[1]
|
Li, Z., Zhu, S., Gao, S., He, Y., Ding, H., Yang, D., et al. (2024) Fireproof Solid Polymer Electrolyte with Chemically Bonded Phosphorus toward Stable and Safe Lithium-Metal Battery. Advanced Functional Materials, 34, Article 2409836. https://doi.org/10.1002/adfm.202409836
|
[2]
|
Zhang, H., Xu, H., Xiao, Z., Dong, G., Cheng, Y., Fei, F., et al. (2024) Nanowires for Solid-State Lithium Batteries. Advanced Functional Materials, 35, Article 2412548. https://doi.org/10.1002/adfm.202412548
|
[3]
|
Chen, W., Wang, K., Li, Y., Chen, J., Wang, H., Li, L., et al. (2024) Minimize the Electrode Concentration Polarization for High-Power Lithium Batteries. Advanced Functional Materials, 34, Article 2410926. https://doi.org/10.1002/adfm.202410926
|
[4]
|
Liang, H., Wang, L., Wang, A., Song, Y., Wu, Y., Yang, Y., et al. (2023) Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, 15, Article No. 42. https://doi.org/10.1007/s40820-022-00996-1
|
[5]
|
Kalnaus, S., Dudney, N.J., Westover, A.S., Herbert, E. and Hackney, S. (2023) Solid-State Batteries: The Critical Role of Mechanics. Science, 381, eabg5998. https://doi.org/10.1126/science.abg5998
|
[6]
|
Yu, T., Liu, Y., Li, H., Sun, Y., Guo, S. and Zhou, H. (2025) Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries. Chemical Reviews, 125, 3595-3662. https://doi.org/10.1021/acs.chemrev.4c00894
|
[7]
|
Guo, Z., Zhao, H., Xiao, Y., Liang, S., Zhang, X., Wang, N., et al. (2025) Recent Progress of Thin Solid-State Electrolytes and Applications for Solid-State Lithium Pouch Cells. Materials Today Energy, 48, Article 101801. https://doi.org/10.1016/j.mtener.2025.101801
|
[8]
|
Feng, J., Wang, Y., Xu, Y., Sun, Y., Tang, Y. and Yan, X. (2021) Ion Regulation of Ionic Liquid Electrolytes for Supercapacitors. Energy & Environmental Science, 14, 2859-2882. https://doi.org/10.1039/d0ee04002a
|
[9]
|
Liu, X., Mariani, A., Diemant, T., Di Pietro, M.E., Dong, X., Mele, A., et al. (2023) Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes. Advanced Materials, 36, Article 2309062. https://doi.org/10.1002/adma.202309062
|
[10]
|
He, H., Wang, L., Al-Abbasi, M., Cao, C., Li, H., Xu, Z., et al. (2024) Interface Engineering on Constructing Physical and Chemical Stable Solid-State Electrolyte toward Practical Lithium Batteries. Energy & Environmental Materials, 7, e12699. https://doi.org/10.1002/eem2.12699
|
[11]
|
Zhou, M., Liu, W., Su, Q., Zeng, J., Jiang, X., Wu, X., et al. (2024) Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries. ACS Nano, 18, 32959-32972. https://doi.org/10.1021/acsnano.4c13203
|
[12]
|
Zhang, S., Wu, S., Hwang, J., Matsumoto, K. and Hagiwara, R. (2024) Unprotected Organic Cations—The Dilemma of Highly Li-Concentrated Ionic Liquid Electrolytes. Journal of the American Chemical Society, 146, 8352-8361. https://doi.org/10.1021/jacs.3c14110
|
[13]
|
Zhang, S., Sun, Q., Martínez-Alanis, P.R., Chen, G., Li, J., Zeng, G., et al. (2025) Towards Flame Retardant High-Performance Solid-State Lithium Metal Batteries: Poly (Ionic Liquid)-Based Lithiophilic Ion-Conductive Interfaces and Humidity Tolerant Binders. Nano Energy, 133, Article 110424. https://doi.org/10.1016/j.nanoen.2024.110424
|
[14]
|
Tang, X., Lv, S., Jiang, K., Zhou, G. and Liu, X. (2022) Recent Development of Ionic Liquid-Based Electrolytes in Lithium-Ion Batteries. Journal of Power Sources, 542, Article 231792. https://doi.org/10.1016/j.jpowsour.2022.231792
|
[15]
|
Ma, X., Yu, J., Hu, Y., Texter, J. and Yan, F. (2023) Ionic Liquid/Poly (Ionic Liquid)-Based Electrolytes for Lithium Batteries. Industrial Chemistry & Materials, 1, 39-59. https://doi.org/10.1039/d2im00051b
|
[16]
|
Xu, F., Tian, B., Cui, K., Liu, M., Yao, Y., Li, H., et al. (2024) Fortified Lubricating Response to Sustainable PEG System from Protic Ionic Liquid and Their Strong Hydrogen Bonding Network. ACS Sustainable Chemistry & Engineering, 12, 5343-5355. https://doi.org/10.1021/acssuschemeng.4c00798
|
[17]
|
Wang, D., Jin, B., Chen, S., Ren, Y., Hou, Y., Gao, X., et al. (2023) Ionic Liquid Modified Carbon Nanotubes Doped Gel Polymer Electrolyte for Fast Charging Lithium Metal Batteries. Journal of Power Sources, 564, Article 232847. https://doi.org/10.1016/j.jpowsour.2023.232847
|
[18]
|
Kondou, S., Abdullah, M., Popov, I., Martins, M.L., O’Dell, L.A., Ueda, H., et al. (2024) Poly (Ionic Liquid) Electrolytes at an Extreme Salt Concentration for Solid-State Batteries. Journal of the American Chemical Society, 146, 33169-33178. https://doi.org/10.1021/jacs.4c12616
|
[19]
|
Huninik, P., Szyling, J., Czapik, A. and Walkowiak, J. (2023) Organocatalytic Hydroboration of Olefins in Pyrrolidinium Ionic Liquids. Green Chemistry, 25, 3715-3722. https://doi.org/10.1039/d2gc04163d
|
[20]
|
Balo, L., Gupta, H., Singh, S.K., Singh, V.K., Kataria, S. and Singh, R.K. (2018) Performance of EMIMFSI Ionic Liquid Based Gel Polymer Electrolyte in Rechargeable Lithium Metal Batteries. Journal of Industrial and Engineering Chemistry, 65, 137-145. https://doi.org/10.1016/j.jiec.2018.04.022
|
[21]
|
Choi, Y.G., Shin, J.C., Park, A., Jeon, Y.M., Kim, J.I., Kim, S., et al. (2021) Pyrrolidinium-Peg Ionic Copolyester: Li-Ion Accelerator in Polymer Network Solid-State Electrolytes. Advanced Energy Materials, 11, Article 2102660. https://doi.org/10.1002/aenm.202102660
|
[22]
|
Liang, L., Yuan, W., Chen, X. and Liao, H. (2021) Flexible, Nonflammable, Highly Conductive and High-Safety Double Cross-Linked Poly (Ionic Liquid) as Quasi-Solid Electrolyte for High Performance Lithium-Ion Batteries. Chemical Engineering Journal, 421, Article 130000. https://doi.org/10.1016/j.cej.2021.130000
|
[23]
|
Huang, W., Bi, Z., Zhao, N., Sun, Q. and Guo, X. (2021) Chemical Interface Engineering of Solid Garnet Batteries for Long-Life and High-Rate Performance. Chemical Engineering Journal, 424, Article 130423. https://doi.org/10.1016/j.cej.2021.130423
|
[24]
|
Wang, X., Wang, Y., Wu, Y., Fan, Y. and Tian, Y. (2023) Dual-Interlayers Constructed by Ti3C2Tx/Ionic-Liquid for Enhanced Performance of Solid Garnet Batteries. Journal of Energy Chemistry, 78, 47-55. https://doi.org/10.1016/j.jechem.2022.11.052
|
[25]
|
Pervez, S.A., Kim, G., Vinayan, B.P., Cambaz, M.A., Kuenzel, M., Hekmatfar, M., et al. (2020) Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small, 16, Article 2000279. https://doi.org/10.1002/smll.202000279
|
[26]
|
Xie, Z., Wu, Z., An, X., Yoshida, A., Wang, Z., Hao, X., et al. (2019) Bifunctional Ionic Liquid and Conducting Ceramic Co-Assisted Solid Polymer Electrolyte Membrane for Quasi-Solid-State Lithium Metal Batteries. Journal of Membrane Science, 586, 122-129. https://doi.org/10.1016/j.memsci.2019.05.066
|
[27]
|
Qin, S., Cao, Y., Zhang, J., Ren, Y., Sun, C., Zhang, S., et al. (2023) Polymer Dispersed Ionic Liquid Electrolytes with High Ionic Conductivity for Ultrastable Solid-State Lithium Batteries. Carbon Energy, 5, e316. Https://doi.org/10.1002/cey2.316
|
[28]
|
Chen, B., Xu, K., Tang, L., Li, Q., Chen, Q. and Chen, L. (2024) In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries. ACS Energy Letters, 10, 305-312. https://doi.org/10.1021/acsenergylett.4c02430
|
[29]
|
Appetecchi, G.B., Kim, G., Montanino, M., Carewska, M., Marcilla, R., Mecerreyes, D., et al. (2010) Ternary Polymer Electrolytes Containing Pyrrolidinium-Based Polymeric Ionic Liquids for Lithium Batteries. Journal of Power Sources, 195, 3668-3675. https://doi.org/10.1016/j.jpowsour.2009.11.146
|
[30]
|
Kim, H.W., Manikandan, P., Lim, Y.J., Kim, J.H., Nam, S. and Kim, Y. (2016) Hybrid Solid Electrolyte with the Combination of Li7La3Zr2O12 Ceramic and Ionic Liquid for High Voltage Pseudo-Solid-State Li-Ion Batteries. Journal of Materials Chemistry A, 4, 17025-17032. https://doi.org/10.1039/c6ta07268b
|
[31]
|
Wu, J. and Guo, X. (2019) Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small, 15, Article 1804413. https://doi.org/10.1002/smll.201804413
|
[32]
|
Yang, P., Wu, Z., Li, M., Zhang, C., Wang, Y., Zhu, Y., et al. (2024) Multifunctional Nanocomposite Polymer-Integrated Ca-Doped CeO2 Electrolyte for Robust and High-Rate All-Solid-State Sodium-Ion Batteries. Angewandte Chemie International Edition, 64, e202417778. https://doi.org/10.1002/anie.202417778
|
[33]
|
Lin, X., Zhang, S., Yang, M., Xiao, B., Zhao, Y., Luo, J., et al. (2024) A Family of Dual-Anion-Based Sodium Superionic Conductors for All-Solid-State Sodium-Ion Batteries. Nature Materials, 24, 83-91. https://doi.org/10.1038/s41563-024-02011-x
|
[34]
|
Xiang, L., Gao, Y., Ding, Y., Li, X., Jiang, D., Wu, C., et al. (2024) Self-Forming Na3P/Na2O Interphase on a Novel Biphasic Na3Zr2Si2PO12/Na3PO4 Solid Electrolyte for Long-Cycling Solid-State Na-Metal Batteries. Energy Storage Materials, 73, Article 103831. https://doi.org/10.1016/j.ensm.2024.103831
|
[35]
|
Song, S., Kotobuki, M., Zheng, F., Xu, C., Savilov, S.V., Hu, N., et al. (2017) A Hybrid Polymer/Oxide/Ionic-Liquid Solid Electrolyte for Na-Metal Batteries. Journal of Materials Chemistry A, 5, 6424-6431. https://doi.org/10.1039/c6ta11165c
|
[36]
|
Kumar, D. and Hashmi, S.A. (2010) Ionic Liquid-Based Sodium Ion Conducting Gel Polymer Electrolytes. Solid State Ionics, 181, 416-423. https://doi.org/10.1016/j.ssi.2010.01.025
|
[37]
|
Wang, D., Takiyama, M., Hwang, J., Matsumoto, K. and Hagiwara, R. (2023) A Hexafluorophosphate-Based Ionic Liquid as Multifunctional Interfacial Layer between high Voltage Positive Electrode and Solid-State Electrolyte for Sodium Secondary Batteries. Advanced Energy Materials, 13, Article 2301020. https://doi.org/10.1002/aenm.202301020
|
[38]
|
Li, Z., Li, B., Yu, C., Wang, H. and Li, Q. (2023) Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. Advanced Science, 10, Article 2206605. https://doi.org/10.1002/advs.202206605
|
[39]
|
Chen, Y., Wang, X., Wang, H., Fu, M. and Yang, H. (2025) Design and Implementation of a Dual-Mode Supercapacitor fast Charger Employing Continuous and Fine-Tuned Pulse Currents. In: IEEE Transactions on Circuits and Systems I: Regular Papers, Institute of Electrical and Electronics Engineers Inc., 1-12.
|
[40]
|
Sun, Y., Li, T., Liu, X., Liu, Y., Zada, A., Han, Y., Han, Y., Chen, J. and Dang, A. (2025) Exceptional Suppression of the Self-Discharge Behavior of Supercapacitors by Precisely Tuning the Surface Assets of MXene by a Spontaneous Single-Atom Doping Strategy. Nano Letters, 25, 3875-3882.
|
[41]
|
Ayalneh Tiruye, G., Muñoz-Torrero, D., Palma, J., Anderson, M. and Marcilla, R. (2015) All-Solid-State Supercapacitors Operating at 3.5 V by Using Ionic Liquid-Based Polymer Electrolytes. Journal of Power Sources, 279, 472-480. https://doi.org/10.1016/j.jpowsour.2015.01.039
|
[42]
|
Tu, Q.M., Fan, L.Q., Pan, F., Huang, J.L., Gu, Y., Lin, J.M., Huang, M.L., Huang, Y.F. and Wu, J.H. (2018) Design of a Novel Redox-Active Gel Polymer Electrolyte with a Dual-Role Ionic Liquid for Flexible Supercapacitors. Electrochimica Acta, 268, 562-568. https://doi.org/10.1016/j.electacta.2018.02.008
|
[43]
|
Tang, W., Dong, K., Chen, Z., Duan, Y., Sun, Q., Li, X., Zhai, D., Lv, T. and Chen, T. (2024) A Microphase-Separation Ion-Gel Electrolyte for Highly Stretchable All-Solid-State Supercapacitors. Chemical Engineering Journal, 501, Article 157726. https://doi.org/10.1016/j.cej.2024.157726
|