidel, K., Shi, S., Klein, O., Sharpe, P., et al. (2018) Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell, 23, Article 147.
https://doi.org/10.1016/j.stem.2018.05.023
[10] Etchevers, H.C., Vincent, C., Douarin, N.M.L. and F. Couly, G. (2001) The Cephalic Neural Crest Provides Pericytes and Smooth Muscle Cells to All Blood Vessels of the Face and Forebrain. Development, 128, 1059-1068.
https://doi.org/10.1242/dev.128.7.1059
[11] Korn, J., Christ, B. and Kurz, H. (2001) Neuroectodermal Origin of Brain Pericytes and Vascular Smooth Muscle Cells. Journal of Comparative Neurology, 442, 78-88.
https://doi.org/10.1002/cne.1423
[12] Kurz, H. (2009) Cell Lineages and Early Patterns of Embryonic CNS Vascularization. Cell Adhesion & Migration, 3, 205-210.
https://doi.org/10.4161/cam.3.2.7855
[13] Hartmann, D.A., Underly, R.G., Grant, R.I., Watson, A.N., Lindner, V. and Shih, A.Y. (2015) Pericyte Structure and Distribution in the Cerebral Cortex Revealed by High-Resolution Imaging of Transgenic Mice. Neurophotonics, 2, Article 041402.
https://doi.org/10.1117/1.nph.2.4.041402
[14] Alarcon-Martinez, L., Yilmaz-Ozcan, S., Yemisci, M., Schallek, J., Kılıç, K., Can, A., et al. (2018) Capillary Pericytes Express Α-Smooth Muscle Actin, Which Requires Prevention of Filamentous-Actin Depolymerization for Detection. E Life, 7, e34861.
https://doi.org/10.7554/elife.34861
[15] Kureli, G., Yilmaz-Ozcan, S., Erdener, S.E., Donmez-Demir, B., Yemisci, M., Karatas, H., et al. (2020) F-Actin Polymerization Contributes to Pericyte Contractility in Retinal Capillaries. Experimental Neurology, 332, Article 113392.
https://doi.org/10.1016/j.expneurol.2020.113392
[16] Grant, R.I., Hartmann, D.A., Underly, R.G., Berthiaume, A., Bhat, N.R. and Shih, A.Y. (2017) Organizational Hierarchy and Structural Diversity of Microvascular Pericytes in Adult Mouse Cortex. Journal of Cerebral Blood Flow & Metabolism, 39, 411-425.
https://doi.org/10.1177/0271678x17732229
[17] Alarcon-Martinez, L., Villafranca-Baughman, D., Quintero, H., Kacerovsky, J.B., Dotigny, F., Murai, K.K., et al. (2020) Interpericyte Tunnelling Nanotubes Regulate Neurovascular Coupling. Nature, 585, 91-95.
https://doi.org/10.1038/s41586-020-2589-x
[18] Kloc, M., Kubiak, J.Z., Li, X.C. and Ghobrial, R.M. (2015) Pericytes, Microvasular Dysfunction, and Chronic Rejection. Transplantation, 99, 658-667.
https://doi.org/10.1097/tp.0000000000000648
[19] Wilson, C.L., Stephenson, S.E., Higuero, J.P., Feghali-Bostwick, C., Hung, C.F. and Schnapp, L.M. (2018) Characterization of Human PDGFR-β-Positive Pericytes from IPF and Non-IPF Lungs. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L991-L1002.
https://doi.org/10.1152/ajplung.00289.2018
[20] Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2010) Pericyte-Specific Expression of PDGF Beta Receptor in Mouse Models with Normal and Deficient PDGF Beta Receptor Signaling. Molecular Neurodegeneration, 5, Article No. 32.
https://doi.org/10.1186/1750-1326-5-32
[21] Fazio, A., Neri, I., Koufi, F., Marvi, M.V., Galvani, A., Evangelisti, C., et al. (2024) Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. International Journal of Molecular Sciences, 25, Article 6592.
https://doi.org/10.3390/ijms25126592
[22] Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. and Betsholtz, C. (1999) Role of PDGF-B and PDGFR-β in Recruitment of Vascular Smooth Muscle Cells and Pericytes during Embryonic Blood Vessel Formation in the Mouse. Development, 126, 3047-3055.
https://doi.org/10.1242/dev.126.14.3047
[23] Girolamo, F., Errede, M., Longo, G., Annese, T., Alias, C., Ferrara, G., et al. (2019) Defining the Role of Ng2-Expressing Cells in Experimental Models of Multiple Sclerosis. A Biofunctional Analysis of the Neurovascular Unit in Wild Type and NG2 Null Mice. PLOS ONE, 14, e0213508.
https://doi.org/10.1371/journal.pone.0213508
[24] Santos, G.S.P., Magno, L.A.V., Romano-Silva, M.A., Mintz, A. and Birbrair, A. (2018) Pericyte Plasticity in the Brain. Neuroscience Bulletin, 35, 551-560.
https://doi.org/10.1007/s12264-018-0296-5
[25] Natarajan, V., Ha, S., Delgado, A., Jacobson, R., Alhalhooly, L., Choi, Y., et al. (2022) Acquired ΑSMA Expression in Pericytes Coincides with Aberrant Vascular Structure and Function in Pancreatic Ductal Adenocarcinoma. Cancers, 14, Article 2448.
https://doi.org/10.3390/cancers14102448
[26] Baek, S., Maiorino, E., Kim, H., Glass, K., Raby, B.A. and Yuan, K. (2022) Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte Markers and Identities. Frontiers in Cardiovascular Medicine, 9, Article 876591.
https://doi.org/10.3389/fcvm.2022.876591
[27] Kim, S., Lee, S., Lim, J., Choi, H., Kang, H., Jeon, N.L., et al. (2021) Human Bone Marrow-Derived Mesenchymal Stem Cells Play a Role as a Vascular Pericyte in the Reconstruction of Human BBB on the Angiogenesis Microfluidic Chip. Biomaterials, 279, Article 121210.
https://doi.org/10.1016/j.biomaterials.2021.121210
[28] Hattori, Y. (2022) The Multiple Roles of Pericytes in Vascular Formation and Microglial Functions in the Brain. Life, 12, Article 1835.
https://doi.org/10.3390/life12111835
[29] Darland, D.C. and D’Amore, P.A. (2001) TGFβ is Required for the Formation of Capillary-Like Structures in Three-Dimensional Cocu. Angiogenesis, 4, 11-20.
https://doi.org/10.1023/a:1016611824696
[30] Ren, S., Xia, Y., Yu, B., Lei, Q., Hou, P., Guo, S., et al. (2024) Growth Hormone Promotes Myelin Repair after Chronic Hypoxia via Triggering Pericyte-Dependent Angiogenesis. Neuron, 112, 2177-2196.e6.
https://doi.org/10.1016/j.neuron.2024.03.026
[31] Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R. and Zlokovic, B.V. (2019) Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews, 99, 21-78.
https://doi.org/10.1152/physrev.00050.2017
[32] Kadry, H., Noorani, B. and Cucullo, L. (2020) A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids and Barriers of the CNS, 17, Article No. 69.
https://doi.org/10.1186/s12987-020-00230-3
[33] Faraco, G., Park, L., Anrather, J. and Iadecola, C. (2017) Brain Perivascular Macrophages: Characterization and Functional Roles in Health and Disease. Journal of Molecular Medicine, 95, 1143-1152.
https://doi.org/10.1007/s00109-017-1573-x
[34] Seo, J.H., Maki, T., Maeda, M., Miyamoto, N., Liang, A.C., Hayakawa, K., et al. (2014) Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling. PLOS ONE, 9, e103174.
https://doi.org/10.1371/journal.pone.0103174
[35] Stebbins, M.J., Gastfriend, B.D., Canfield, S.G., Lee, M., Richards, D., Faubion, M.G., et al. (2019) Human Pluripotent Stem Cell-Derived Brain Pericyte-Like Cells Induce Blood-Brain Barrier Properties. Science Advances, 5, eaau7375.
https://doi.org/10.1126/sciadv.aau7375
[36] Castillo-González, J. and González-Rey, E. (2024) Beyond Wrecking a Wall: Revisiting the Concept of Blood-Brain Barrier Breakdown in Ischemic Stroke. Neural Regeneration Research, 20, 1944-1956.
https://doi.org/10.4103/nrr.nrr-d-24-00392
[37] Armulik, A., Genové, G., Mäe, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., et al. (2010) Pericytes Regulate the Blood-Brain Barrier. Nature, 468, 557-561.
https://doi.org/10.1038/nature09522
[38] Sengillo, J.D., Winkler, E.A., Walker, C.T., Sullivan, J.S., Johnson, M. and Zlokovic, B.V. (2012) Deficiency in Mural Vascular Cells Coincides with Blood-Brain Barrier Disruption in Alzheimer’s Disease. Brain Pathology, 23, 303-310.
https://doi.org/10.1111/bpa.12004
[39] Nikolakopoulou, A.M., Montagne, A., Kisler, K., Dai, Z., Wang, Y., Huuskonen, M.T., et al. (2019) Pericyte Loss Leads to Circulatory Failure and Pleiotrophin Depletion Causing Neuron Loss. Nature Neuroscience, 22, 1089-1098.
https://doi.org/10.1038/s41593-019-0434-z
[40] Ohashi, S.N., DeLong, J.H., Kozberg, M.G., Mazur-Hart, D.J., van Veluw, S.J., Alkayed, N.J., et al. (2023) Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke, 54, 605-619.
https://doi.org/10.1161/strokeaha.122.037155
[41] Hu, S., Yang, B., Shu, S., He, X., Sang, H., Fan, X., et al. (2023) Targeting Pericytes for Functional Recovery in Ischemic Stroke. Neuro Molecular Medicine, 25, 457-470.
https://doi.org/10.1007/s12017-023-08748-z
[42] Heymans, M., Figueiredo, R., Dehouck, L., Francisco, D., Sano, Y., Shimizu, F., et al. (2020) Contribution of Brain Pericytes in Blood-Brain Barrier Formation and Maintenance: A Transcriptomic Study of Cocultured Human Endothelial Cells Derived from Hematopoietic Stem Cells. Fluids and Barriers of the CNS, 17, Article No. 48.
https://doi.org/10.1186/s12987-020-00208-1
[43] Zhan, R., Meng, X., Tian, D., Xu, J., Cui, H., Yang, J., et al. (2023) NAD+ Rescues Aging-Induced Blood-Brain Barrier Damage via the CX43-PARP1 Axis. Neuron, 111, 3634-3649.e7.
https://doi.org/10.1016/j.neuron.2023.08.010
[44] Zhang, W., Davis, C.M., Zeppenfeld, D.M., Golgotiu, K., Wang, M.X., Haveliwala, M., et al. (2021) Role of Endothelium-Pericyte Signaling in Capillary Blood Flow Response to Neuronal Activity. Journal of Cerebral Blood Flow & Metabolism, 41, 1873-1885.
https://doi.org/10.1177/0271678x211007957
[45] Venkat, P., Yan, T., Chopp, M., Zacharek, A., Ning, R., Van Slyke, P., et al. (2018) Angiopoietin-1 Mimetic Peptide Promotes Neuroprotection after Stroke in Type 1 Diabetic Rats. Cell Transplantation, 27, 1744-1752.
https://doi.org/10.1177/0963689718791568
[46] Gould, I.G., Tsai, P., Kleinfeld, D. and Linninger, A. (2016) The Capillary Bed Offers the Largest Hemodynamic Resistance to the Cortical Blood Supply. Journal of Cerebral Blood Flow & Metabolism, 37, 52-68.
https://doi.org/10.1177/0271678x16671146
[47] Bothwell, S.W., Janigro, D. and Patabendige, A. (2019) Cerebrospinal Fluid Dynamics and Intracranial Pressure Elevation in Neurological Diseases. Fluids and Barriers of the CNS, 16, Article No. 9.
https://doi.org/10.1186/s12987-019-0129-6
[48] Grubb, S., Cai, C., Hald, B.O., Khennouf, L., Murmu, R.P., Jensen, A.G.K., et al. (2020) Precapillary Sphincters Maintain Perfusion in the Cerebral Cortex. Nature Communications, 11, Article No. 395.
https://doi.org/10.1038/s41467-020-14330-z
[49] Zambach, S.A., Cai, C., Helms, H.C.C., Hald, B.O., Dong, Y., Fordsmann, J.C., et al. (2021) Precapillary Sphincters and Pericytes at First-Order Capillaries as Key Regulators for Brain Capillary Perfusion. Proceedings of the National Academy of Sciences, 118, e2023749118.
https://doi.org/10.1073/pnas.2023749118
[50] Gonzales, A.L., Klug, N.R., Moshkforoush, A., Lee, J.C., Lee, F.K., Shui, B., et al. (2020) Contractile Pericytes Determine the Direction of Blood Flow at Capillary Junctions. Proceedings of the National Academy of Sciences, 117, 27022-27033.
https://doi.org/10.1073/pnas.1922755117
[51] Ratelade, J., Klug, N.R., Lombardi, D., Angelim, M.K.S.C., Dabertrand, F., Domenga-Denier, V., et al. (2020) Reducing Hypermuscularization of the Transitional Segment between Arterioles and Capillaries Protects against Spontaneous Intracerebral Hemorrhage. Circulation, 141, 2078-2094.
https://doi.org/10.1161/circulationaha.119.040963
[52] Hartmann, D.A., Berthiaume, A., Grant, R.I., Harrill, S.A., Koski, T., Tieu, T., et al. (2021) Brain Capillary Pericytes Exert a Substantial but Slow Influence on Blood Flow. Nature Neuroscience, 24, 633-645.
https://doi.org/10.1038/s41593-020-00793-2
[53] Ballanyi, K., Doutheil, J. and Brockhaus, J. (1996) Membrane Potentials and Microenvironment of Rat Dorsal Vagal Cells in Vitro during Energy Depletion. The Journal of Physiology, 495, 769-784.
https://doi.org/10.1113/jphysiol.1996.sp021632
[54] Longden, T.A. and Nelson, M.T. (2015) Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow. Microcirculation, 22, 183-196.
https://doi.org/10.1111/micc.12190
[55] Xie, L., John, S.A. and Weiss, J.N. (2002) Spermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1. The Journal of General Physiology, 120, 53-66.
https://doi.org/10.1085/jgp.20028576
[56] Longden, T.A., Dabertrand, F., Koide, M., Gonzales, A.L., Tykocki, N.R., Brayden, J.E., et al. (2017) Capillary K+-Sensing Initiates Retrograde Hyperpolarization to Increase Local Cerebral Blood Flow. Nature Neuroscience, 20, 717-726.
https://doi.org/10.1038/nn.4533
[57] Longden, T.A., Mughal, A., Hennig, G.W., Harraz, O.F., Shui, B., Lee, F.K., et al. (2021) Local IP 3 Receptor-Mediated Ca2+ Signals Compound to Direct Blood Flow in Brain Capillaries. Science Advances, 7, eabh0101.
https://doi.org/10.1126/sciadv.abh0101
[58] Hariharan, A., Robertson, C.D., Garcia, D.C.G. and Longden, T.A. (2022) Brain Capillary Pericytes Are Metabolic Sentinels That Control Blood Flow through a KATP Channel-Dependent Energy Switch. Cell Reports, 41, Article 111872.
https://doi.org/10.1016/j.celrep.2022.111872
[59] Sancho, M., Klug, N.R., Mughal, A., Koide, M., Huerta de la Cruz, S., Heppner, T.J., et al. (2022) Adenosine Signaling Activates ATP-Sensitive K+ Channels in Endothelial Cells and Pericytes in CNS Capillaries. Science Signaling, 15, eabl5405.
https://doi.org/10.1126/scisignal.abl5405
[60] Giovane, R.A. and Lavender, P.D. (2018) Central Nervous System Infections. Primary Care: Clinics in Office Practice, 45, 505-518.
https://doi.org/10.1016/j.pop.2018.05.007
[61] Medina-Flores, F., Hurtado-Alvarado, G., Deli, M.A. and Gómez-González, B. (2022) The Active Role of Pericytes during Neuroinflammation in the Adult Brain. Cellular and Molecular Neurobiology, 43, 525-541.
https://doi.org/10.1007/s10571-022-01208-5
[62] Nyúl-Tóth, Á., Kozma, M., Nagyőszi, P., Nagy, K., Fazakas, C., Haskó, J., et al. (2017) Expression of Pattern Recognition Receptors and Activation of the Non-Canonical Inflammasome Pathway in Brain Pericytes. Brain, Behavior, and Immunity, 64, 220-231.
https://doi.org/10.1016/j.bbi.2017.04.010
[63] Sheikh, B.N., Guhathakurta, S., Tsang, T.H., Schwabenland, M., Renschler, G., Herquel, B., et al. (2020) Neural Metabolic Imbalance Induced by MOF Dysfunction Triggers Pericyte Activation and Breakdown of Vasculature. Nature Cell Biology, 22, 828-841.
https://doi.org/10.1038/s41556-020-0526-8
[64] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[65] Teske, N.C., Dyckhoff-Shen, S., Beckenbauer, P., Bewersdorf, J.P., Engelen-Lee, J., Hammerschmidt, S., et al. (2023) Pericytes Are Protective in Experimental Pneumococcal Meningitis through Regulating Leukocyte Infiltration and Blood-Brain Barrier Function. Journal of Neuroinflammation, 20, Article No. 267.
https://doi.org/10.1186/s12974-023-02938-z
[66] Gil, E., Venturini, C., Stirling, D., Turner, C., Tezera, L.B., Ercoli, G., et al. (2022) Pericyte Derived Chemokines Amplify Neutrophil Recruitment across the Cerebrovascular Endothelial Barrier. Frontiers in Immunology, 13, Article 935798.
https://doi.org/10.3389/fimmu.2022.935798
[67] Mäe, M.A., He, L., Nordling, S., Vazquez-Liebanas, E., Nahar, K., Jung, B., et al. (2021) Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circulation Research, 128, e46-e62.
https://doi.org/10.1161/circresaha.120.317473
[68] Ayloo, S., Lazo, C.G., Sun, S., Zhang, W., Cui, B. and Gu, C. (2022) Pericyte-to-Endothelial Cell Signaling via Vitronectin-Integrin Regulates Blood-CNS Barrier. Neuron, 110, 1641-1655.e6.
https://doi.org/10.1016/j.neuron.2022.02.017
[69] Caporarello, N., Olivieri, M., Cristaldi, M., Scalia, M., Toscano, M.A., Genovese, C., et al. (2017) Blood-Brain Barrier in a Haemophilus Influenzae Type A in Vitro Infection: Role of Adenosine Receptors A2A and A2b. Molecular Neurobiology, 55, 5321-5336.
https://doi.org/10.1007/s12035-017-0769-y
[70] Chen, C., Ou, Y., Li, J., Chang, C., Pan, H., Lai, C., et al. (2014) Infection of Pericytes in Vitro by Japanese Encephalitis Virus Disrupts the Integrity of the Endothelial Barrier. Journal of Virology, 88, 1150-1161.
https://doi.org/10.1128/jvi.02738-13
[71] Salmeri, M., Motta, C., Anfuso, C.D., Amodeo, A., Scalia, M., Toscano, M.A., et al. (2013) VEGF Receptor-1 Involvement in Pericyte Loss Induced Byescherichia coli in An in Vitro Model of Blood Brain Barrier. Cellular Microbiology, 15, 1367-1384.
https://doi.org/10.1111/cmi.12121
[72] Bocci, M., Oudenaarden, C., Sàenz-Sardà, X., Simrén, J., Edén, A., Sjölund, J., et al. (2021) Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients. International Journal of Molecular Sciences, 22, Article 11622.
https://doi.org/10.3390/ijms222111622
[73] Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590.
https://doi.org/10.1016/s0140-6736(20)32205-4
[74] Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., et al. (2018) NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimers & Dementia, 14, 535-562.
https://doi.org/10.1016/j.jalz.2018.02.018
[75] Chen, X., Firulyova, M., Manis, M., Herz, J., Smirnov, I., Aladyeva, E., et al. (2023) Microglia-Mediated T Cell Infiltration Drives Neurodegeneration in Tauopathy. Nature, 615, 668-677.
https://doi.org/10.1038/s41586-023-05788-0
[76] Li, P. and Fan, H. (2023) Pericyte Loss in Diseases. Cells, 12, Article 1931.
https://doi.org/10.3390/cells12151931
[77] Shi, H., Koronyo, Y., Rentsendorj, A., Regis, G.C., Sheyn, J., Fuchs, D., et al. (2020) Identification of Early Pericyte Loss and Vascular Amyloidosis in Alzheimer’s Disease Retina. Acta Neuropathologica, 139, 813-836.
https://doi.org/10.1007/s00401-020-02134-w
[78] Ma, Q., Zhao, Z., Sagare, A.P., Wu, Y., Wang, M., Owens, N.C., et al. (2018) Blood-Brain Barrier-Associated Pericytes Internalize and Clear Aggregated Amyloid-Β42 by Lrp1-Dependent Apolipoprotein E Isoform-Specific Mechanism. Molecular Neurodegeneration, 13, Article No. 57.
https://doi.org/10.1186/s13024-018-0286-0
[79] Bell, R.D., Deane, R., Chow, N., Long, X., Sagare, A., Singh, I., et al. (2008) SRF and Myocardin Regulate LRP-Mediated Amyloid-β Clearance in Brain Vascular Cells. Nature Cell Biology, 11, 143-153.
https://doi.org/10.1038/ncb1819
[80] Grossin, N., Boulanger, E., Wautier, M. and Wautier, J. (2010) The Different Isoforms of the Receptor for Advanced Glycation End Products Are Modulated by Pharmacological Agents. Clinical Hemorheology and Microcirculation, 45, 143-153.
https://doi.org/10.3233/ch-2010-1292
[81] Paudel, Y.N., Angelopoulou, E., Piperi, C., Othman, I., Aamir, K. and Shaikh, M.F. (2020) Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells, 9, Article 383.
https://doi.org/10.3390/cells9020383
[82] Nortley, R., Korte, N., Izquierdo, P., Hirunpattarasilp, C., Mishra, A., Jaunmuktane, Z., et al. (2019) Amyloid β Oligomers Constrict Human Capillaries in Alzheimer’s Disease via Signaling to Pericytes. Science, 365.
https://doi.org/10.1126/science.aav9518
[83] Briyal, S., Ranjan, A.K. and Gulati, A. (2023) Oxidative Stress: A Target to Treat Alzheimer’s Disease and Stroke. Neurochemistry International, 165, Article 105509.
https://doi.org/10.1016/j.neuint.2023.105509
[84] Lourenco, M.V., Frozza, R.L., de Freitas, G.B., Zhang, H., Kincheski, G.C., Ribeiro, F.C., et al. (2019) Exercise-Linked FNDC5/Irisin Rescues Synaptic Plasticity and Memory Defects in Alzheimer’s Models. Nature Medicine, 25, 165-175.
https://doi.org/10.1038/s41591-018-0275-4
[85] Zhu, W.M., Neuhaus, A., Beard, D.J., Sutherland, B.A. and DeLuca, G.C. (2022) Neurovascular Coupling Mechanisms in Health and Neurovascular Uncoupling in Alzheimer’s Disease. Brain, 145, 2276-2292.
https://doi.org/10.1093/brain/awac174
[86] Stomrud, E., Björkqvist, M., Janciauskiene, S., Minthon, L. and Hansson, O. (2010) Alterations of Matrix Metalloproteinases in the Healthy Elderly with Increased Risk of Prodromal Alzheimer’s Disease. Alzheimer’s Research & Therapy, 2, Article No. 20.
https://doi.org/10.1186/alzrt44
[87] Li, J., Li, M., Ge, Y., Chen, J., Ma, J., Wang, C., et al. (2022) β-Amyloid Protein Induces Mitophagy-Dependent Ferroptosis through the CD36/PINK/PARKIN Pathway Leading to Blood-Brain Barrier Destruction in Alzheimer’s Disease. Cell & Bioscience, 12, Article No. 69.
https://doi.org/10.1186/s13578-022-00807-5