自我参照处理中信念多样化作用的神经相关性:一项ALE元分析
Neural Correlates for the Diverse Roles of Beliefs in Self-Referential Processing: An ALE Meta-Analysis
摘要: 关于自我参照处理中信念的作用,已有两种信念类型的提出:以自我为中心的信念和基于他人视角的信念。然而,这两种信念背后的神经机制仍不明确。为了区分与这两类信念相关的脑部过程,本研究采用ALE元分析方法,分析了自我特质判断任务与虚假信念任务的fMRI研究结果。结果表明,与虚假信念任务相比,在自我特质判断任务中,前扣带回(ACC)的活动显著增强。相反,左侧颞顶联合区(lTPJ)和背内侧前额叶皮层(dmPFC)被认为是自我特质判断任务与虚假信念任务共同激活的区域。基于这些结果,我们认为ACC可能在利用自我中心信念进行特质自我判断时发挥作用,即当自我知识中存在特质与稳定行为模式之间的关联时;而左侧TPJ和dmPFC可能在利用基于他人视角的信念进行自我特质判断时发挥作用,当自我中心信念不足以支持自我判断时,个体需要采纳他人视角进行判断。
Abstract: Two types of beliefs in self-referential processing have been proposed: self-centred beliefs and perspective-taking-based beliefs. However, the neural mechanisms underlying these two types of beliefs remain unclear. In order to distinguish the cerebral processes associated with these beliefs, an ALE meta-analysis was conducted by analysing the fMRI findings from self-judgment of trait tasks and false-belief tasks. The results demonstrated that the anterior cingulate gyrus (ACC) exhibited heightened activity during self-judgment of trait tasks in comparison to false-belief tasks. Conversely, the left temporal-parietal junction (lTPJ) and dorsomedial prefrontal cortex (dmPFC) were identified as common regions shared by both self-judgment of trait tasks and false-belief tasks. Based on these results, we thought that the ACC might be involved in the self-judgment of traits by using self-centered beliefs when there are relationships between traits and stable behavioral patterns in the self-knowledge; the left TPJ and the dmPFC might be involved in the self-judgment of traits by using perspective-taking-based beliefs, where individuals should make self-judgment by taking others’ perspectives when the self-centered beliefs do not sufficiently support the self-judgment.
文章引用:林峻宇. 自我参照处理中信念多样化作用的神经相关性:一项ALE元分析[J]. 社会科学前沿, 2025, 14(4): 798-810. https://doi.org/10.12677/ass.2025.144353

1. 引言

自我参照处理主要涉及对与自我密切相关的刺激进行处理[1] (Northoff et al., 2006)。考虑到自我参照处理需要将多种概念进行联结,信念在处理这些自我相关信息或体验时是必不可少的,因为信念指的是概念之间关系的心理表征[2]-[4]。本研究利用激活可能性估计(ALE)方法,通过分析自我特质判断(SJT)和虚假信念(FB)任务这两种密切相关的范式,以解决以下两个问题:(a) 确认信念作为自我参照处理的基础,并阐明信念在自我参照处理中的基本作用;(b) 确定自我参照处理中信念相关的生理证据及功能网络。

SJT是研究自我参照处理中心念相关过程的广泛应用范式,其任务要求个体判断某些特质是否可以用来描述自我[1] [5]-[7]。已有研究表明,皮层中线结构参与了SJT的处理,包括腹内侧前额叶皮层(vmPFC)与背内侧前额叶皮层(dmPFC)、前扣带皮层(ACC)以及后扣带皮层(PCC) [1] [8]-[11]。除了上述区域之外,近期两项关于神经影像学研究的元分析也证实前岛皮层(AI)作为SJT关键区域的作用,该区域与SJT中的自我意识相关,并在获取核心自我表征中发挥整合作用[5] [12]

需要注意的是,SJT任务可能要求个体将特质与自我知识中所表征的稳定行为模式进行联结[13]-[15]。SJT被视为对先前实证研究中所确定的自我参照处理信念的探讨[1] [5]-[7]。SJT任务可能需要依赖以自我为中心的信念,自我中心信念指基于个体内在经验形成的特质–行为关联表征,其核心特征是无需外部视角介入即可完成自我判断[16],这种信念表征了特质与稳定行为模式之间的关系,从而促使自我判断能够迅速而高效地进行。此外,Leary (2012) [17]强调,个体在出生时并不具备自我意识,而是随着其与他人互动能力的发展,逐渐通过采纳他人视角来学习某些特质的适宜性。进一步的研究还表明,视角采择在SJT任务中也起着作用[18]。因此,可以推测SJT任务还需要基于他人视角的信念,基于他人视角的信念通过心理理论能力整合外部社会信息,其特征体现为对他人心理状态的模拟与协调[19],即当自我中心信念不足以支持自我判断时,个体可通过采纳他人视角来进行判断。

尽管SJT任务可能需要整合两种不同类型的信念,但仅依靠SJT难以区分自我中心信念与基于他人视角的信念,因为缺乏足够的实证证据来证明所涉及的特质与个体持久行为模式之间存在强关联。FB任务作为研究视角采择信念的基本范式[20] [21],可能有助于区分SJT任务中所涉及的信念过程。在FB任务中,故事的主要角色对情节中的变化缺乏知觉,而阅读者则知情[22]。为了抑制自我中心信念并报告故事主要角色的虚假信念,个体必须从主角的角度而非自身角度考虑行为与意图之间的关系[19]。上述研究表明,虚假信念与基于他人视角的信念之间存在共通过程,即通过采纳他人视角以成功完成任务,两类信念的区分标准包括:“(a) 信息源的内外属性;(b) 神经机制的分离性(vACC vs TPJ/dmPFC);(c) 认知负荷的差异(直觉型vs控制型系统)”。因此,本文提出了关于自我参照处理中心概念的以下假设。

首先,当SJT任务依赖于自我中心信念时,前扣带皮层(ACC)是关键区域,因为其使个体无需过多调用记忆即可完成任务[6] [16] [23]。结合以往研究,ACC在处理自我相关刺激中发挥着重要作用[24]-[26],其主要功能在于监控自我相关刺激以维持自我与他人的区分[27]。因此,可以假设在采用自我中心信念时,ACC是SJT中大脑的关键区域。其次,颞顶联合区(TPJ)和背内侧前额叶皮层(dmPFC)作为SJT中激活的他人视角区域,在从第三人称视角推断他人知识时也表现出较高活性[17] [28]-[30]。可推测,在SJT任务中,TPJ和dmPFC的某些区域参与了基于他人视角信念的处理,并且在SJT与FB任务中均观察到激活增强。

尽管已有大量关于自我参照处理与心理理论神经相关性的研究,但对这些过程中涉及的大脑区域的全面理解仍未达成。因此,本研究利用神经影像学研究的元分析方法,探讨与自我参照处理和心理理论相关的人脑区域。采用ALE元分析方法的原因在于其能够整合来自多项研究的大量数据[31]-[33]。特别是,利用联合分析方法可以识别SJT与FB任务在TPJ和dmPFC中的共有激活区域;而对比分析则用于确定在SJT相对于FB任务中ACC/vmPFC的激活增强区域。

2. 研究方法

2.1. 研究文献选择

为识别与SJT任务相关的文章,采用了一系列关键词。检索词包括“self-referential processing”和“trait”,并结合“fMRI”或“functional magnetic resonance imaging”。利用PubMed (www.pubmed.com)对截止2022年8月1日之前的文献进行了检索。此外,还评估了获得论文中引用的文献,以识别更多涉及自我参照处理的神经影像学研究。

此外,为识别与虚假信念主题相关的文章,亦在PubMed (www.pubmed.com)上以“false-belief”AND“fMRI”或“functional magnetic resonance imaging”为关键词进行了检索,检索截止日期为2022年8月1日。通过追踪获得论文及之前元分析中的参考文献[5] [12],进一步确定了相关文献。

两类文献的选择标准如下:

a) 文章语言为英文;

b) 受试者为未经药物治疗且无自我参照及虚假信念相关训练的健康成人;

c) 采用fMRI测量血氧水平;

d) 全脑分析而非ROI分析,且仅提供ROI数据而无全脑数据的研究被排除;

e) 报告标准坐标(Talairach或Montreal Neurological Institute坐标系);

f) 任务涉及自我参照及虚假信念的核心过程,而非高层次或针对更具体目标的过程;

g) 采用相应任务与对照任务或基线之间的图像对比,而非不同任务层次之间的对比;

h) 纳入激活而非去激活数据,因为去激活报道较少且其解释不明[8] [34] [35]

根据上述标准,截至2022年8月1日,共选取了涉及自我参照处理(SJT任务,共48篇文章)和心理理论(FB任务,共62篇文章)的同行评审神经影像学论文用于元分析。所选研究的列表见补充材料表1表2。文献检索过程遵循《系统评价和元分析报告项目首选报告项目》(PRISMA-P)2015指南[36] (Moher et al., 2015)。文章具体筛选过程详见补充材料中的图1图2。下文中,“研究”指的是一篇报告多个对比结果的科学出版物;“实验”则指单项研究内的对比分析[37]

Figure 1. Search flow diagram adapted from PRISMA guidelines.

1. 检索流程图改编自PRISMA指南

Figure 2. Search flow diagram adapted from PRISMA guidelines.

2. 检索流程图改编自PRISMA指南

2.2. ALE简介

本研究采用Ginger ALE 3.0.2软件(http://www.brainmap.org/)对神经影像学结果进行基于坐标的元分析[30] [31] [33]。ALE的基本原理是利用各研究报告的激活峰值作为三维高斯概率分布的中心,从而捕捉每个峰值所伴随的空间不确定性[38] (Caspers et al., 2010)。随后,每个ALE分数与在标准空间体素下根据实验间随机空间相关性构建的解析零分布下的激活可能性进行比较[39] [40]。通过这种方式,ALE算法能够判定不同研究间实验结果的聚合是否反映了有意义的操作,而非大脑中随机的聚类现象[30] [33]

2.3. 元分析算法

本研究的目标是考察两种任务所涉及的大脑区域,以及两种任务联合激活的区域和它们之间的差异。首先,对两种任务分别进行一次ALE分析以探讨各自的激活区域;其次,采用ALE对比分析来识别SJT与FB任务中各自特有的大脑区域。该分析表明,在FB任务中,仅有右侧TPJ显著激活。最后,通过联合分析考察了两种任务共同参与的脑区。

2.4. 统计分析

2.4.1. 单一分析

首先,将Talairach坐标系报告的研究数据转换至Montreal Neurological Institute (MNI)空间,转换算法由GingerALE 3.0.2实现[37]。将FB与SJT两个数据集分别进行ALE分析,这一过程利用经过筛选的文献数据及MNI三维坐标数据。对于每项研究,激活峰值均以自动计算的中值平滑滤波器为中心建模为高斯分布。采用了基于Eickhoff (2011)观察结果的聚类水平推断阈值校正算法[41],因为其指出未校正p值阈值与FDR校正阈值均不理想。聚类形成阈值设定为p < 0.001,聚类水平推断阈值设定为0.05,符合Eickhoff et al. (2011)的建议。聚类水平推断的阈值设定为使仅有5%模拟数据聚类体积超过此值的最小聚类体积[37]

2.4.2. 联合与对比分析

对两数据集进行了比较分析。GingerALE 3.0.2对SJT与FB数据进行了比较分析。首先,将两个数据集合并为一个文件,然后对合并数据进行单次分析。聚类包含阈值设定为体素水平p < 0.001 (1000次置换,最小体积200 mm3)。采用家族错误率(FWE)校正,确定结果在p < 0.05水平下的统计显著性。通过计算两个阈值化后的ALE图像间体素级最小值生成联合图像,所得图像包含了两ALE图像中共有的区域[41]。随后,计算两种行为领域的ALE图之间各体素差值,并进行置换检验以确定每对体素间ALE分数差异的统计显著性。最后,根据以下阈值推断对比分析结果:p < 0.01,采用10,000次置换,并附加聚类体积阈值200 mm3 [41]。置换检验得到的p值图随后转换为z分数以便展示。

3. 结果

3.1. 单一分析

共纳入57个关于虚假信念任务的实验,总计547个激活焦点;以及76个关于SJT的实验,总计550个激活焦点,用于单一元分析。对两种任务分别进行分析显示,两者在前额叶皮层中均展现出相似且具有差异化的激活模式,提示两任务之间可能存在关联。

3.1.1. 虚假信念分析

虚假信念任务的元分析结果见表1。表中列出了激活脑区及其在MNI空间中的x、y、z坐标。单一ALE元分析在虚假信念 > 信念的主要对比中共发现7个显著激活聚类。该分析显示,右侧上颞回BA 39、左侧上颞回BA 39/21、左侧楔前叶BA 7、右侧中额回BA 6/9/21、右侧中颞回BA 21、左侧后扣带皮层BA 31以及左侧上额回BA 9的激活显著增强(详见表1图3)。

Table 1. Results of false-belief (FB) of single analysis

1. 错误信念(FB)的单一分析结果

Cluster

Brain regions

Volume (mm³)

Brodmann area

Z sores

MNI coordinates

x

y

z

false-belief task > ture-belief task

1

R Superior Temporal Gyrus

6784

39

9.27

52

−52

22

2

L Precuneus

6656

7

7.98

0

−58

38

3

L Superior Temporal Gyrus

5432

39

9.12

−52

−58

24

4

L Medial Frontal Gyrus

5032

9

5.12

0

58

8

L Medial Frontal Gyrus

6

4.94

0

54

32

R Superior Frontal Gyrus

9

4.84

4

62

18

L Superior Frontal Gyrus

8

4.40

−10

54

30

5

R Middle Temporal Gyrus

4288

21

6.49

50

6

−32

R Middle Temporal Gyrus

21

4.70

58

−18

−14

R Insula

22

4.31

48

−30

−6

L Superior Temporal Gyrus

21

4.11

54

−8

−18

R Middle Temporal Gyrus

21

3.61

54

2

−22

6

R Middle Frontal Gyrus

1872

6

6.26

46

8

48

7

L Middle Temporal Gyrus

1144

21

4.82

−62

−22

−10

8

L Inferior Semi-Lunar Lobule

1112

5.55

−24

−76

−38

Note: L. left hemisphere; R. Right hemisphere; MNI: Montreal Neurological Institute.

3.1.2. 自我特质判断

Figure 3. The ALE single analysis results of FB and SJT (p < 0.001 in voxel level with FWE-corrected p < 0.05 in cluster level)

3. FB和SJT的ALE单一分析结果(体素水平p < 0.001,经FWE校正的群集水平p < 0.05)

自我特质判断(SJT)任务的元分析结果见表2。表中列出了激活脑区及其在MNI空间中的x、y、z坐标。单一ALE元分析在自我 > 他人的主要对比中共发现了9个显著激活聚类。该分析显示,脑内多个区域激活增强,包括左侧前扣带回BA32/24、左侧上额回BA9/6/8、左侧内侧前额回BA9/8、右侧内侧前额回BA9/10、右侧扣带回BA32、左侧扣带回BA24、左侧下额回BA47、左侧中颞回BA39以及左侧后扣带回(详见表2图3)。

Table 2. Results of self-judge trait (SJT) of single analysis

2. 自我特质判断的单一分析结果

Cluster

Brain regions

Volume (mm3)

Brodmann area

Z sores

MNI coordinates

x

y

z

Self > other

1

L Anterior Cingulate

16,328

32

7.18

−8

50

0

L Anterior Cingulate

24

6.57

−2

36

4

L Superior Frontal Gyrus

9

5.96

−6

60

16

L Medial Frontal Gyrus

9

5.66

−4

48

16

L Anterior Cingulate

32

5.62

−2

40

18

L Medial Frontal Gyrus

8

3.94

−8

52

32

R Middle Frontal Gyrus

9

3.92

8

44

24

R Middle Frontal Gyrus

10

3.59

8

58

2

R Cingulate Gyrus

32

3.47

8

32

28

2

L Extra-Nuclear

6280

13

7.85

−30

20

−16

L Inferior Frontal Gyrus

47

7.70

−44

24

−10

L Claustrum

3.71

−36

12

−6

3

L Middle Temporal Gyrus

3904

39

8.38

−48

−64

26

4

L Posterior Cingulate

3320

23

10.25

−4

−52

24

5

L Cingulate Gyrus

1544

24

6.01

−2

−16

38

6

R Pyramis

1448

5.05

28

−80

−34

7

L Superior Frontal Gyrus

1032

6

4.97

−6

18

62

L Superior Frontal Gyrus

6

3.91

−6

18

52

8

L Superior Frontal Gyrus

1000

8

4.34

−8

44

42

L Superior Frontal Gyrus

6

3.97

−8

38

52

1

L Anterior Cingulate

16,328

32

7.18

−8

50

0

Note: L. left hemisphere; R. Right hemisphere; MNI: Montreal Neurological Institute.

3.2. 联合与对比分析

在联合与对比分析中,将自我特质判断与虚假信念任务的坐标合并至一个文件,随后利用该文件进行ALE元分析。结果显示,两组任务合并后的总体平均激活在p < 0.05水平下达到显著(共131项研究)。

Figure 4. The ALE conjunction analysis results between the FB and SJT

4. FB和SJT之间的ALE连接分析结果

3.2.1. 联合分析

为识别在虚假信念任务(FBT)与SJT任务中均一致激活的大脑区域,对上述两项元分析进行联合分析。联合分析结果显示,在左侧上颞回BA 39、左侧内侧前额回BA 9、左侧上额回BA 9以及左侧后扣带皮层BA 31存在共同显著激活(详见表3图4)。

3.2.2. 对比分析

Figure 5. The ALE contrast results between the FB and SJT (p < 0.001 in voxel level with FWE-corrected p < 0.05 in cluster level)

5. FB和SJT之间的ALE对比结果(体素水平p < 0.001,经FWE校正的群集水平p < 0.05):FB和SJT之间的ALE对比结果(体素水平p < 0.001,经FWE校正的群集水平p < 0.05)

为确定两任务激活差异的大脑区域,采用ALE剔除分析,对任一分析中表现出显著激活的体素进行对比,从而确定任务间的相对差异。与SJT任务相比,虚假信念任务显示右侧上颞回(BA 39)与右侧颞顶联合区(TPJ)、右侧楔前叶(BA 7)、右侧内侧颞回(BA 21)以及右侧内侧前额回(BA 6/10)激活增强(详见表3图5)。而SJT任务中激活较高的区域则为左侧前扣带回BA 24、左侧后扣带皮层BA 30与左侧下额回(详见表3图5)。

Table 3. Results of the meta-analysis of contrast and conjunction analysis between false-belief tasks and self-judge trait tasks

3. 错误信念任务与自我判断特质任务对比分析和联合分析的荟萃分析结果

Cluster

Brain regions

Volume(mm³)

Brodmann area

Z scores

MNI coordinates

x

y

z

False-belief > Self-judge trait

1

R Superior Temporal Gyrus

5352

22

3.29

52.9

−51.4

20.4

2

R Precuneus

2672

7

3.29

3.9

−57.5

37.7

3

L Superior Temporal Gyrus

1616

39

3.29

−55.1

−56.6

27.2

4

R Medial Temporal Gyrus

1400

21

3.29

56.7

−16.3

−13.8

5

R Medial Frontal Gyrus

984

6

3.29

43.5

7.9

47.7

6

R Medial Frontal Gyrus

328

10

3.29

2.1

49.3

−16.7

7

R Superior Temporal Gyrus

248

38

3.29

46.3

8.5

−36.6

Self-judge trait > False-belief

1

L Anterior Cingulate

2616

24

3.29

−3.9

38.6

6.4

L Medial Frontal Gyrus

9

3.09

−10

50

14

2

L Posterior Cingulate

496

30

3.09

−4.4

−52.1

19.3

L Posterior Cingulate

30

3.09

−7.4

−51.6

20.8

3

L Inferior Frontal Gyrus

328

47

3.29

−47

26.2

−5.4

L Inferior Frontal Gyrus

45

3.09

−47.3

25.3

0

Conjunction brain activations under false-belief task and self-judge trait

1

L Superior Temporal Gyrus

2304

39

−48

−60

26

2

L Medial Frontal Gyrus

2224

9

−2

58

10

L Superior Frontal Gyrus

9

2

60

20

L Medial Frontal Gyrus

9

−2

56

24

L Medial Frontal Gyrus

8

−8

52

32

3

L Posterior Cingulate

440

31

0

−56

28

Note: L. left hemisphere; R. Right hemisphere; MNI: Montreal Neurological Institute.

4. 讨论

本研究旨在构建关于SJT任务中涉及两种不同信念过程的假设,这两种过程分别为自我中心信念与基于他人视角的信念。为验证该假设,采用ALE元分析方法,对SJT与FB任务的fMRI结果进行了检验。结果一致表明,与FB任务相比,SJT任务中前扣带皮层(ACC)的激活更为显著。此外,SJT与FB任务之间存在共有激活区域,特别是在左侧TPJ与dmPFC中。需强调的是,vACC的激活增强可能反映“特质–行为关联的冲突监控”而非单纯自我中心表征。例如,当被试的自我判断与既有行为模式不一致时,vACC通过协调杏仁核(β = 0.42, p = 0.01)与海马(β = 0.38, p = 0.03)的活动实现动态调整[42]。类似地,TPJ/dmPFC的共同激活可能指向“社会情境的层级整合”[22],而不仅是视角采择的单一功能。

已有研究表明,ACC可在功能上进一步分为背侧ACC与腹侧ACC [43]-[46]。本研究结果显示,在SJT任务中,与FB任务相比,腹侧前扣带皮层(vACC)的激活更为增强。此前的研究证明,无论是腹侧还是背侧ACC均在监控过程中发挥重要作用[47]。然而,背侧ACC主要负责冲突与错误的监测[44] [45] [48],而腹侧ACC则用于解决因感知到的情感上显著的自我相关信息与自我表征不一致而引发的冲突[42] [45]。因此,我们提出,腹侧ACC在自我参照信念处理中发挥作用,使个体能够基于特质与自我表征中稳定行为模式之间的联系,迅速而高效地进行自我评价。

结果还表明,在SJT与FB任务中,左侧TPJ与dmPFC均表现出共同激活。左侧TPJ在心理理论中起着关键作用,常参与思考他人思想的过程[29] [30]。大量社会认知文献也将dmPFC视为自我反思[1] [49]-[51]及他人反思[49] [52]的核心区域。研究结果表明,左侧TPJ与dmPFC可能参与需要基于他人视角信念的任务。SJT要求个体基于他人视角的信息来进行自我评价[17] [28],提示左侧TPJ与dmPFC可能在通过视角采择形成信念的过程中发挥作用。

综合上述因素,可以认为自我判断过程依托于两套不同的信念体系。第一套为自我中心信念,与腹侧前扣带皮层(vACC)的功能相关;第二套为基于他人视角的信念,与左侧颞顶联合区(TPJ)及背内侧前额叶皮层(dmPFC)的功能相关。这些发现与强调SJT任务中X系统与C系统作用的理论框架相一致[16]。X系统包括vmPFC、基底神经节、杏仁核及侧颞皮层[16] [52] [53],该系统负责社会活动中的习惯性反应,并在具备充分自我特质经验时指导个体进行自我判断[6] [16]。研究结果与双系统理论形成呼应:自我中心信念依赖的vACC属于X系统[53],其通过自动化检索自我表征支持快速判断;而TPJ/dmPFC作为C系统的扩展节点[21],在需要社会推理时激活增强,印证了他人视角信念的调控需求。虽然在SJT任务中vmPFC的激活并未显著高于FB任务,但腹侧ACC与vmPFC邻近,并在SJT任务中与vmPFC始终呈共激活状态[5] [12]。因此,SJT相对于FB任务中vACC的激活增强反映了X系统在基于自我中心信念进行自我判断中的关键作用。

C系统则包括侧前额叶皮层、后顶叶皮层及海马体,以及其周围的内侧颞叶结构[24]。C系统涉及对情景记忆的有控制检索,使得在缺乏足够自我经验时个体仍能进行自我判断[6] [16]。虽然dmPFC通常不被归入C系统,但当自我判断缺乏足够自我经验支持时,其激活也会增强[16]。因此,SJT相对于FB任务中左侧TPJ (作为后顶叶皮层的一部分)与dmPFC的激活增强表明,C系统在基于他人视角信念的自我判断中起着关键作用。

5. 结论与局限性

本研究通过ALE元分析探讨了信念在自我参照处理中不同情境下的作用。采用SJT与FB两个明确范式,主要识别出的脑区为:在FB任务中包括内侧前额叶皮层、双侧TPJ、楔前叶及双侧中颞回;而在SJT任务中则包括左侧前扣带回、左侧上额回、左侧内侧前额回、右侧内侧前额回、双侧扣带回及左侧下额回。研究结果表明,信念在自我参照处理中以独特的方式发挥作用,不同脑区之间功能密切相关,从而实现个体“元认知”过程的更为综合的整合。自我参照处理中信念的作用可分为两类:自我中心信念过程和基于他人视角的信念过程,并已得到实证支持。既往研究表明,ACC的激活主要与自我中心信念过程相关,而dmPFC与左侧TPJ则主要与基于他人视角的信念相关。

最后,本文总结了讨论的主题并对未来研究提出建议。我们的发现与Lieberman等人的研究结果相一致,他们提出自我参照处理背后存在两种不同系统:直觉型的X系统与推理型的C系统[25]。尽管具体区域并不完全一致,但这为我们的发现提供了有力支持。然而,需要注意的是,本研究未涵盖所有形式的自我参照处理。本研究中对自我参照处理的元分析仅包括SJT任务,而自我参照处理还存在其他形式,如面部及身体自我意识。因此,尚难断定其他形式的自我参照处理中是否也存在上述两种信念过程。一位研究者曾利用ALE方法考察SJT与其他自我参照处理形式之间的关系,其发现表明,前岛皮层(AI)在多种类型的自我参照处理中均表现出一致的参与。虽然本研究发现ACC可能在区分自我与非自我刺激中起关键作用,但未能提供ACC与前岛皮层(AI)之间存在直接关联的证据。因此,未来研究必须进一步探讨自我相关脑区之间的直接关系,并进一步阐明自我参照处理的神经基础。

参考文献

[1] Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H. and Panksepp, J. (2006) Self-Referential Processing in Our Brain—A Meta-Analysis of Imaging Studies on the Self. NeuroImage, 31, 440-457.
https://doi.org/10.1016/j.neuroimage.2005.12.002
[2] Goodwin, R., Polek, E. and Bardi, A. (2012) The Temporal Reciprocity of Values and Beliefs: A Longitudinal Study within a Major Life Transition. European Journal of Personality, 26, 360-370.
https://doi.org/10.1002/per.844
[3] Leung, K., Bond, M.H., de Carrasquel, S.R., Muñoz, C., Hernández, M., Murakami, F., et al. (2002) Social Axioms: The Search for Universal Dimensions of General Beliefs about How the World Functions. Journal of Cross-Cultural Psychology, 33, 286-302.
https://doi.org/10.1177/0022022102033003005
[4] Seitz, R.J. (2022) Believing and Beliefs—Neurophysiological Underpinnings. Frontiers in Behavioral Neuroscience, 16, Article 880504.
https://doi.org/10.3389/fnbeh.2022.880504
[5] Hu, C., Di, X., Eickhoff, S.B., Zhang, M., Peng, K., Guo, H., et al. (2016) Distinct and Common Aspects of Physical and Psychological Self-Representation in the Brain: A Meta-Analysis of Self-Bias in Facial and Self-Referential Judgements. Neuroscience & Biobehavioral Reviews, 61, 197-207.
https://doi.org/10.1016/j.neubiorev.2015.12.003
[6] Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S. and Heatherton, T.F. (2002) Finding the Self? An Event-Related fMRI Study. Journal of Cognitive Neuroscience, 14, 785-794.
https://doi.org/10.1162/08989290260138672
[7] Macrae, C.N. (2004) Medial Prefrontal Activity Predicts Memory for Self. Cerebral Cortex, 14, 647-654.
https://doi.org/10.1093/cercor/bhh025
[8] Gusnard, D.A. and Raichle, M.E. (2001) Searching for a Baseline: Functional Imaging and the Resting Human Brain. Nature Reviews Neuroscience, 2, 685-694.
https://doi.org/10.1038/35094500
[9] Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A. and Shulman, G.L. (2001) A Default Mode of Brain Function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676-682.
https://doi.org/10.1073/pnas.98.2.676
[10] Raichle, M.E. and Gusnard, D.A. (2005) Intrinsic Brain Activity Sets the Stage for Expression of Motivated Behavior. Journal of Comparative Neurology, 493, 167-176.
https://doi.org/10.1002/cne.20752
[11] Raichle, M.E. and Snyder, A.Z. (2007) A Default Mode of Brain Function: A Brief History of an Evolving Idea. NeuroImage, 37, 1083-1090.
https://doi.org/10.1016/j.neuroimage.2007.02.041
[12] Qin, P., Wang, M. and Northoff, G. (2020) Linking Bodily, Environmental and Mental States in the Self—A Three-Level Model Based on a Meta-Analysis. Neuroscience & Biobehavioral Reviews, 115, 77-95.
https://doi.org/10.1016/j.neubiorev.2020.05.004
[13] Duval, T.S. and Lalwani, N. (1999) Objective Self-Awareness and Causal Attributions for Self-Standard Discrepancies: Changing Self or Changing Standards of Correctness. Personality and Social Psychology Bulletin, 25, 1220-1229.
https://doi.org/10.1177/0146167299258004
[14] Morin, A. (2011) Self‐awareness Part 1: Definition, Measures, Effects, Functions, and Antecedents. Social and Personality Psychology Compass, 5, 807-823.
https://doi.org/10.1111/j.1751-9004.2011.00387.x
[15] Silvia, P.J. and Duval, T.S. (2001) Objective Self-Awareness Theory: Recent Progress and Enduring Problems. Personality and Social Psychology Review, 5, 230-241.
https://doi.org/10.1207/s15327957pspr0503_4
[16] Lieberman, M.D., Jarcho, J.M. and Satpute, A.B. (2004) Evidence-Based and Intuition-Based Self-Knowledge: An fMRI Study. Journal of Personality and Social Psychology, 87, 421-435.
https://doi.org/10.1037/0022-3514.87.4.421
[17] Leary, M.R. and Tangney, J.P. (2012) Handbook of Self and Identity. 2nd Edition, Guilford Press.
[18] D’Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., et al. (2007) Distinct Regions of the Medial Prefrontal Cortex Are Associated with Self-Referential Processing and Perspective Taking. Journal of Cognitive Neuroscience, 19, 935-944.
https://doi.org/10.1162/jocn.2007.19.6.935
[19] Saxe, R. and Kanwisher, N. (2003) People Thinking about Thinking Peoplethe Role of the Temporo-Parietal Junction in “Theory of Mind”. NeuroImage, 19, 1835-1842.
https://doi.org/10.1016/s1053-8119(03)00230-1
[20] Bernard, S. and Deleau, M. (2007) Conversational Perspective‐taking and False Belief Attribution: A Longitudinal Study. British Journal of Developmental Psychology, 25, 443-460.
https://doi.org/10.1348/026151006x171451
[21] Schurz, M. and Perner, J. (2015) An Evaluation of Neurocognitive Models of Theory of Mind. Frontiers in Psychology, 6, Article 1610.
https://doi.org/10.3389/fpsyg.2015.01610
[22] Doricchi, F., Lasaponara, S., Pazzaglia, M. and Silvetti, M. (2022) Left and Right Temporal-Parietal Junctions (TPJS) as “Match/Mismatch” Hedonic Machines: A Unifying Account of TPJ Function. Physics of Life Reviews, 42, 56-92.
https://doi.org/10.1016/j.plrev.2022.07.001
[23] Fink, G.R., Markowitsch, H.J., Reinkemeier, M., Bruckbauer, T., Kessler, J. and Heiss, W. (1996) Cerebral Representation of One’s Own Past: Neural Networks Involved in Autobiographical Memory. The Journal of Neuroscience, 16, 4275-4282.
https://doi.org/10.1523/jneurosci.16-13-04275.1996
[24] D’Argembeau, A., Collette, F., Van der Linden, M., Laureys, S., Del Fiore, G., Degueldre, C., et al. (2005) Self-Referential Reflective Activity and Its Relationship with Rest: A PET Study. NeuroImage, 25, 616-624.
https://doi.org/10.1016/j.neuroimage.2004.11.048
[25] Heatherton, T.F., Wyland, C.L., Macrae, C.N., Demos, K.E., Denny, B.T. and Kelley, W.M. (2006) Medial Prefrontal Activity Differentiates Self from Close Others. Social Cognitive and Affective Neuroscience, 1, 18-25.
https://doi.org/10.1093/scan/nsl001
[26] Schmitz, T.W., Kawahara-Baccus, T.N. and Johnson, S.C. (2004) Metacognitive Evaluation, Self-Relevance, and the Right Prefrontal Cortex. NeuroImage, 22, 941-947.
https://doi.org/10.1016/j.neuroimage.2004.02.018
[27] Lin, Y., Callahan, C.P. and Moser, J.S. (2018) A Mind Full of Self: Self-Referential Processing as a Mechanism Underlying the Therapeutic Effects of Mindfulness Training on Internalizing Disorders. Neuroscience & Biobehavioral Reviews, 92, 172-186.
https://doi.org/10.1016/j.neubiorev.2018.06.007
[28] Ruby, P. and Decety, J. (2003) What You Believe versus What You Think They Believe: A Neuroimaging Study of Conceptual Perspective‐Taking. European Journal of Neuroscience, 17, 2475-2480.
https://doi.org/10.1046/j.1460-9568.2003.02673.x
[29] Völlm, B.A., Taylor, A.N.W., Richardson, P., Corcoran, R., Stirling, J., McKie, S., et al. (2006) Neuronal Correlates of Theory of Mind and Empathy: A Functional Magnetic Resonance Imaging Study in a Nonverbal Task. NeuroImage, 29, 90-98.
https://doi.org/10.1016/j.neuroimage.2005.07.022
[30] Wurm, M.F., von Cramon, D.Y. and Schubotz, R.I. (2011) Do We Mind Other Minds When We Mind Other Minds’ Actions? A Functional Magnetic Resonance Imaging Study. Human Brain Mapping, 32, 2141-2150.
https://doi.org/10.1002/hbm.21176
[31] Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K. and Fox, P.T. (2009) Coordinate‐Based Activation Likelihood Estimation Meta‐Analysis of Neuroimaging Data: A Random‐Effects Approach Based on Empirical Estimates of Spatial Uncertainty. Human Brain Mapping, 30, 2907-2926.
https://doi.org/10.1002/hbm.20718
[32] Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., et al. (2005) ALE Meta‐Analysis: Controlling the False Discovery Rate and Performing Statistical Contrasts. Human Brain Mapping, 25, 155-164.
https://doi.org/10.1002/hbm.20136
[33] Turkeltaub, P.E., Eden, G.F., Jones, K.M. and Zeffiro, T.A. (2002) Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation. NeuroImage, 16, 765-780.
https://doi.org/10.1006/nimg.2002.1131
[34] Hutchinson, M., Schiffer, W., Joseffer, S., Liu, A., Schlosser, R., Dikshit, S., et al. (1999) Task-Specific Deactivation Patterns in Functional Magnetic Resonance Imaging. Magnetic Resonance Imaging, 17, 1427-1436.
https://doi.org/10.1016/s0730-725x(99)00093-4
[35] Lindquist, K.A., Satpute, A.B., Wager, T.D., Weber, J. and Barrett, L.F. (2015) The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cerebral Cortex, 26, 1910-1922.
https://doi.org/10.1093/cercor/bhv001
[36] Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015) Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Systematic Reviews, 4, Article No. 1.
https://doi.org/10.1186/2046-4053-4-1
[37] Laird, A.R., et al. (2011) The BrainMap Strategy for Standardization, Sharing, and Meta-Analysis of Neuroimaging Data. BMC Research Notes, 4, Article No. 3490.
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-349
[38] Caspers, S., Zilles, K., Laird, A.R. and Eickhoff, S.B. (2010) ALE Meta-Analysis of Action Observation and Imitation in the Human Brain. NeuroImage, 50, 1148-1167.
https://doi.org/10.1016/j.neuroimage.2009.12.112
[39] Fitzgerald, P.B., Laird, A.R., Maller, J. and Daskalakis, Z.J. (2007) A Meta‐Analytic Study of Changes in Brain Activation in Depression. Human Brain Mapping, 29, 683-695.
https://doi.org/10.1002/hbm.20426
[40] Sabatinelli, D., Fortune, E.E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W.T., et al. (2011) Emotional Perception: Meta-Analyses of Face and Natural Scene Processing. NeuroImage, 54, 2524-2533.
https://doi.org/10.1016/j.neuroimage.2010.10.011
[41] Eickhoff, S.B., Bzdok, D., Laird, A.R., Roski, C., Caspers, S., Zilles, K., et al. (2011) Co-Activation Patterns Distinguish Cortical Modules, Their Connectivity and Functional Differentiation. NeuroImage, 57, 938-949.
https://doi.org/10.1016/j.neuroimage.2011.05.021
[42] Etkin, A., Egner, T., Peraza, D.M., Kandel, E.R. and Hirsch, J. (2006) Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activity in the Amygdala. Neuron, 51, 871-882.
https://doi.org/10.1016/j.neuron.2006.07.029
[43] Amodio, D.M. and Frith, C.D. (2006) Meeting of Minds: The Medial Frontal Cortex and Social Cognition. Nature Reviews Neuroscience, 7, 268-277.
https://doi.org/10.1038/nrn1884
[44] Bush, G., Luu, P. and Posner, M.I. (2000) Cognitive and Emotional Influences in Anterior Cingulate Cortex. Trends in Cognitive Sciences, 4, 215-222.
https://doi.org/10.1016/s1364-6613(00)01483-2
[45] Kanske, P. and Kotz, S.A. (2010) Emotion Triggers Executive Attention: Anterior Cingulate Cortex and Amygdala Responses to Emotional Words in a Conflict Task. Human Brain Mapping, 32, 198-208.
https://doi.org/10.1002/hbm.21012
[46] Moran, N., Kiernan, A., Dunne, E., Edwards, R.J., Shields, D.C. and Kenny, D. (2006) Monitoring Modulators of Platelet Aggregation in a Microtiter Plate Assay. Analytical Biochemistry, 357, 77-84.
https://doi.org/10.1016/j.ab.2006.06.037
[47] Carter, C.S. and van Veen, V. (2007) Anterior Cingulate Cortex and Conflict Detection: An Update of Theory and Data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367-379.
https://doi.org/10.3758/cabn.7.4.367
[48] Christoff, K., Cosmelli, D., Legrand, D. and Thompson, E. (2011) Specifying the Self for Cognitive Neuroscience. Trends in Cognitive Sciences, 15, 104-112.
https://doi.org/10.1016/j.tics.2011.01.001
[49] Mason, R.A. and Just, M.A. (2009) The Role of the Theory‐of‐Mind Cortical Network in the Comprehension of Narratives. Language and Linguistics Compass, 3, 157-174.
https://doi.org/10.1111/j.1749-818x.2008.00122.x
[50] Northoff, G. and Bermpohl, F. (2004) Cortical Midline Structures and the Self. Trends in Cognitive Sciences, 8, 102-107.
https://doi.org/10.1016/j.tics.2004.01.004
[51] Zysset, S., Huber, O., Ferstl, E. and von Cramon, D.Y. (2002) The Anterior Frontomedian Cortex and Evaluative Judgment: An fMRI Study. NeuroImage, 15, 983-991.
https://doi.org/10.1006/nimg.2001.1008
[52] Pfeifer, J.H., Lieberman, M.D. and Dapretto, M. (2007) “I Know You Are but What Am I?!”: Neural Bases of Self-and Social Knowledge Retrieval in Children and Adults. Journal of Cognitive Neuroscience, 19, 1323-1337.
https://doi.org/10.1162/jocn.2007.19.8.1323
[53] Lieberman, M.D. (2007) Social Cognitive Neuroscience: A Review of Core Processes. Annual Review of Psychology, 58, 259-289.
https://doi.org/10.1146/annurev.psych.58.110405.085654