婴幼儿血管瘤可致严重并发症及临床治疗药物的研究进展
Infantile Hemangioma Can Cause Serious Complications and the Research Progress of Clinical Treatment Drugs
DOI: 10.12677/acm.2025.1541307, PDF, HTML, XML,    科研立项经费支持
作者: 李尚东, 陈中天, 刘瑞敏*:甘肃中医药大学第一临床医学院,甘肃 兰州
关键词: 婴幼儿血管瘤并发症药物治疗研究进展Infantile Hemangioma Complications Pharmacotherapy Research Advances
摘要: 婴幼儿血管瘤(Infantile Hemangioma, IH)是婴幼儿期最常见的良性血管肿瘤,发病率达5%~12%,可因瘤体位置或体积引发气道阻塞、肝血管瘤相关并发症及溃疡性病变等危及生命的后果。其发病机制涉及VEGF、Notch、PI3K/AKT/mTOR等多条信号通路的异常调控。近年来药物治疗进展显著,如β受体阻滞剂普萘洛尔因其高效性和安全性成为IH全身治疗的首选药物;糖皮质激素通过拮抗VEGF-A抑制血管生成;干扰素α-2a对难治性IH有效;贝伐单抗通过靶向VEGF抑制内皮细胞增殖,在小鼠模型中展现出治疗潜力;抗真菌药物伊曲康唑通过抑制Hedgehog通路及PDGF-D/PI3K/AKT/mTOR信号,已在特殊病例中成功应用并实现瘤体消退,体现了老药新用的策略;而硬化剂注射常用于局限性血管瘤治疗。但不同药物在实际治疗实践中仍具有局限性,如糖皮质激素因其免疫抑制等副作用应用受限,干扰素可能引发血液系统不良反应,硬化剂存在组织坏死风险等。综上所述,普萘洛尔仍是IH治疗的核心,而伊曲康唑等新型疗法的探索为复杂病例提供了更多选择,未来需进一步优化用药策略并开展多中心临床研究验证长期疗效与安全性。
Abstract: Infantile hemangioma (IH) is the most common benign vascular tumor in infancy, with an incidence rate as high as 5%~12%. It can lead to life-threatening complications such as airway obstruction, complications associated with hepatic hemangiomas, and ulcerative lesions due to the location or size of the tumor. The pathogenesis of IH involves abnormal regulation of multiple signaling pathways, including VEGF, Notch, and PI3K/AKT/mTOR. In recent years, significant progress has been made in the pharmacological treatment of IH. For instance, the beta-blocker propranolol has become the first-line treatment for systemic IH due to its high efficacy and safety profile. Corticosteroids, which antagonize VEGF-A to inhibit angiogenesis, have long been used in the treatment of IH. Interferon α-2a has proven effective for refractory IH cases. Bevacizumab, a monoclonal antibody targeting VEGF, has demonstrated therapeutic potential in mouse models by inhibiting endothelial cell proliferation. The antifungal agent itraconazole, which inhibits the Hedgehog pathway and the PDGF-D/PI3K/AKT/mTOR signaling, has successfully induced tumor regression in select cases, exemplifying the strategy of repurposing existing drugs. Sclerotherapy is commonly used for localized hemangiomas. However, each of these treatments has its limitations in clinical practice. Corticosteroids are restricted in use due to side effects like immunosuppression. Interferon may cause hematologic adverse reactions. Sclerotherapy carries the risk of tissue necrosis. In summary, propranolol remains the cornerstone of IH treatment. The exploration of novel therapies such as itraconazole offers additional options for complex cases. Future efforts should focus on optimizing treatment strategies and conducting multicenter clinical studies to verify long-term efficacy and safety.
文章引用:李尚东, 陈中天, 刘瑞敏. 婴幼儿血管瘤可致严重并发症及临床治疗药物的研究进展[J]. 临床医学进展, 2025, 15(4): 3369-3375. https://doi.org/10.12677/acm.2025.1541307

1. 引言

血管瘤(Hemangiomas)是国际血管异常研究学会(International Society for the Study of Vascular Anomalies, ISSVA)提出的一种先天性血管异常病变的肿瘤亚型,并分为两型,婴幼儿血管瘤(IH)及先天性血管瘤(CH) [1]。婴幼儿血管瘤是婴幼儿期最常见的肿瘤,其发病率高达5%~12%,1岁以下发病者约占10%,高发于早产儿、低体重出生婴儿、双胞胎、女童及白种人[2]

大多数IH的体积较小、无害、可自行消退,无需治疗。然而,由于瘤体的体积大小及所处位置,仍有一部分IH可导致严重并发症[2]。危及生命的病变包括IH导致的气道阻塞,肝脏IH可导致的高输出性心力衰竭和消耗性甲状腺功能减退症,以及罕见的溃疡性IH引起的大量出血。

2. 危及生命并发症

2.1. 气道阻塞

气道阻塞IH通常涉及声门下,进一步损害小儿气道最狭窄的部分,导致呼吸窘迫。诊断明确的平均年龄为4个月,但症状往往更早出现,主要原因是经常被误诊为感染,炎性和反应性气道疾病[3] [4]。随着病变进展,多数罹患气道IH的患儿会呈现特征性双相喘鸣和犬吠样咳嗽(喉气管炎典型体征)。流行病学研究显示,约半数气道IH患儿并发皮肤IH病变。值得注意的是,颌面部节段性IH (临床称为“胡须样分布”)、颈前区IH以及累及口腔/咽部黏膜的IH病灶,已被证实与气道受累存在显著相关性,系该病发生发展的主要危险因素[4]-[6]

2.2. 肝相关婴幼儿血管瘤

肝血管瘤的特征表现为三种解剖学分布模式:局灶性(多属先天性血管瘤)、多灶性及弥漫性(均属婴儿血管瘤)。流行病学研究表明,多数多灶性肝IH呈临床静止状态,无需干预治疗。然而,约5%~10%的病例可能并发大血管分流,导致高血流量状态,极端情况下可进展为高输出性心力衰竭[7] [8]。值得注意的是,多灶性或弥漫性肝脏IH患者可能并发消耗性甲减,其病理机制与病灶内异常表达的Ⅲ型碘甲腺原氨酸脱碘酶密切相关。该酶通过催化活性甲状腺激素的脱碘失活,导致外周循环中激素水平进行性下降,这一代谢失衡现象在肝脏弥漫性IH病变中尤为显著[9]

2.3. 溃疡性婴幼儿血管瘤

婴儿血管瘤相关皮肤/黏膜溃疡在转诊人群中发病率为5%~21%。该并发症以进行性疼痛、间歇性出血及继发感染为典型临床表现,溃疡发生的平均年龄为4个月,最常见于增殖期,16%的婴儿血管瘤患者在此期发生溃疡[10]。深度溃疡可侵袭毗邻动脉血管壁,引发难以控制的致命性大出血,此类病例需紧急介入治疗以降低病死风险[11]

本病病因主要是由中胚层血管内皮细胞的良性增殖引起,以内皮细胞异常增殖和血管结构异常为特征。主要的发病机制可能受VEGF/VEGFR、Notch、β肾上腺素、Tie2/血管生成素、PI3K/AKT/mTOR,HIF-α介导的通路和PDGF/PDGF-R-β,SOX17等多条细胞信号途径改变的影响[12]-[15]

目前常用的治疗婴幼儿血管瘤的方法有药物治疗、硬化剂注射治疗、激光治疗,手术治疗和冷冻疗法等。本文将就近年来血管瘤治疗药物的研究进展展开讨论。

3. 药物治疗

3.1. β受体阻滞剂

自2008年法国Léauté-Labrèze C首次报道普萘洛尔在治疗IH方面有显著作用后[16],有大量病例报告和病例系列描述了其疗效和潜在副作用。2012年国际多学科专家提出口服普萘洛尔是目前需要全身治疗的IH的首选治疗方法[17] [18]。国内专家在2013年达成共识[19],推荐使用普萘洛尔作为治疗婴幼儿血管瘤首选药物。随后于2015年,国外学者Christine Léauté-Labrèze [20]等人为了补充随机对照试验的数据,进行了一项多中心、随机、双盲、适应性、2~3期临床试验(n = 460),用于评估儿科口服普萘洛尔溶液对1至5个月大需要全身治疗的增殖期婴儿血管瘤婴儿的疗效和安全性。显示普萘洛尔用3 mg/kg/d治疗后IH完全或接近完全消退60%。停用普萘洛尔后IH再生发生率为10%。同时,普萘洛尔是FDA目前唯一获批用治疗的IH药物[21]。根据2022年中国专家共识,普萘洛尔作为婴幼儿血管瘤(IH)的一线全身治疗药物,其临床应用需遵循个体化原则。适用人群为年龄 > 2周龄或矫正年龄 ≥ 2周龄的早产儿,标准剂量为2 mg·kg−1·d−1,分2次口服(间隔≥8小时),随餐或餐后服用。对于4周龄以上、无严重合并症且生长发育正常的足月儿,可门诊给药,无需剂量递增,初始即采用全剂量,每1~2个月复诊评估体重及疗效以调整方案。

特殊病例管理需严格住院监护,包括:PHACE综合征患儿;矫正年龄 < 5周或体重 < 2.5 kg;存在低血糖、心肺功能不全等高危因素;瘤体累及气道、鼻部等重要解剖部位并伴呼吸障碍者。此类患者起始剂量为0.5 mg·kg−1·d−1,分2~3次口服,住院观察3~7天。用药前需监测基线生命体征(心率、血压、血糖),后续每30~60分钟复查,持续2~4小时;若无显著不良反应,1周内逐步增量至目标剂量(≤2 mg·kg−1·d−1),单次剂量调整间隔≥24小时。

门诊患者由监护人密切观察服药后反应(面色、呼吸、心率及末梢循环),异常情况需及时就诊;住院期间需持续心电监护,动态监测血压、心率、呼吸及血糖。共识强调,门诊无需常规血压监测,但重症患者需警惕低血糖及心血管事件风险。通过分层管理及精细化剂量调控,普萘洛尔在保障安全性的同时,可显著改善IH预后[22]β受体阻滞剂普萘洛尔因其卓越的疗效和安全性,仍是IH全身治疗的基石。同时,伊曲康唑等新型疗法的探索为复杂病例提供了替代选择,但未来仍需通过多中心临床试验优化用药策略。

3.2. 糖皮质激素

自1960年代以来,口服或病灶内注射皮质类固醇一直是治疗血管瘤一线治疗方法,适用于体积较大、侵袭性强或累及重要脏器的病例。糖皮质激素治疗血管瘤,包括口服全身治疗及局部瘤内注射疗法。Greene AK [23]将2007年至2010年间连续25例口服泼尼松龙治疗的婴儿血管瘤患者列入队列,并对所有患者均给予3 mg·kg−1·d−1,持续1个月,然后每2至4周逐渐减少0.5 mL处理方案,最终确定口服3 mg·kg−1标准化治疗方案的有效性和安全性。Greenberger S [24]等人通过小鼠模型的研究,提示地塞米松对于婴幼儿血管瘤治疗的机制主要基于其特异性拮抗血管内皮生长因子A (Vascular Endothelial Growth Factor-A, VEGF-A),该机制通过以下途径实现:1) 阻断血管瘤来源的干细胞在体内的血管生成潜力,降低血管生成活性;2) 诱导某些细胞凋亡。该治疗策略通过双重调控机制靶向抑制血管瘤组织异常增殖,成为实现瘤体体积显著缩小这一临床治疗目标的关键病理生理学基础。然而,需特别关注的是,系统性用药可引发剂量依赖性不良反应,局部反应表现为面部水肿及多毛症,全身性反应则涵盖多尿、肾上腺皮质功能抑制等代谢紊乱。此类不良反应多源于药物对非靶器官离子通道及激素受体的交叉作用,需通过动态监测与个体化剂量调整进行风险管控。

3.3. 干扰素

干扰素具有抑制血管内皮细胞迁移及增殖的作用,从而减缓血管瘤的生长,常用于传统疗法效果不佳的病例,但其不良反应有白细胞下降、恶心、头痛等。Ricketts RR等人[25]进行了一项临床实验,4名婴儿和1名儿童接受IFN-α-2a治疗,初始皮下剂量为100万单位·m−2·d−1,持续剂量为300万单位·m−2·d−1。持续5至11个月后,2例患者出现轻微并发症,但很容易控制;3例患者血管瘤完全或接近全部消退;1例部分消退;1例患者在平均7.1个月的IFN治疗后稳定但没有消退。

3.4. 贝伐单抗

贝伐单抗(Avastin)是一种人源化单克隆抗体,其作用靶点为血管内皮生长因子(VEGF)。该药物通过特异性结合VEGF,阻断其与内皮细胞膜上的Flt-1和KDR受体结合,从而抑制内皮细胞增殖及新生血管的生成。北京大学许振起团队的研究表明[26],在小鼠模型中采用瘤内注射方式给予贝伐单抗,可显著抑制血管内皮细胞瘤的的增殖及促进凋亡,同时安全性也得到保证。

3.5. 伊曲康唑

伊曲康唑是FDA批准的抗真菌药物,已在临床上使用30多年。最近的药物再利用筛选显示,伊曲康唑可通过抑制血管生成和多种致癌信号通路发挥抗癌活性[27]。一项针对Hedgehog (Hh)信号通路抑制剂的筛选显示,伊曲康唑可以在体内抑制Hh信号通路活性[28],下调Hh信号通路并抑制细胞增殖,诱导细胞凋亡和减少HemECs的血管生成[29]。之后陆续出现大量个案研究以及前瞻性研究:有一9月女婴因存在左颈内动脉缺如及脑侧支循环不良(MRA证实),普萘洛尔治疗风险较高,故改用口服伊曲康唑[30]。口服伊曲康唑(5 mg·kg−1·d−1) 6周后,红斑、斑块大小及溃疡显著减少;3个月后病灶接近完全消退。治疗持续11个月后停药,随访8个月显示血管瘤完全消退,仅残留少量毛细血管扩张、瘢痕及纤维脂肪组织。治疗期间未观察到不良反应或肝功能异常。

3.6. 硬化剂

硬化剂瘤内注射治疗血管瘤方法简单、易于掌握、疗效肯定,是治疗血管瘤常用方法之一。主要适用于范围较小的毛细血管瘤,混合型血管瘤和海绵状血管瘤的治疗。其作用机制是促进血液中蛋白凝固,使血小板黏附形成血栓,导致血管闭塞。常用的硬化剂有:聚桂醇、聚多卡醇、5%鱼肝油酸钠、乙醇胺油磷脂、消痔灵、十四烷基硫酸钠,尿素等[31],可应用于中小血管瘤及血管畸形的注射治疗,采用多点多次注射方法,以瘤体苍白、肿胀为度,但因其有一定毒性,易引发注射部位组织坏死,目前应用较少。

4. 结论

婴幼儿血管瘤的严重并发症可危及生命,故而应该在患儿患病后及早发现、早诊断、早治疗,尽量避免患儿病情向危重发展。该病药物治疗的研究较之前获得了显著进展,多种药物在临床应用中表现出良好的疗效和安全性。β受体阻滞剂普萘洛尔已成为治疗婴幼儿血管瘤的首选药物,糖皮质激素、干扰素、贝伐单抗、伊曲康唑等药物也为临床治疗提供了更多选择。然而,治疗婴幼儿血管瘤仍需根据患者的具体情况选择合适的药物和治疗方法,以达到最佳的治疗效果。

基金项目

甘肃省人民医院院内科研基金项目(22GSSYD-44)。

NOTES

*通讯作者。

参考文献

[1] Kunimoto, K., Yamamoto, Y. and Jinnin, M. (2022) ISSVA Classification of Vascular Anomalies and Molecular Biology. International Journal of Molecular Sciences, 23, Article 2358.
https://doi.org/10.3390/ijms23042358
[2] Krowchuk, D.P., Frieden, I.J., Mancini, A.J., Darrow, D.H., Blei, F., Greene, A.K., et al. (2019) Clinical Practice Guideline for the Management of Infantile Hemangiomas. Pediatrics, 143, e20183475.
https://doi.org/10.1542/peds.2018-3475
[3] Shikhani, A.H., Marsh, B.R., Jones, M.M. and Holliday, M.J. (1986) Infantile Subglottic Hemangiomas an Update. Annals of Otology, Rhinology & Laryngology, 95, 336-347.
https://doi.org/10.1177/000348948609500404
[4] Uthurriague, C., Boccara, O., Catteau, B., Fayoux, P., Léauté-Labrèze, C., Chiaverini, C., et al. (2016) Skin Patterns Associated with Upper Airway Infantile Haemangiomas: A Retrospective Multicentre Study. Acta Dermato Venereologica, 96, 963-966.
https://doi.org/10.2340/00015555-2357
[5] Orlow, S.J., Isakoff, M.S. and Blei, F. (1997) Increased Risk of Symptomatic Hemangiomas of the Airway in Association with Cutaneous Hemangiomas in a “Beard” Distribution. The Journal of Pediatrics, 131, 643-646.
https://doi.org/10.1016/s0022-3476(97)70079-9
[6] Sherrington, C.A., Sim, D.K.Y., Freezer, N.J. and Robertson, C.F. (1997) Subglottic Haemangioma. Archives of Disease in Childhood, 76, 458-459.
https://doi.org/10.1136/adc.76.5.458
[7] Kulungowski, A.M., Alomari, A.I., Chawla, A., Christison-Lagay, E.R. and Fishman, S.J. (2012) Lessons from a Liver Hemangioma Registry: Subtype Classification. Journal of Pediatric Surgery, 47, 165-170.
https://doi.org/10.1016/j.jpedsurg.2011.10.037
[8] Rialon, K.L., Murillo, R., Fevurly, R.D., Kulungowski, A.M., Christison-Lagay, E.R., Zurakowski, D., et al. (2015) Risk Factors for Mortality in Patients with Multifocal and Diffuse Hepatic Hemangiomas. Journal of Pediatric Surgery, 50, 837-841.
https://doi.org/10.1016/j.jpedsurg.2014.09.056
[9] Huang, S.A., Tu, H.M., Harney, J.W., Venihaki, M., Butte, A.J., Kozakewich, H.P.W., et al. (2000) Severe Hypothyroidism Caused by Type 3 Iodothyronine Deiodinase in Infantile Hemangiomas. New England Journal of Medicine, 343, 185-189.
https://doi.org/10.1056/nejm200007203430305
[10] Chamlin, S.L., Haggstrom, A.N., Drolet, B.A., Baselga, E., Frieden, I.J., Garzon, M.C., et al. (2007) Multicenter Prospective Study of Ulcerated Hemangiomas. The Journal of Pediatrics, 151, 684-689.E1.
https://doi.org/10.1016/j.jpeds.2007.04.055
[11] Connelly, E.A., Viera, M., Price, C. and Waner, M. (2009) Segmental Hemangioma of Infancy Complicated by Life‐Threatening Arterial Bleed. Pediatric Dermatology, 26, 469-472.
https://doi.org/10.1111/j.1525-1470.2009.00955.x
[12] Ritter, M.R., Butschek, R.A., Friedlander, M. and Friedlander, S.F. (2007) Pathogenesis of Infantile Haemangioma: New Molecular and Cellular Insights. Expert Reviews in Molecular Medicine, 9, 1-19.
https://doi.org/10.1017/s146239940700052x
[13] Ji, Y., Chen, S., Li, K., Li, L., Xu, C. and Xiang, B. (2014) Signaling Pathways in the Development of Infantile Hemangioma. Journal of Hematology & Oncology, 7, Article No. 13.
https://doi.org/10.1186/1756-8722-7-13
[14] 孙玉鸣. SOX17对婴幼儿血管瘤的增殖、血管生成的影响及其机制探索[D]: [硕士学位论文]. 长沙: 中南大学, 2022.
[15] Chen, S., Zhuang, K., Sun, K., Yang, Q., Ran, X., Xu, X., et al. (2019) Itraconazole Induces Regression of Infantile Hemangioma via Downregulation of the Platelet-Derived Growth Factor—D/PI3K/Akt/mTOR Pathway. Journal of Investigative Dermatology, 139, 1574-1582.
https://doi.org/10.1016/j.jid.2018.12.028
[16] Léauté-Labrèze, C., de la Roque, E.D., Hubiche, T., Boralevi, F., Thambo, J. and Taïeb, A. (2008) Propranolol for Severe Hemangiomas of Infancy. New England Journal of Medicine, 358, 2649-2651.
https://doi.org/10.1056/nejmc0708819
[17] Ji, Y., Chen, S., Xu, C., Li, L. and Xiang, B. (2014) The Use of Propranolol in the Treatment of Infantile Haemangiomas: An Update on Potential Mechanisms of Action. British Journal of Dermatology, 172, 24-32.
https://doi.org/10.1111/bjd.13388
[18] Drolet, B.A., Frommelt, P.C., Chamlin, S.L., Haggstrom, A., Bauman, N.M., Chiu, Y.E., et al. (2013) Initiation and Use of Propranolol for Infantile Hemangioma: Report of a Consensus Conference. Pediatrics, 131, 128-140.
https://doi.org/10.1542/peds.2012-1691
[19] 郑家伟, 张凌, 陈正岗. 普萘洛尔治疗婴幼儿血管瘤专家共识[J]. 中国口腔颌面外科杂志, 2013, 11(2): 161-164.
[20] Léauté-Labrèze, C., Hoeger, P., Mazereeuw-Hautier, J., Guibaud, L., Baselga, E., Posiunas, G., et al. (2015) A Randomized, Controlled Trial of Oral Propranolol in Infantile Hemangioma. New England Journal of Medicine, 372, 735-746.
https://doi.org/10.1056/nejmoa1404710
[21] Holm, A., Mulliken, J.B. and Bischoff, J. (2024) Infantile Hemangioma: The Common and Enigmatic Vascular Tumor. Journal of Clinical Investigation, 134, e172836.
https://doi.org/10.1172/jci172836
[22] 郑家伟, 王绪凯, 秦中平, 等. 口服普萘洛尔治疗婴幼儿血管瘤中国专家共识(2022版) [J]. 中国口腔颌面外科杂志, 2022, 20(4): 313-319.
[23] Greene, A.K. and Couto, R.A. (2011) Oral Prednisolone for Infantile Hemangioma. Efficacy and Safety Using a Standardized Treatment Protocol. Plastic and Reconstructive Surgery, 128, 743-752.
https://doi.org/10.1097/prs.0b013e3182221398
[24] Greenberger, S., Boscolo, E., Adini, I., Mulliken, J.B. and Bischoff, J. (2010) Corticosteroid Suppression of VEGF-A in Infantile Hemangioma-Derived Stem Cells. New England Journal of Medicine, 362, 1005-1013.
https://doi.org/10.1056/nejmoa0903036
[25] Ricketts, R.R., Hatley, R.M., Corden, B.J., Sabio, H. and Howell, C.G. (1994) Interferon-Alpha-2a for the Treatment of Complex Hemangiomas of Infancy and Childhood. Annals of Surgery, 219, 605-614.
https://doi.org/10.1097/00000658-199406000-00003
[26] Xu, Z.Q., Liu, Y., Wang, Y.X., Zhang, W. and Zhao, F.Y. (2009) Therapeutic Effects of Avastin on the Murine Hemangioendothelioma. Journal of Peking University (Health Science),41, 105-108.
[27] Chong, C.R., Xu, J., Lu, J., Bhat, S., Sullivan, D.J. and Liu, J.O. (2007) Inhibition of Angiogenesis by the Antifungal Drug Itraconazole. ACS Chemical Biology, 2, 263-270.
https://doi.org/10.1021/cb600362d
[28] Kim, J., Tang, J.Y., Gong, R., Kim, J., Lee, J.J., Clemons, K.V., et al. (2010) Itraconazole, a Commonly Used Antifungal That Inhibits Hedgehog Pathway Activity and Cancer Growth. Cancer Cell, 17, 388-399.
https://doi.org/10.1016/j.ccr.2010.02.027
[29] Dong, J., Cui, J., Shi, X., Wang, T. and Liu, S. (2023) Itraconazole Inhibits Proliferation, Induces Apoptosis, and Reduces Angiogenesis of Hemangioma Endothelial Cells by Downregulating the Hedgehog Signaling Pathway. Heliyon, 9, e19244.
https://doi.org/10.1016/j.heliyon.2023.e19244
[30] Ahuja, R., Tyagi, M., Kumar, A. and Gupta, V. (2024) PHACES Syndrome‐Associated Large Segmental Facial Heman-gioma Successfully Treated with Oral Itraconazole. International Journal of Dermatology, 64, 731-732.
https://doi.org/10.1111/ijd.17442
[31] 许学文, 李正勇, 卿勇, 等. 血管瘤及脉管畸形治疗研究进展[J]. 华西医学, 2008(2): 413-414.