[1]
|
Brus, L.E. (1984) Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. The Journal of Chemical Physics, 80, 4403-4409. https://doi.org/10.1063/1.447218
|
[2]
|
Miller, E.M., Kroupa, D.M., Zhang, J., Schulz, P., Marshall, A.R., Kahn, A., et al. (2016) Revisiting the Valence and Conduction Band Size Dependence of Pbs Quantum Dot Thin Films. ACS Nano, 10, 3302-3311. https://doi.org/10.1021/acsnano.5b06833
|
[3]
|
Cuharuc, A.S., Kulyuk, L.L., Lascova, R.I., Mitioglu, A.A. and Dikusar, A.I. (2012) Electrochemical Characterization of Pbs Quantum Dots Capped with Oleic Acid and Pbs Thin Films—A Comparative Study. Surface Engineering and Applied Electrochemistry, 48, 193-211. https://doi.org/10.3103/s1068375512030040
|
[4]
|
Ahn, Y., Eom, S.Y., Kim, G., Lee, J.H., Kim, B., Kim, D., et al. (2024) Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector. Advanced Science, 11, Article ID: 2407453. https://doi.org/10.1002/advs.202407453
|
[5]
|
Babu, K.S., Vijayan, C. and Devanathan, R. (2004) Strong Quantum Confinement Effects in Polymer-Based Pbs Nanostructures Prepared by Ion-Exchange Method. Materials Letters, 58, 1223-1226. https://doi.org/10.1016/j.matlet.2003.09.012
|
[6]
|
Fan, J.Z., Vafaie, M., Bertens, K., Sytnyk, M., Pina, J.M., Sagar, L.K., et al. (2020) Micron Thick Colloidal Quantum Dot Solids. Nano Letters, 20, 5284-5291. https://doi.org/10.1021/acs.nanolett.0c01614
|
[7]
|
Hillhouse, H.W. and Beard, M.C. (2009) Solar Cells from Colloidal Nanocrystals: Fundamentals, Materials, Devices, and Economics. Current Opinion in Colloid & Interface Science, 14, 245-259. https://doi.org/10.1016/j.cocis.2009.05.002
|
[8]
|
Son, J., Choi, D., Park, M., Kim, J. and Jeong, K.S. (2020) Transformation of Colloidal Quantum Dot: From Intraband Transition to Localized Surface Plasmon Resonance. Nano Letters, 20, 4985-4992. https://doi.org/10.1021/acs.nanolett.0c01080
|
[9]
|
Kagan, C.R. (2019) Flexible Colloidal Nanocrystal Electronics. Chemical Society Reviews, 48, 1626-1641. https://doi.org/10.1039/c8cs00629f
|
[10]
|
Kim, J.Y., Voznyy, O., Zhitomirsky, D. and Sargent, E.H. (2013) 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐century of Advances. Advanced Materials, 25, 4986-5010. https://doi.org/10.1002/adma.201301947
|
[11]
|
Maximov, M.V., Nadtochiy, A.M., Mintairov, S.A., Kalyuzhnyy, N.A., Kryzhanovskaya, N.V., Moiseev, E.I., et al. (2020) Light Emitting Devices Based on Quantum Well-dots. Applied Sciences, 10, Article 1038. https://doi.org/10.3390/app10031038
|
[12]
|
Zhang, N., Tang, H., Shi, K., Wang, W., Deng, W., Xu, B., et al. (2019) High-Performance All-Solution-Processed Quantum Dot Near-Infrared-to-Visible Upconversion Devices for Harvesting Photogenerated Electrons. Applied Physics Letters, 115, Article ID: 221103. https://doi.org/10.1063/1.5124735
|
[13]
|
Meinardi, F., Bruni, F. and Brovelli, S. (2017) Luminescent Solar Concentrators for Building-Integrated Photovoltaics. Nature Reviews Materials, 2, Article No. 17072. https://doi.org/10.1038/natrevmats.2017.72
|
[14]
|
Park, Y., Roh, J., Diroll, B.T., Schaller, R.D. and Klimov, V.I. (2021) Colloidal Quantum Dot Lasers. Nature Reviews Materials, 6, 382-401. https://doi.org/10.1038/s41578-020-00274-9
|
[15]
|
Ji, C., Zhang, Y., Zhang, T., Liu, W., Zhang, X., Shen, H., et al. (2015) Temperature-Dependent Photoluminescence of Ag2se Quantum Dots. The Journal of Physical Chemistry C, 119, 13841-13846. https://doi.org/10.1021/acs.jpcc.5b01030
|
[16]
|
Xue, X., Chen, M., Luo, Y., Qin, T., Tang, X. and Hao, Q. (2023) High-Operating-Temperature Mid-Infrared Photodetectors via Quantum Dot Gradient Homojunction. Light: Science & Applications, 12, Article No. 2. https://doi.org/10.1038/s41377-022-01014-0
|
[17]
|
Zhang, Y., Liu, B., Liu, Z. and Li, J. (2022) Research Progress in the Synthesis and Biological Application of Quantum Dots. New Journal of Chemistry, 46, 20515-20539. https://doi.org/10.1039/d2nj02603a
|
[18]
|
Hafiz, S.B., Al Mahfuz, M.M., Scimeca, M.R., Lee, S., Oh, S.J., Sahu, A., et al. (2020) Ligand Engineering of Mid-Infrared Ag2Se Colloidal Quantum Dots. Physica E: Low-Dimensional Systems and Nanostructures, 124, Article ID: 114223. https://doi.org/10.1016/j.physe.2020.114223
|
[19]
|
Kagan, C.R., Lifshitz, E., Sargent, E.H. and Talapin, D.V. (2016) Building Devices from Colloidal Quantum Dots. Science, 353, aac5523. https://doi.org/10.1126/science.aac5523
|
[20]
|
Yang, H., Li, R., Zhang, Y., Yu, M., Wang, Z., Liu, X., et al. (2021) Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window. Journal of the American Chemical Society, 143, 2601-2607. https://doi.org/10.1021/jacs.0c13071
|
[21]
|
Cibert, J., Petroff, P.M., Dolan, G.J., Pearton, S.J., Gossard, A.C. and English, J.H. (1986) Optically Detected Carrier Confinement to One and Zero Dimension in Gaas Quantum Well Wires and Boxes. Applied Physics Letters, 49, 1275-1277. https://doi.org/10.1063/1.97384
|
[22]
|
Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J.C. and Hens, Z. (2011) Size-Tunable, Bright, and Stable Pbs Quantum Dots: A Surface Chemistry Study. ACS Nano, 5, 2004-2012. https://doi.org/10.1021/nn103050w
|
[23]
|
Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., et al. (2011) Colloidal-Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nature Materials, 10, 765-771. https://doi.org/10.1038/nmat3118
|
[24]
|
Ba, K. and Wang, J. (2022) Advances in Solution-Processed Quantum Dots Based Hybrid Structures for Infrared Photodetector. Materials Today, 58, 119-134. https://doi.org/10.1016/j.mattod.2022.07.011
|
[25]
|
Tamang, S., Lincheneau, C., Hermans, Y., Jeong, S. and Reiss, P. (2016) Chemistry of INP Nanocrystal Syntheses. Chemistry of Materials, 28, 2491-2506. https://doi.org/10.1021/acs.chemmater.5b05044
|
[26]
|
Wang, F., Richards, V.N., Shields, S.P. and Buhro, W.E. (2013) Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chemistry of Materials, 26, 5-21. https://doi.org/10.1021/cm402139r
|
[27]
|
Qu, J., Goubet, N., Livache, C., Martinez, B., Amelot, D., Gréboval, C., et al. (2018) Intraband Mid-Infrared Transitions in Ag2Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection. The Journal of Physical Chemistry C, 122, 18161-18167. https://doi.org/10.1021/acs.jpcc.8b05699
|
[28]
|
Tang, H., Zhong, J., Chen, W., Shi, K., Mei, G., Zhang, Y., et al. (2019) Lead Sulfide Quantum Dot Photodetector with Enhanced Responsivity through a Two-Step Ligand-Exchange Method. ACS Applied Nano Materials, 2, 6135-6143. https://doi.org/10.1021/acsanm.9b00889
|
[29]
|
Yang, H., Ma, Z. and Wang, Q. (2024) Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices. ACS Nano, 18, 30123-30131. https://doi.org/10.1021/acsnano.4c11787
|
[30]
|
Zhang, H., Zhang, Y., Song, X., Yu, Y., Cao, M., Che, Y., et al. (2017) Highly Photosensitive Vertical Phototransistors Based on a Poly(3-Hexylthiophene) and PbS Quantum Dot Layered Heterojunction. ACS Photonics, 4, 584-592. https://doi.org/10.1021/acsphotonics.6b00896
|
[31]
|
Kim, M., Han, C., Yang, H. and Park, B. (2019) Band to Band Tunneling at the Zinc Oxide (ZnO) and Lead Selenide (PbSe) Quantum Dot Contact; Interfacial Charge Transfer at a ZnO/PbSe/ZnO Probe Device. Materials, 12, Article 2289. https://doi.org/10.3390/ma12142289
|
[32]
|
Tang, X., Ackerman, M.M., Chen, M. and Guyot-Sionnest, P. (2019) Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nature Photonics, 13, 277-282. https://doi.org/10.1038/s41566-019-0362-1
|
[33]
|
Zhang, Y., Li, Y., Xin, X., Wang, Y., Guo, P., Wang, R., et al. (2023) Internal Quantum Efficiency Higher than 100% Achieved by Combining Doping and Quantum Effects for Photocatalytic Overall Water Splitting. Nature Energy, 8, 504-514. https://doi.org/10.1038/s41560-023-01242-7
|
[34]
|
Ning, Z., Voznyy, O., Pan, J., Hoogland, S., Adinolfi, V., Xu, J., et al. (2014) Air-Stable N-Type Colloidal Quantum Dot Solids. Nature Materials, 13, 822-828. https://doi.org/10.1038/nmat4007
|
[35]
|
Lachance-Quirion, D., Tremblay, S., Lamarre, S.A., Méthot, V., Gingras, D., Camirand Lemyre, J., et al. (2014) Telegraphic Noise in Transport through Colloidal Quantum Dots. Nano Letters, 14, 882-887. https://doi.org/10.1021/nl404247e
|
[36]
|
Song, J.H., Choi, H., Pham, H.T. and Jeong, S. (2018) Energy Level Tuned Indium Arsenide Colloidal Quantum Dot Films for Efficient Photovoltaics. Nature Communications, 9, Article No. 4267. https://doi.org/10.1038/s41467-018-06399-4
|
[37]
|
Choi, M., Kim, M., Lee, Y., Kim, T., Kim, J.H., Shin, D., et al. (2023) Tailored Band Edge Positions by Fractional Ligand Replacement of Nonconductive Colloidal Quantum Dot Films. The Journal of Physical Chemistry C, 127, 4825-4832. https://doi.org/10.1021/acs.jpcc.3c00376
|
[38]
|
Boles, M.A., Ling, D., Hyeon, T. and Talapin, D.V. (2016) Erratum: The Surface Science of Nanocrystals. Nature Materials, 15, 364-364. https://doi.org/10.1038/nmat4578
|
[39]
|
Ip, A.H., Kiani, A., Kramer, I.J., Voznyy, O., Movahed, H.F., Levina, L., et al. (2015) Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. ACS Nano, 9, 8833-8842. https://doi.org/10.1021/acsnano.5b02164
|
[40]
|
Lan, X., Chen, M., Hudson, M.H., Kamysbayev, V., Wang, Y., Guyot-Sionnest, P., et al. (2020) Quantum Dot Solids Showing State-Resolved Band-Like Transport. Nature Materials, 19, 323-329. https://doi.org/10.1038/s41563-019-0582-2
|
[41]
|
Hafiz, S.B., Al Mahfuz, M.M. and Ko, D. (2020) Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. ACS Applied Materials & Interfaces, 13, 937-943. https://doi.org/10.1021/acsami.0c19450
|
[42]
|
Hafiz, S.B., Al Mahfuz, M.M., Lee, S. and Ko, D. (2021) Midwavelength Infrared P-N Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS Applied Materials & Interfaces, 13, 49043-49049. https://doi.org/10.1021/acsami.1c14749
|
[43]
|
Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., et al. (2014) Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano, 8, 5863-5872. https://doi.org/10.1021/nn500897c
|
[44]
|
Kroupa, D.M., Vörös, M., Brawand, N.P., McNichols, B.W., Miller, E.M., Gu, J., et al. (2017) Tuning Colloidal Quantum Dot Band Edge Positions through Solution-Phase Surface Chemistry Modification. Nature Communications, 8, Article No. 15257. https://doi.org/10.1038/ncomms15257
|