红外胶体量子点研究进展
Research Progress of Infrared Colloidal Quantum Dots
摘要: 胶体量子点由于其具有独特的量子效应,易于在多种衬底上沉积成为新一代红外探测的理想材料,被广泛应用于红外激光器、光通信、生物成像、夜视和遥感等领域。如何开发高工作效率的红外量子点器件是目前研究的热点。在本项工作中,综述了胶体量子点的制备方法、成核理论和器件制作方法,并且从量子点配体交换,改变量子点的表面配体影响其能带位置,从器件的能带结构入手提出选择合适配体构建能带结构,达到提升红外胶体量子点器件工作性能的目的,为红外胶体量子点的应用和器件设计具有重要的意义。
Abstract: Because of its unique quantum effect, colloidal quantum dots are easy to be deposited on a variety of substrates and become an ideal material for a new generation of infrared detection, which is widely used in infrared lasers, optical communication, biological imaging, night vision and remote sensing. How to develop infrared quantum dot devices with high working efficiency is the focus of current research. In this work, the preparation methods, nucleation theory and device fabrication methods of colloidal quantum dots are reviewed, and the energy band position is affected by the change of the surface ligands of the quantum dots through the ligand exchange of quantum dots, and the energy band structure of the device is proposed to select suitable ligands to construct the energy band structure, so as to improve the working performance of the infrared colloidal quantum dot device. It is of great significance for the application and device design of infrared colloidal quantum dots.
文章引用:陶建庆, 房丹, 闫昊, 楚学影, 翟英娇, 王晓华, 李金华. 红外胶体量子点研究进展[J]. 材料科学, 2025, 15(4): 879-888. https://doi.org/10.12677/ms.2025.154092

1. 引言

胶体量子点自被开发以来,已经在多个领域得到了应用,具有巨大的潜力和发展前景,引起了人们极大的兴趣。1983年,美国贝尔实验室Louis Brus注意到水溶液中储存的CdS样品光学吸收有时会发生变化,分析这种变化是由样品尺寸不同造成的,开启了对量子点的研究。量子点具有多种宏观传统半导体材料所不具备的性质,如:量子尺寸效应[1] [2]、量子遂穿效应[3]、库伦阻塞效应[4]、表面效应[5]、介电限域效应[6]、多激子效应[7] [8]。胶体量子点因其易于溶液处理、低成本制造、能够在多种衬底上沉积的特性而成为新一代红外探测的理想材料,已成功地应用于激光器、光通信、生物成像、夜视、光学、监视和遥感等领域[4] [9]-[17]。在量子点的合成过程中,为了使量子点在溶液中保持单一分散,会在其表面引入长链配体,长链配体的引入会导致量子点的载流子迁移率下降,在量子点红外器件制备过程中需要进行配体交换,使用短链配体取代量子点表面的长链配体[18]-[20],配体的改变会影响量子点的多种物理性质。

2. 量子点的合成方法

2.1. 制备方法

Figure 1. (a) Nanometer islands were deposited layer by layer by molecular beam epitaxy (b) quantum dots were synthesized by chemical solution [22]

1. (a) 以分子束外延技术逐层沉积纳米岛 (b) 化学溶液法合成量子点[22]

量子点的制备主要有两种方法:外延生长法和化学溶液生长法。见图1,外延生长法是在衬底上生长结晶,如果结晶尺寸足够小,就会形成量子点,不需要在表面额外加有机配体,因此外延生长量子点的载流子迁移率高于化学溶液生长法。化学溶液生长法,1993年,Bawendi [1] [21]教授团队首次在有机溶剂中合成了大小均一的量子点,将三种氧族元素(硫、硒、碲)溶解在三正辛基氧膦中,在200℃~300℃时,与有机溶液中的二甲基镉反应,生成了量子点材料。在此基础上研究人员发明了其他胶体量子点合成的方法,大部分胶体量子点材料都可以使用化学溶液生长法合成。

自上而下的方法依赖光刻或其他蚀刻方法来使半导体达到纳米尺寸[21] [23]。在自下而上的合成方法中,量子点生长通过遵循由内部应变驱动的原子或分子构件的Stranski-Krastanov (S-K)生长模式,MBE和MoCVD使得在晶体衬底上制备高质量外延量子点成为可能[6] [19]。化学溶液生长法可以追溯至1993年引入的热注入法[24]。量子点的合成方法从早期的水中沉淀发展至在现在在温和温度下(100℃~350℃)利用有机溶剂分子前驱体之间的反应合成。

2.2. 量子点生长机理

对于量子点的合成技术,必然要提到成核和生长过程。目前对于量子点的成核和生长认可度最高的是LaMer理论[25]和Ostwald熟化过程[26]。LaMer理论生长纳米粒子的机制如图2(a)所示,该图假设发生了一个产生单体的化学反应,使得单体浓度在时区I稳步上升,并在时区II超过成核的阈值浓度。成核和随后的生长使单体浓度降低到成核阈值以下,这导致了成核过程停止,随后在已有核的基础上生长发生在时区III。因此,成核仅限于II区,这一时期产生核的数量决定了生长的粒子的数量,II区的时间宽度决定了所得粒度分布的宽度。

Ostwald熟化机制认为在溶液中,小尺寸晶核不能够稳定存在,会重新溶解到溶液中,然后溶解物将进一步沉淀在大粒子的表面,促使大粒子继续生长至更大的尺寸,在这一过程中大粒子生长以小粒子为代价[24] [27]。在合成量子点的过程中,为了得到特定尺寸的量子点,需要在生长过程中使反应迅速猝灭,根据Ostwald熟化机制表明,该方法合成的量子点可能会导致粒子的分布不均一。量子点的聚集成核和生长必然遵循的经典成核和生长,在聚集过程的参与下,描述纳米晶体生长机制的一般动力学过程见图2(b)所示,初始诱导期和尺寸增大分别对应于C区域下的经典形核和经典生长。经典机制可以产生初生的纳米晶体,通常在1~3 nm的直径范围内,在这一状态之后,可能会有第二次诱导成核和生长期,如图中A的区域,Ostwald熟化可能发生在OR区域内,在这一过程中量子点的尺寸会不断变大[26]

Figure 2. (a) LaMer theory diagram of monomer concentration during nucleation and growth of particles in solution (b) Diagrams of nanocrystal growth include classical nucleation, growth, and Ostwald maturation [26]

2. (a) LaMer理论关于微粒在溶液中成核和生长过程中的单体浓度示意图 (b) 纳米晶体生长的示意图包括经典成核、生长、和Ostwald熟化[26]

2.3. 量子点光电探测应用

量子点在光电探测领域表现出巨大的潜力,近年来,为了提高垂直光电晶体管的响应时间和光响应速度等性能,人们对量子点垂直光电晶体管进行了广泛的研究。在垂直器件中,光生载流子在晶界和缺陷处的散射较少,由于有源区距离短,在到达电极之前能够有效分离,从而具有高光响应度和短光响应时间[28] [29]。Zhang [30]等人展示了基于3-hexylthiophene(P3HT)/PbS量子点杂化结构的垂直光电晶体管,内置电位诱导了光激子的分离,短通道使载流子在通道区域内有效转移,在808 nm的激光照射下显示出高的光响应度大于9 × 104 AW1和高达2 × 1013 Jones的探测率。该器件的光响应时间为9 ms,比基于P3HT/PbS量子点混合结构的横向光电晶体管更快,P3HT的最低未占据分子轨道(LUMO)和最高已占据分子轨道(HOMO)的能级分别为3.2和5.0 eV,PbS量子点的价带和导带能级分别为4.21和5.27 eV。随着光子的吸收,在有源层中产生的光激发电子–空穴对由于源–漏极偏置或内置场而分离并流向漏极,增强了光电流的收集。

Figure 3. (a) Structure of P3HT/PbS Quantumdot composite VFEpT (b) Side view of device geometry and measurement setup (c) Absorption spectra of P3HT in trichchloroform solution and PbS quantumdot in toluene solvent (d) Device energy band diagram (e) Change of detectivity with device light irradiance (f) Response R with gate voltage VG curve [30]

3. (a) P3HT/PbS量子点复合VFEpT的结构 (b) 设备几何形状侧视图 (c) P3HT在三氯甲烷溶液和PbS量子点在甲苯溶剂中的吸收光谱 (d) 器件能带图 (e) 探测率随器件光辐照度的变化 (f) 响应度R随栅极电压的变化曲线[30]

图3(b)所示,该器件在300~1350 nm范围内具有光响应,并且在465和1170 nm处有两个峰,与P3HT和PbS量子点的吸收峰匹配。结果表明,光电流是由P3HT/PbS量子点对可见光的有效吸收和PbS 量子点对红外光的有效吸收引起的。PbS量子点和P3HT的功函数的差异在结附近的耗尽区产生了一个内置电位,该电位促使电子和空穴向相反方向运动。当可见光横向入射到器件上时,通过吸收光子在P3HT或PbS量子点中产生光激发的电子–空穴对,然后在内置电位或源–漏偏置的驱动下解离成电子和空穴。在反向偏压下,光致空穴被漏极(阴极)捕获,而光致电子被高势垒捕获在有源层中。在红外照射下,e~h对仅在PbS量子点中产生。在短通道中,由e~h对解离产生的光致空穴由于反向源漏极偏置或内置电势而转移到漏极(阴极),其传输时间在纳秒级。随着单个电子–空穴对的产生,多个空穴在短通道中循环,这增加了光导增益。当由于高势垒而被困在PbS量子点层中的光激发电子数量增加时,在两种材料的界面处同时产生额外的内置势。器件和测试结果如图3所示。

宽带隙氧化物与窄带隙胶体量子点异质结在能带结构上能够形成较大的势垒,在势垒一侧的氧化物构成了用于偏置器件的接触层,而在势垒另一侧的窄带隙半导体作为光子吸收层。这样的势垒设计允许光生电子流向触点(阴极),而大多数载流子、重新注入的光电流和表面电流被阻挡,因此,这样设计下的光电探测器可以减少暗电流和噪声,同样,阻挡层也可以起到减少表面漏电流的作用。在以往的研究中,利用宽带隙氧化物与窄带隙胶体量子点构建的异质结结构,可以有效的提升光电探测器的性能,列如ZnO和胶体量子点PbS0.4Se0.6构建的光电探测器具有高工作效率,该器件具有的高工作效率可以从能带结构的设计解释,PbS0.4Se0.6量子点的导带能级和价带能级分别为−4.22 eV和−5.53 eV,ZnO为−4.35 eV和−6.89 eV [31]。PbS0.4Se0.6到ZnO中间层的电子转移并不会造成明显的能量损失,PbS0.4Se0.6的导带能级在−4.35 eV非常接近ZnO的导带,导带偏移为0.13 eV。因此,ZnO层可以有利于载流子的分离,并且很容易将电子传输到ITO衬底层,达到收集载流子的作用,ZnO层还可以达到阻止空穴移动的目的,这也是该器件可以在低光照强度下获得高光电流的原因[31]-[33]

2.4. 量子点配体交换研究

量子点由于其独特的物理和光子特性,激起了研究人员对量子点在光电器件应用的兴趣。量子点尺寸较小,具有较大的比表面积,因此表面效应显著,量子点的物理和电学性质会受到表面配体影响[34]。载流子在量子点之间传输界面起着至关重要的作用[35],量子点的表面配体尤其会影响光生载流子的电荷转移效率,因此对量子点的研究也伴随着对其表面配体的研究[22]。在溶液法合成量子点的过程中,需要在量子点表面引入长链配体,列如油酸[36]、油胺[30]、三辛基[3],长链配体为量子点在溶液中提供了稳定性,但导致量子点的载流子迁移率明显下降,为了增强相邻量子点之间的电荷传输,在应用过程中使用各种短链配体来取代量子点表面的长链配体,这样的过程称为配体交换[37]。量子点尺寸小,比表面积大,使他们对于表面的环境敏感,这为调节量子点的发光、电子迁移率和能带位置等都提供了新的思路[38] [39],“表面控制”提供了一种额外的工具,用于操作提高量子点薄膜的载流子迁移率和能级。

2020年Dmitri V. Talapin [40]等人通过改变配体交换过程中HgCl2的添加量,制备出n型和p型的量子点薄膜。HgTe量子点的窄带隙与环境中的有效费米能级(相对于真空~−4.5 eV)接近,这允许HgTe量子点薄膜能够出现空气稳定的n型和p型掺杂,这在半导体量子点中是非常独特的。杂化表面处理不仅具有优异的电子迁移率,而且具有较高的空穴迁移率μh~1.3 cm2·V−1·s−1。通过杂化巯基乙醇-HgCl2配体和传统的1,2-乙二醇(EDT)表面处理对比,器件的响应度增加了50倍,器件和测试结果如图4所示。

为了提高Ag2Se量子点的响应性,Shihab Bin Hafiz [41]等人于2021年首次报道了一种具有Ag2Se/PbS/Ag2Se量子点堆叠的垂直量子点异质结器件,该器件降低了暗电导率并简化了器件制造过程。在室温下,与其他基于Ag2Se量子点的3~5 μm横向光导光电探测器相比,光导率提高了约70倍,80 K时外量子效率为0.36%,该器件在300 K时的探测率为3 × 105 Jones。

2021年,为了优化基于Ag2Se量子点和PbS量子点的结构,Shihab Bin Hafiz [42]等人报道了基于Ag2Se和PbS量子点的具有强整流特性的p-n异质结二极管。Ag2Se和PbS量子点的混合物阻断了基态电子和空穴的输运,并提供了光激发态电子流。该器件的暗电阻率提高到2 × 105 Ω·cm,而作为参考的Ag2Se量子点的电阻率仅为1 × 103 Ω·cm。该器件在4.5 µm处的峰值响应率为19 mA/W,这主要是由二元量子点薄膜中的Ag2Se量子点贡献的。与参考的Ag2Se量子点相比,探测率提高了30倍,在300 K时达到7.8 × 106 Jones。

Figure 4. Comparison of (a) Hall voltage (b) Hall mobility and FET mobility (c) Seebeck coefficient (d) photoconductivity of HgTe quantum dot films [40]

4. HgTe量子点薄膜的 (a) 霍尔电压 (b) 霍尔迁移率和FET迁移率的比较 (c) 塞贝克系数 (d) 光电导率[40]

2014年Patrick R. Brown [43]等人发现改变配体的化学结合基团会改变量子点–配体表面偶极子的强度,从而改变真空能级,进而改变量子点的价带最大值和导带最小值。测量了12种不同配体处理的PbS量子点的能级位移,测量到的价带最大跨度为0.9 eV。并利用第一性原理密度泛函理论计算对UPS测量的量子点能带位置移动进行了解释,见图5。配体交换后发生的能级移动可以归结为两个偶极子贡献的总和:来自量子点表面原子和配体之间形成偶极矩的贡献(μ1),以及来自配体本身的内禀偶极矩的贡献(μ2),界面μ1项与空间体积有关,对于致密的碘化物配体来说该项很大,而对于空间体积大的配体,界面μ1项会减小,与表面配体偶极子相反,缺乏本征偶极矩是卤化物配体的一般特征,μ2项对于卤化物非常小,而总的偶极矩与μ2呈负相关,因此对于卤族元素配体交换后的量子点薄膜可以观察到较大的能带位移。

Figure 5. DFT calculation of ligand-induced PbS energy transfer (a) Schematic diagram of simulated PbS films (b) Average electrostatic potential of PbS films with different ligands (c) ligand state density of five ligands (d) vacuum energy level transfer [43]

5. 配体诱导的PbS能量转移的DFT计算 (a) 模拟PbS薄膜示意图 (b) 不同配体PbS薄膜的平均静电势 (c) 五种配体的配体状态密度 (d) 真空能级转移[43]

Figure 6. Photoelectron spectroscopy measurements of ligand/quantum dot complexes (a) Secondary electron cutoff region of the XPS spectrum of the work function of the ligand/quantum dot film (b) The valence band edge region where VBM is associated with Fermi energy in the XPS spectrum of the ligand/quantum dot film (c) The diameter of OA and R-CA terminations is 3.2 Band edge energy of films prepared by PbS quantum Dots with nm [44]

6. 配体/量子点的光电子能谱测量 (a) 配体/量子点薄膜XPS图谱功函数和二次电子截止区 (b) 配体/量子点膜XPS图谱中VBM和费米能级 (c) 不同配体PbS量子点薄膜的能带位置[44]

2017年Daniel M. Kroupa [44]同样对配体交换后量子点薄膜的能带位置进行了研究。见图6,通过表面化学修饰,PbS胶体量子点能带位置可以调节达到2.0 eV以上。使用脂肪族、单齿配体制备的量子点薄膜中,通常观察到配体壳间插指化。在卤族元素配体中出现的较大能带位移解释由于偶极氟–氟静电相互作用,由氟化肉桂酸盐组成的量子点配体壳可能不会出现插指化,将表现出更接近于孤立量子点的能带位置。氟是元素周期表上电负性最强的元素,因此,C-F键是高度偶极的,使得氟(碳)原子带有轻微的负电荷(正电荷)。因此,相互作用的配体壳层的氟原子可以相互排斥,并防止量子点配体壳层间插指化,因此,卤族元素配体交换后能带位置会出现较大的移动。

3. 结论

我们在本文概述了红外胶体量子点的发展和在探测器件制作方面的应用,对量子点的制备、合成方法、成核理论和配体交换技术进行了详细介绍。量子点由于自身尺寸小,比表面积大,表面配体对量子点的物理性质都有重要的影响,例如可以通过配体交换改变量子点的能带位置,通过改变能带位置,和其他半导体材料构建异质结,利用其他材料的优点,不但可以做到弥补量子点自身载流子迁移率低等缺陷,还能够基于研究人员对于不同配体改变量子点材料能带的位置,选取合适的配体,从能带结构入手,在异质结制备前设计合理的能带排列从而提升红外光电探测器的探测性能。通过上述量子点及其配体交换在探测器中的实际应用为其他红外胶体量子点在红外探测器件制作等方面提供了新的思路。总之,以上的方法为日后开发红外胶体量子点器件提供了研究基础,为胶体量子点材料拓宽了应用领域,红外胶体量子点在红外光电探测、通信、生物医学领域等领域有巨大的潜力。

参考文献

[1] Brus, L.E. (1984) Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. The Journal of Chemical Physics, 80, 4403-4409.
https://doi.org/10.1063/1.447218
[2] Miller, E.M., Kroupa, D.M., Zhang, J., Schulz, P., Marshall, A.R., Kahn, A., et al. (2016) Revisiting the Valence and Conduction Band Size Dependence of Pbs Quantum Dot Thin Films. ACS Nano, 10, 3302-3311.
https://doi.org/10.1021/acsnano.5b06833
[3] Cuharuc, A.S., Kulyuk, L.L., Lascova, R.I., Mitioglu, A.A. and Dikusar, A.I. (2012) Electrochemical Characterization of Pbs Quantum Dots Capped with Oleic Acid and Pbs Thin Films—A Comparative Study. Surface Engineering and Applied Electrochemistry, 48, 193-211.
https://doi.org/10.3103/s1068375512030040
[4] Ahn, Y., Eom, S.Y., Kim, G., Lee, J.H., Kim, B., Kim, D., et al. (2024) Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector. Advanced Science, 11, Article ID: 2407453.
https://doi.org/10.1002/advs.202407453
[5] Babu, K.S., Vijayan, C. and Devanathan, R. (2004) Strong Quantum Confinement Effects in Polymer-Based Pbs Nanostructures Prepared by Ion-Exchange Method. Materials Letters, 58, 1223-1226.
https://doi.org/10.1016/j.matlet.2003.09.012
[6] Fan, J.Z., Vafaie, M., Bertens, K., Sytnyk, M., Pina, J.M., Sagar, L.K., et al. (2020) Micron Thick Colloidal Quantum Dot Solids. Nano Letters, 20, 5284-5291.
https://doi.org/10.1021/acs.nanolett.0c01614
[7] Hillhouse, H.W. and Beard, M.C. (2009) Solar Cells from Colloidal Nanocrystals: Fundamentals, Materials, Devices, and Economics. Current Opinion in Colloid & Interface Science, 14, 245-259.
https://doi.org/10.1016/j.cocis.2009.05.002
[8] Son, J., Choi, D., Park, M., Kim, J. and Jeong, K.S. (2020) Transformation of Colloidal Quantum Dot: From Intraband Transition to Localized Surface Plasmon Resonance. Nano Letters, 20, 4985-4992.
https://doi.org/10.1021/acs.nanolett.0c01080
[9] Kagan, C.R. (2019) Flexible Colloidal Nanocrystal Electronics. Chemical Society Reviews, 48, 1626-1641.
https://doi.org/10.1039/c8cs00629f
[10] Kim, J.Y., Voznyy, O., Zhitomirsky, D. and Sargent, E.H. (2013) 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐century of Advances. Advanced Materials, 25, 4986-5010.
https://doi.org/10.1002/adma.201301947
[11] Maximov, M.V., Nadtochiy, A.M., Mintairov, S.A., Kalyuzhnyy, N.A., Kryzhanovskaya, N.V., Moiseev, E.I., et al. (2020) Light Emitting Devices Based on Quantum Well-dots. Applied Sciences, 10, Article 1038.
https://doi.org/10.3390/app10031038
[12] Zhang, N., Tang, H., Shi, K., Wang, W., Deng, W., Xu, B., et al. (2019) High-Performance All-Solution-Processed Quantum Dot Near-Infrared-to-Visible Upconversion Devices for Harvesting Photogenerated Electrons. Applied Physics Letters, 115, Article ID: 221103.
https://doi.org/10.1063/1.5124735
[13] Meinardi, F., Bruni, F. and Brovelli, S. (2017) Luminescent Solar Concentrators for Building-Integrated Photovoltaics. Nature Reviews Materials, 2, Article No. 17072.
https://doi.org/10.1038/natrevmats.2017.72
[14] Park, Y., Roh, J., Diroll, B.T., Schaller, R.D. and Klimov, V.I. (2021) Colloidal Quantum Dot Lasers. Nature Reviews Materials, 6, 382-401.
https://doi.org/10.1038/s41578-020-00274-9
[15] Ji, C., Zhang, Y., Zhang, T., Liu, W., Zhang, X., Shen, H., et al. (2015) Temperature-Dependent Photoluminescence of Ag2se Quantum Dots. The Journal of Physical Chemistry C, 119, 13841-13846.
https://doi.org/10.1021/acs.jpcc.5b01030
[16] Xue, X., Chen, M., Luo, Y., Qin, T., Tang, X. and Hao, Q. (2023) High-Operating-Temperature Mid-Infrared Photodetectors via Quantum Dot Gradient Homojunction. Light: Science & Applications, 12, Article No. 2.
https://doi.org/10.1038/s41377-022-01014-0
[17] Zhang, Y., Liu, B., Liu, Z. and Li, J. (2022) Research Progress in the Synthesis and Biological Application of Quantum Dots. New Journal of Chemistry, 46, 20515-20539.
https://doi.org/10.1039/d2nj02603a
[18] Hafiz, S.B., Al Mahfuz, M.M., Scimeca, M.R., Lee, S., Oh, S.J., Sahu, A., et al. (2020) Ligand Engineering of Mid-Infrared Ag2Se Colloidal Quantum Dots. Physica E: Low-Dimensional Systems and Nanostructures, 124, Article ID: 114223.
https://doi.org/10.1016/j.physe.2020.114223
[19] Kagan, C.R., Lifshitz, E., Sargent, E.H. and Talapin, D.V. (2016) Building Devices from Colloidal Quantum Dots. Science, 353, aac5523.
https://doi.org/10.1126/science.aac5523
[20] Yang, H., Li, R., Zhang, Y., Yu, M., Wang, Z., Liu, X., et al. (2021) Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window. Journal of the American Chemical Society, 143, 2601-2607.
https://doi.org/10.1021/jacs.0c13071
[21] Cibert, J., Petroff, P.M., Dolan, G.J., Pearton, S.J., Gossard, A.C. and English, J.H. (1986) Optically Detected Carrier Confinement to One and Zero Dimension in Gaas Quantum Well Wires and Boxes. Applied Physics Letters, 49, 1275-1277.
https://doi.org/10.1063/1.97384
[22] Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J.C. and Hens, Z. (2011) Size-Tunable, Bright, and Stable Pbs Quantum Dots: A Surface Chemistry Study. ACS Nano, 5, 2004-2012.
https://doi.org/10.1021/nn103050w
[23] Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., et al. (2011) Colloidal-Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nature Materials, 10, 765-771.
https://doi.org/10.1038/nmat3118
[24] Ba, K. and Wang, J. (2022) Advances in Solution-Processed Quantum Dots Based Hybrid Structures for Infrared Photodetector. Materials Today, 58, 119-134.
https://doi.org/10.1016/j.mattod.2022.07.011
[25] Tamang, S., Lincheneau, C., Hermans, Y., Jeong, S. and Reiss, P. (2016) Chemistry of INP Nanocrystal Syntheses. Chemistry of Materials, 28, 2491-2506.
https://doi.org/10.1021/acs.chemmater.5b05044
[26] Wang, F., Richards, V.N., Shields, S.P. and Buhro, W.E. (2013) Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chemistry of Materials, 26, 5-21.
https://doi.org/10.1021/cm402139r
[27] Qu, J., Goubet, N., Livache, C., Martinez, B., Amelot, D., Gréboval, C., et al. (2018) Intraband Mid-Infrared Transitions in Ag2Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection. The Journal of Physical Chemistry C, 122, 18161-18167.
https://doi.org/10.1021/acs.jpcc.8b05699
[28] Tang, H., Zhong, J., Chen, W., Shi, K., Mei, G., Zhang, Y., et al. (2019) Lead Sulfide Quantum Dot Photodetector with Enhanced Responsivity through a Two-Step Ligand-Exchange Method. ACS Applied Nano Materials, 2, 6135-6143.
https://doi.org/10.1021/acsanm.9b00889
[29] Yang, H., Ma, Z. and Wang, Q. (2024) Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices. ACS Nano, 18, 30123-30131.
https://doi.org/10.1021/acsnano.4c11787
[30] Zhang, H., Zhang, Y., Song, X., Yu, Y., Cao, M., Che, Y., et al. (2017) Highly Photosensitive Vertical Phototransistors Based on a Poly(3-Hexylthiophene) and PbS Quantum Dot Layered Heterojunction. ACS Photonics, 4, 584-592.
https://doi.org/10.1021/acsphotonics.6b00896
[31] Kim, M., Han, C., Yang, H. and Park, B. (2019) Band to Band Tunneling at the Zinc Oxide (ZnO) and Lead Selenide (PbSe) Quantum Dot Contact; Interfacial Charge Transfer at a ZnO/PbSe/ZnO Probe Device. Materials, 12, Article 2289.
https://doi.org/10.3390/ma12142289
[32] Tang, X., Ackerman, M.M., Chen, M. and Guyot-Sionnest, P. (2019) Dual-Band Infrared Imaging Using Stacked Colloidal Quantum Dot Photodiodes. Nature Photonics, 13, 277-282.
https://doi.org/10.1038/s41566-019-0362-1
[33] Zhang, Y., Li, Y., Xin, X., Wang, Y., Guo, P., Wang, R., et al. (2023) Internal Quantum Efficiency Higher than 100% Achieved by Combining Doping and Quantum Effects for Photocatalytic Overall Water Splitting. Nature Energy, 8, 504-514.
https://doi.org/10.1038/s41560-023-01242-7
[34] Ning, Z., Voznyy, O., Pan, J., Hoogland, S., Adinolfi, V., Xu, J., et al. (2014) Air-Stable N-Type Colloidal Quantum Dot Solids. Nature Materials, 13, 822-828.
https://doi.org/10.1038/nmat4007
[35] Lachance-Quirion, D., Tremblay, S., Lamarre, S.A., Méthot, V., Gingras, D., Camirand Lemyre, J., et al. (2014) Telegraphic Noise in Transport through Colloidal Quantum Dots. Nano Letters, 14, 882-887.
https://doi.org/10.1021/nl404247e
[36] Song, J.H., Choi, H., Pham, H.T. and Jeong, S. (2018) Energy Level Tuned Indium Arsenide Colloidal Quantum Dot Films for Efficient Photovoltaics. Nature Communications, 9, Article No. 4267.
https://doi.org/10.1038/s41467-018-06399-4
[37] Choi, M., Kim, M., Lee, Y., Kim, T., Kim, J.H., Shin, D., et al. (2023) Tailored Band Edge Positions by Fractional Ligand Replacement of Nonconductive Colloidal Quantum Dot Films. The Journal of Physical Chemistry C, 127, 4825-4832.
https://doi.org/10.1021/acs.jpcc.3c00376
[38] Boles, M.A., Ling, D., Hyeon, T. and Talapin, D.V. (2016) Erratum: The Surface Science of Nanocrystals. Nature Materials, 15, 364-364.
https://doi.org/10.1038/nmat4578
[39] Ip, A.H., Kiani, A., Kramer, I.J., Voznyy, O., Movahed, H.F., Levina, L., et al. (2015) Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. ACS Nano, 9, 8833-8842.
https://doi.org/10.1021/acsnano.5b02164
[40] Lan, X., Chen, M., Hudson, M.H., Kamysbayev, V., Wang, Y., Guyot-Sionnest, P., et al. (2020) Quantum Dot Solids Showing State-Resolved Band-Like Transport. Nature Materials, 19, 323-329.
https://doi.org/10.1038/s41563-019-0582-2
[41] Hafiz, S.B., Al Mahfuz, M.M. and Ko, D. (2020) Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. ACS Applied Materials & Interfaces, 13, 937-943.
https://doi.org/10.1021/acsami.0c19450
[42] Hafiz, S.B., Al Mahfuz, M.M., Lee, S. and Ko, D. (2021) Midwavelength Infrared P-N Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS Applied Materials & Interfaces, 13, 49043-49049.
https://doi.org/10.1021/acsami.1c14749
[43] Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., et al. (2014) Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano, 8, 5863-5872.
https://doi.org/10.1021/nn500897c
[44] Kroupa, D.M., Vörös, M., Brawand, N.P., McNichols, B.W., Miller, E.M., Gu, J., et al. (2017) Tuning Colloidal Quantum Dot Band Edge Positions through Solution-Phase Surface Chemistry Modification. Nature Communications, 8, Article No. 15257.
https://doi.org/10.1038/ncomms15257