[1]
|
Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2011) Central Nervous System Pericytes in Health and Disease. Nature Neuroscience, 14, 1398-1405. https://doi.org/10.1038/nn.2946
|
[2]
|
Sweeney, M.D., Ayyadurai, S. and Zlokovic, B.V. (2016) Pericytes of the Neurovascular Unit: Key Functions and Signaling Pathways. Nature Neuroscience, 19, 771-783. https://doi.org/10.1038/nn.4288
|
[3]
|
Alarcon-Martinez, L., Yemisci, M. and Dalkara, T. (2021) Pericyte Morphology and Function. Histology and Histopathology, 36, 633-643.
|
[4]
|
Kim, B.J., Hancock, B.M., Bermudez, A., Cid, N.D., Reyes, E., van Sorge, N.M., et al. (2015) Bacterial Induction of Snail1 Contributes to Blood-Brain Barrier Disruption. Journal of Clinical Investigation, 125, 2473-2483. https://doi.org/10.1172/jci74159
|
[5]
|
Winkler, E.A., Sagare, A.P. and Zlokovic, B.V. (2014) The Pericyte: A Forgotten Cell Type with Important Implications for Alzheimer’S Disease? Brain Pathology, 24, 371-386. https://doi.org/10.1111/bpa.12152
|
[6]
|
Meijer, E.M., van Dijk, C.G.M., Kramann, R., Verhaar, M.C. and Cheng, C. (2022) Implementation of Pericytes in Vascular Regeneration Strategies. Tissue Engineering Part B: Reviews, 28, 1-21. https://doi.org/10.1089/ten.teb.2020.0229
|
[7]
|
Caporali, A., Martello, A., Miscianinov, V., Maselli, D., Vono, R. and Spinetti, G. (2017) Contribution of Pericyte Paracrine Regulation of the Endothelium to Angiogenesis. Pharmacology & Therapeutics, 171, 56-64. https://doi.org/10.1016/j.pharmthera.2016.10.001
|
[8]
|
Armulik, A., Genové, G. and Betsholtz, C. (2011) Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell, 21, 193-215. https://doi.org/10.1016/j.devcel.2011.07.001
|
[9]
|
Zhao, H., Feng, J., Seidel, K., Shi, S., Klein, O., Sharpe, P., et al. (2018) Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell, 23, Article 147. https://doi.org/10.1016/j.stem.2018.05.023
|
[10]
|
Etchevers, H.C., Vincent, C., Douarin, N.M.L. and F. Couly, G. (2001) The Cephalic Neural Crest Provides Pericytes and Smooth Muscle Cells to All Blood Vessels of the Face and Forebrain. Development, 128, 1059-1068. https://doi.org/10.1242/dev.128.7.1059
|
[11]
|
Korn, J., Christ, B. and Kurz, H. (2001) Neuroectodermal Origin of Brain Pericytes and Vascular Smooth Muscle Cells. Journal of Comparative Neurology, 442, 78-88. https://doi.org/10.1002/cne.1423
|
[12]
|
Kurz, H. (2009) Cell Lineages and Early Patterns of Embryonic CNS Vascularization. Cell Adhesion & Migration, 3, 205-210. https://doi.org/10.4161/cam.3.2.7855
|
[13]
|
Hartmann, D.A., Underly, R.G., Grant, R.I., Watson, A.N., Lindner, V. and Shih, A.Y. (2015) Pericyte Structure and Distribution in the Cerebral Cortex Revealed by High-Resolution Imaging of Transgenic Mice. Neurophotonics, 2, Article 041402. https://doi.org/10.1117/1.nph.2.4.041402
|
[14]
|
Alarcon-Martinez, L., Yilmaz-Ozcan, S., Yemisci, M., Schallek, J., Kılıç, K., Can, A., et al. (2018) Capillary Pericytes Express Α-Smooth Muscle Actin, Which Requires Prevention of Filamentous-Actin Depolymerization for Detection. E Life, 7, e34861. https://doi.org/10.7554/elife.34861
|
[15]
|
Kureli, G., Yilmaz-Ozcan, S., Erdener, S.E., Donmez-Demir, B., Yemisci, M., Karatas, H., et al. (2020) F-Actin Polymerization Contributes to Pericyte Contractility in Retinal Capillaries. Experimental Neurology, 332, Article 113392. https://doi.org/10.1016/j.expneurol.2020.113392
|
[16]
|
Grant, R.I., Hartmann, D.A., Underly, R.G., Berthiaume, A., Bhat, N.R. and Shih, A.Y. (2017) Organizational Hierarchy and Structural Diversity of Microvascular Pericytes in Adult Mouse Cortex. Journal of Cerebral Blood Flow & Metabolism, 39, 411-425. https://doi.org/10.1177/0271678x17732229
|
[17]
|
Alarcon-Martinez, L., Villafranca-Baughman, D., Quintero, H., Kacerovsky, J.B., Dotigny, F., Murai, K.K., et al. (2020) Interpericyte Tunnelling Nanotubes Regulate Neurovascular Coupling. Nature, 585, 91-95. https://doi.org/10.1038/s41586-020-2589-x
|
[18]
|
Kloc, M., Kubiak, J.Z., Li, X.C. and Ghobrial, R.M. (2015) Pericytes, Microvasular Dysfunction, and Chronic Rejection. Transplantation, 99, 658-667. https://doi.org/10.1097/tp.0000000000000648
|
[19]
|
Wilson, C.L., Stephenson, S.E., Higuero, J.P., Feghali-Bostwick, C., Hung, C.F. and Schnapp, L.M. (2018) Characterization of Human PDGFR-β-Positive Pericytes from IPF and Non-IPF Lungs. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L991-L1002. https://doi.org/10.1152/ajplung.00289.2018
|
[20]
|
Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2010) Pericyte-Specific Expression of PDGF Beta Receptor in Mouse Models with Normal and Deficient PDGF Beta Receptor Signaling. Molecular Neurodegeneration, 5, Article No. 32. https://doi.org/10.1186/1750-1326-5-32
|
[21]
|
Fazio, A., Neri, I., Koufi, F., Marvi, M.V., Galvani, A., Evangelisti, C., et al. (2024) Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. International Journal of Molecular Sciences, 25, Article 6592. https://doi.org/10.3390/ijms25126592
|
[22]
|
Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. and Betsholtz, C. (1999) Role of PDGF-B and PDGFR-β in Recruitment of Vascular Smooth Muscle Cells and Pericytes during Embryonic Blood Vessel Formation in the Mouse. Development, 126, 3047-3055. https://doi.org/10.1242/dev.126.14.3047
|
[23]
|
Girolamo, F., Errede, M., Longo, G., Annese, T., Alias, C., Ferrara, G., et al. (2019) Defining the Role of Ng2-Expressing Cells in Experimental Models of Multiple Sclerosis. A Biofunctional Analysis of the Neurovascular Unit in Wild Type and NG2 Null Mice. PLOS ONE, 14, e0213508. https://doi.org/10.1371/journal.pone.0213508
|
[24]
|
Santos, G.S.P., Magno, L.A.V., Romano-Silva, M.A., Mintz, A. and Birbrair, A. (2018) Pericyte Plasticity in the Brain. Neuroscience Bulletin, 35, 551-560. https://doi.org/10.1007/s12264-018-0296-5
|
[25]
|
Natarajan, V., Ha, S., Delgado, A., Jacobson, R., Alhalhooly, L., Choi, Y., et al. (2022) Acquired ΑSMA Expression in Pericytes Coincides with Aberrant Vascular Structure and Function in Pancreatic Ductal Adenocarcinoma. Cancers, 14, Article 2448. https://doi.org/10.3390/cancers14102448
|
[26]
|
Baek, S., Maiorino, E., Kim, H., Glass, K., Raby, B.A. and Yuan, K. (2022) Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte Markers and Identities. Frontiers in Cardiovascular Medicine, 9, Article 876591. https://doi.org/10.3389/fcvm.2022.876591
|
[27]
|
Kim, S., Lee, S., Lim, J., Choi, H., Kang, H., Jeon, N.L., et al. (2021) Human Bone Marrow-Derived Mesenchymal Stem Cells Play a Role as a Vascular Pericyte in the Reconstruction of Human BBB on the Angiogenesis Microfluidic Chip. Biomaterials, 279, Article 121210. https://doi.org/10.1016/j.biomaterials.2021.121210
|
[28]
|
Hattori, Y. (2022) The Multiple Roles of Pericytes in Vascular Formation and Microglial Functions in the Brain. Life, 12, Article 1835. https://doi.org/10.3390/life12111835
|
[29]
|
Darland, D.C. and D’Amore, P.A. (2001) TGFβ is Required for the Formation of Capillary-Like Structures in Three-Dimensional Cocu. Angiogenesis, 4, 11-20. https://doi.org/10.1023/a:1016611824696
|
[30]
|
Ren, S., Xia, Y., Yu, B., Lei, Q., Hou, P., Guo, S., et al. (2024) Growth Hormone Promotes Myelin Repair after Chronic Hypoxia via Triggering Pericyte-Dependent Angiogenesis. Neuron, 112, 2177-2196.e6. https://doi.org/10.1016/j.neuron.2024.03.026
|
[31]
|
Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R. and Zlokovic, B.V. (2019) Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews, 99, 21-78. https://doi.org/10.1152/physrev.00050.2017
|
[32]
|
Kadry, H., Noorani, B. and Cucullo, L. (2020) A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids and Barriers of the CNS, 17, Article No. 69. https://doi.org/10.1186/s12987-020-00230-3
|
[33]
|
Faraco, G., Park, L., Anrather, J. and Iadecola, C. (2017) Brain Perivascular Macrophages: Characterization and Functional Roles in Health and Disease. Journal of Molecular Medicine, 95, 1143-1152. https://doi.org/10.1007/s00109-017-1573-x
|
[34]
|
Seo, J.H., Maki, T., Maeda, M., Miyamoto, N., Liang, A.C., Hayakawa, K., et al. (2014) Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling. PLOS ONE, 9, e103174. https://doi.org/10.1371/journal.pone.0103174
|
[35]
|
Stebbins, M.J., Gastfriend, B.D., Canfield, S.G., Lee, M., Richards, D., Faubion, M.G., et al. (2019) Human Pluripotent Stem Cell-Derived Brain Pericyte-Like Cells Induce Blood-Brain Barrier Properties. Science Advances, 5, eaau7375. https://doi.org/10.1126/sciadv.aau7375
|
[36]
|
Castillo-González, J. and González-Rey, E. (2024) Beyond Wrecking a Wall: Revisiting the Concept of Blood-Brain Barrier Breakdown in Ischemic Stroke. Neural Regeneration Research, 20, 1944-1956. https://doi.org/10.4103/nrr.nrr-d-24-00392
|
[37]
|
Armulik, A., Genové, G., Mäe, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., et al. (2010) Pericytes Regulate the Blood-Brain Barrier. Nature, 468, 557-561. https://doi.org/10.1038/nature09522
|
[38]
|
Sengillo, J.D., Winkler, E.A., Walker, C.T., Sullivan, J.S., Johnson, M. and Zlokovic, B.V. (2012) Deficiency in Mural Vascular Cells Coincides with Blood-Brain Barrier Disruption in Alzheimer’s Disease. Brain Pathology, 23, 303-310. https://doi.org/10.1111/bpa.12004
|
[39]
|
Nikolakopoulou, A.M., Montagne, A., Kisler, K., Dai, Z., Wang, Y., Huuskonen, M.T., et al. (2019) Pericyte Loss Leads to Circulatory Failure and Pleiotrophin Depletion Causing Neuron Loss. Nature Neuroscience, 22, 1089-1098. https://doi.org/10.1038/s41593-019-0434-z
|
[40]
|
Ohashi, S.N., DeLong, J.H., Kozberg, M.G., Mazur-Hart, D.J., van Veluw, S.J., Alkayed, N.J., et al. (2023) Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke, 54, 605-619. https://doi.org/10.1161/strokeaha.122.037155
|
[41]
|
Hu, S., Yang, B., Shu, S., He, X., Sang, H., Fan, X., et al. (2023) Targeting Pericytes for Functional Recovery in Ischemic Stroke. Neuro Molecular Medicine, 25, 457-470. https://doi.org/10.1007/s12017-023-08748-z
|
[42]
|
Heymans, M., Figueiredo, R., Dehouck, L., Francisco, D., Sano, Y., Shimizu, F., et al. (2020) Contribution of Brain Pericytes in Blood-Brain Barrier Formation and Maintenance: A Transcriptomic Study of Cocultured Human Endothelial Cells Derived from Hematopoietic Stem Cells. Fluids and Barriers of the CNS, 17, Article No. 48. https://doi.org/10.1186/s12987-020-00208-1
|
[43]
|
Zhan, R., Meng, X., Tian, D., Xu, J., Cui, H., Yang, J., et al. (2023) NAD+ Rescues Aging-Induced Blood-Brain Barrier Damage via the CX43-PARP1 Axis. Neuron, 111, 3634-3649.e7. https://doi.org/10.1016/j.neuron.2023.08.010
|
[44]
|
Zhang, W., Davis, C.M., Zeppenfeld, D.M., Golgotiu, K., Wang, M.X., Haveliwala, M., et al. (2021) Role of Endothelium-Pericyte Signaling in Capillary Blood Flow Response to Neuronal Activity. Journal of Cerebral Blood Flow & Metabolism, 41, 1873-1885. https://doi.org/10.1177/0271678x211007957
|
[45]
|
Venkat, P., Yan, T., Chopp, M., Zacharek, A., Ning, R., Van Slyke, P., et al. (2018) Angiopoietin-1 Mimetic Peptide Promotes Neuroprotection after Stroke in Type 1 Diabetic Rats. Cell Transplantation, 27, 1744-1752. https://doi.org/10.1177/0963689718791568
|
[46]
|
Gould, I.G., Tsai, P., Kleinfeld, D. and Linninger, A. (2016) The Capillary Bed Offers the Largest Hemodynamic Resistance to the Cortical Blood Supply. Journal of Cerebral Blood Flow & Metabolism, 37, 52-68. https://doi.org/10.1177/0271678x16671146
|
[47]
|
Bothwell, S.W., Janigro, D. and Patabendige, A. (2019) Cerebrospinal Fluid Dynamics and Intracranial Pressure Elevation in Neurological Diseases. Fluids and Barriers of the CNS, 16, Article No. 9. https://doi.org/10.1186/s12987-019-0129-6
|
[48]
|
Grubb, S., Cai, C., Hald, B.O., Khennouf, L., Murmu, R.P., Jensen, A.G.K., et al. (2020) Precapillary Sphincters Maintain Perfusion in the Cerebral Cortex. Nature Communications, 11, Article No. 395. https://doi.org/10.1038/s41467-020-14330-z
|
[49]
|
Zambach, S.A., Cai, C., Helms, H.C.C., Hald, B.O., Dong, Y., Fordsmann, J.C., et al. (2021) Precapillary Sphincters and Pericytes at First-Order Capillaries as Key Regulators for Brain Capillary Perfusion. Proceedings of the National Academy of Sciences, 118, e2023749118. https://doi.org/10.1073/pnas.2023749118
|
[50]
|
Gonzales, A.L., Klug, N.R., Moshkforoush, A., Lee, J.C., Lee, F.K., Shui, B., et al. (2020) Contractile Pericytes Determine the Direction of Blood Flow at Capillary Junctions. Proceedings of the National Academy of Sciences, 117, 27022-27033. https://doi.org/10.1073/pnas.1922755117
|
[51]
|
Ratelade, J., Klug, N.R., Lombardi, D., Angelim, M.K.S.C., Dabertrand, F., Domenga-Denier, V., et al. (2020) Reducing Hypermuscularization of the Transitional Segment between Arterioles and Capillaries Protects against Spontaneous Intracerebral Hemorrhage. Circulation, 141, 2078-2094. https://doi.org/10.1161/circulationaha.119.040963
|
[52]
|
Hartmann, D.A., Berthiaume, A., Grant, R.I., Harrill, S.A., Koski, T., Tieu, T., et al. (2021) Brain Capillary Pericytes Exert a Substantial but Slow Influence on Blood Flow. Nature Neuroscience, 24, 633-645. https://doi.org/10.1038/s41593-020-00793-2
|
[53]
|
Ballanyi, K., Doutheil, J. and Brockhaus, J. (1996) Membrane Potentials and Microenvironment of Rat Dorsal Vagal Cells in Vitro during Energy Depletion. The Journal of Physiology, 495, 769-784. https://doi.org/10.1113/jphysiol.1996.sp021632
|
[54]
|
Longden, T.A. and Nelson, M.T. (2015) Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow. Microcirculation, 22, 183-196. https://doi.org/10.1111/micc.12190
|
[55]
|
Xie, L., John, S.A. and Weiss, J.N. (2002) Spermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1. The Journal of General Physiology, 120, 53-66. https://doi.org/10.1085/jgp.20028576
|
[56]
|
Longden, T.A., Dabertrand, F., Koide, M., Gonzales, A.L., Tykocki, N.R., Brayden, J.E., et al. (2017) Capillary K+-Sensing Initiates Retrograde Hyperpolarization to Increase Local Cerebral Blood Flow. Nature Neuroscience, 20, 717-726. https://doi.org/10.1038/nn.4533
|
[57]
|
Longden, T.A., Mughal, A., Hennig, G.W., Harraz, O.F., Shui, B., Lee, F.K., et al. (2021) Local IP 3 Receptor-Mediated Ca2+ Signals Compound to Direct Blood Flow in Brain Capillaries. Science Advances, 7, eabh0101. https://doi.org/10.1126/sciadv.abh0101
|
[58]
|
Hariharan, A., Robertson, C.D., Garcia, D.C.G. and Longden, T.A. (2022) Brain Capillary Pericytes Are Metabolic Sentinels That Control Blood Flow through a KATP Channel-Dependent Energy Switch. Cell Reports, 41, Article 111872. https://doi.org/10.1016/j.celrep.2022.111872
|
[59]
|
Sancho, M., Klug, N.R., Mughal, A., Koide, M., Huerta de la Cruz, S., Heppner, T.J., et al. (2022) Adenosine Signaling Activates ATP-Sensitive K+ Channels in Endothelial Cells and Pericytes in CNS Capillaries. Science Signaling, 15, eabl5405. https://doi.org/10.1126/scisignal.abl5405
|
[60]
|
Giovane, R.A. and Lavender, P.D. (2018) Central Nervous System Infections. Primary Care: Clinics in Office Practice, 45, 505-518. https://doi.org/10.1016/j.pop.2018.05.007
|
[61]
|
Medina-Flores, F., Hurtado-Alvarado, G., Deli, M.A. and Gómez-González, B. (2022) The Active Role of Pericytes during Neuroinflammation in the Adult Brain. Cellular and Molecular Neurobiology, 43, 525-541. https://doi.org/10.1007/s10571-022-01208-5
|
[62]
|
Nyúl-Tóth, Á., Kozma, M., Nagyőszi, P., Nagy, K., Fazakas, C., Haskó, J., et al. (2017) Expression of Pattern Recognition Receptors and Activation of the Non-Canonical Inflammasome Pathway in Brain Pericytes. Brain, Behavior, and Immunity, 64, 220-231. https://doi.org/10.1016/j.bbi.2017.04.010
|
[63]
|
Sheikh, B.N., Guhathakurta, S., Tsang, T.H., Schwabenland, M., Renschler, G., Herquel, B., et al. (2020) Neural Metabolic Imbalance Induced by MOF Dysfunction Triggers Pericyte Activation and Breakdown of Vasculature. Nature Cell Biology, 22, 828-841. https://doi.org/10.1038/s41556-020-0526-8
|
[64]
|
Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261. https://doi.org/10.1007/s00018-020-03656-y
|
[65]
|
Teske, N.C., Dyckhoff-Shen, S., Beckenbauer, P., Bewersdorf, J.P., Engelen-Lee, J., Hammerschmidt, S., et al. (2023) Pericytes Are Protective in Experimental Pneumococcal Meningitis through Regulating Leukocyte Infiltration and Blood-Brain Barrier Function. Journal of Neuroinflammation, 20, Article No. 267. https://doi.org/10.1186/s12974-023-02938-z
|
[66]
|
Gil, E., Venturini, C., Stirling, D., Turner, C., Tezera, L.B., Ercoli, G., et al. (2022) Pericyte Derived Chemokines Amplify Neutrophil Recruitment across the Cerebrovascular Endothelial Barrier. Frontiers in Immunology, 13, Article 935798. https://doi.org/10.3389/fimmu.2022.935798
|
[67]
|
Mäe, M.A., He, L., Nordling, S., Vazquez-Liebanas, E., Nahar, K., Jung, B., et al. (2021) Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circulation Research, 128, e46-e62. https://doi.org/10.1161/circresaha.120.317473
|
[68]
|
Ayloo, S., Lazo, C.G., Sun, S., Zhang, W., Cui, B. and Gu, C. (2022) Pericyte-to-Endothelial Cell Signaling via Vitronectin-Integrin Regulates Blood-CNS Barrier. Neuron, 110, 1641-1655.e6. https://doi.org/10.1016/j.neuron.2022.02.017
|
[69]
|
Caporarello, N., Olivieri, M., Cristaldi, M., Scalia, M., Toscano, M.A., Genovese, C., et al. (2017) Blood-Brain Barrier in a Haemophilus Influenzae Type A in Vitro Infection: Role of Adenosine Receptors A2A and A2b. Molecular Neurobiology, 55, 5321-5336. https://doi.org/10.1007/s12035-017-0769-y
|
[70]
|
Chen, C., Ou, Y., Li, J., Chang, C., Pan, H., Lai, C., et al. (2014) Infection of Pericytes in Vitro by Japanese Encephalitis Virus Disrupts the Integrity of the Endothelial Barrier. Journal of Virology, 88, 1150-1161. https://doi.org/10.1128/jvi.02738-13
|
[71]
|
Salmeri, M., Motta, C., Anfuso, C.D., Amodeo, A., Scalia, M., Toscano, M.A., et al. (2013) VEGF Receptor-1 Involvement in Pericyte Loss Induced Byescherichia coli in An in Vitro Model of Blood Brain Barrier. Cellular Microbiology, 15, 1367-1384. https://doi.org/10.1111/cmi.12121
|
[72]
|
Bocci, M., Oudenaarden, C., Sàenz-Sardà, X., Simrén, J., Edén, A., Sjölund, J., et al. (2021) Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients. International Journal of Molecular Sciences, 22, Article 11622. https://doi.org/10.3390/ijms222111622
|
[73]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
|
[74]
|
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., et al. (2018) NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s & Dementia, 14, 535-562. https://doi.org/10.1016/j.jalz.2018.02.018
|
[75]
|
Chen, X., Firulyova, M., Manis, M., Herz, J., Smirnov, I., Aladyeva, E., et al. (2023) Microglia-Mediated T Cell Infiltration Drives Neurodegeneration in Tauopathy. Nature, 615, 668-677. https://doi.org/10.1038/s41586-023-05788-0
|
[76]
|
Li, P. and Fan, H. (2023) Pericyte Loss in Diseases. Cells, 12, Article 1931. https://doi.org/10.3390/cells12151931
|
[77]
|
Shi, H., Koronyo, Y., Rentsendorj, A., Regis, G.C., Sheyn, J., Fuchs, D., et al. (2020) Identification of Early Pericyte Loss and Vascular Amyloidosis in Alzheimer’s Disease Retina. Acta Neuropathologica, 139, 813-836. https://doi.org/10.1007/s00401-020-02134-w
|
[78]
|
Ma, Q., Zhao, Z., Sagare, A.P., Wu, Y., Wang, M., Owens, N.C., et al. (2018) Blood-Brain Barrier-Associated Pericytes Internalize and Clear Aggregated Amyloid-Β42 by Lrp1-Dependent Apolipoprotein E Isoform-Specific Mechanism. Molecular Neurodegeneration, 13, Article No. 57. https://doi.org/10.1186/s13024-018-0286-0
|
[79]
|
Bell, R.D., Deane, R., Chow, N., Long, X., Sagare, A., Singh, I., et al. (2008) SRF and Myocardin Regulate LRP-Mediated Amyloid-β Clearance in Brain Vascular Cells. Nature Cell Biology, 11, 143-153. https://doi.org/10.1038/ncb1819
|
[80]
|
Grossin, N., Boulanger, E., Wautier, M. and Wautier, J. (2010) The Different Isoforms of the Receptor for Advanced Glycation End Products Are Modulated by Pharmacological Agents. Clinical Hemorheology and Microcirculation, 45, 143-153. https://doi.org/10.3233/ch-2010-1292
|
[81]
|
Paudel, Y.N., Angelopoulou, E., Piperi, C., Othman, I., Aamir, K. and Shaikh, M.F. (2020) Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells, 9, Article 383. https://doi.org/10.3390/cells9020383
|
[82]
|
Nortley, R., Korte, N., Izquierdo, P., Hirunpattarasilp, C., Mishra, A., Jaunmuktane, Z., et al. (2019) Amyloid β Oligomers Constrict Human Capillaries in Alzheimer’s Disease via Signaling to Pericytes. Science, 365. https://doi.org/10.1126/science.aav9518
|
[83]
|
Briyal, S., Ranjan, A.K. and Gulati, A. (2023) Oxidative Stress: A Target to Treat Alzheimer’s Disease and Stroke. Neurochemistry International, 165, Article 105509. https://doi.org/10.1016/j.neuint.2023.105509
|
[84]
|
Lourenco, M.V., Frozza, R.L., de Freitas, G.B., Zhang, H., Kincheski, G.C., Ribeiro, F.C., et al. (2019) Exercise-Linked FNDC5/Irisin Rescues Synaptic Plasticity and Memory Defects in Alzheimer’s Models. Nature Medicine, 25, 165-175. https://doi.org/10.1038/s41591-018-0275-4
|
[85]
|
Zhu, W.M., Neuhaus, A., Beard, D.J., Sutherland, B.A. and DeLuca, G.C. (2022) Neurovascular Coupling Mechanisms in Health and Neurovascular Uncoupling in Alzheimer’s Disease. Brain, 145, 2276-2292. https://doi.org/10.1093/brain/awac174
|
[86]
|
Stomrud, E., Björkqvist, M., Janciauskiene, S., Minthon, L. and Hansson, O. (2010) Alterations of Matrix Metalloproteinases in the Healthy Elderly with Increased Risk of Prodromal Alzheimer’s Disease. Alzheimer’s Research & Therapy, 2, Article No. 20. https://doi.org/10.1186/alzrt44
|
[87]
|
Li, J., Li, M., Ge, Y., Chen, J., Ma, J., Wang, C., et al. (2022) β-Amyloid Protein Induces Mitophagy-Dependent Ferroptosis through the CD36/PINK/PARKIN Pathway Leading to Blood-Brain Barrier Destruction in Alzheimer’s Disease. Cell & Bioscience, 12, Article No. 69. https://doi.org/10.1186/s13578-022-00807-5
|