|
[1]
|
Lassen, N.A. (1959) Cerebral Blood Flow and Oxygen Consumption in Man. Physiological Reviews, 39, 183-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Aaslid, R., Newell, D.W., Stooss, R., Sorteberg, W. and Lindegaard, K.F. (1991) Assessment of Cerebral Autoregulation Dynamics from Simultaneous Arterial and Venous Transcranial Doppler Recordings in Humans. Stroke, 22, 1148-1154. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Robba, C. and Citerio, G. (2019) How I Manage Intracranial Hypertension. Critical Care, 23, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Klein, S.P., Depreitere, B. and Meyfroidt, G. (2019) How I Monitor Cerebral Autoregulation. Critical Care, 23, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Robba, C., Bonatti, G., Battaglini, D., Rocco, P.R.M. and Pelosi, P. (2019) Mechanical Ventilation in Patients with Acute Ischaemic Stroke: From Pathophysiology to Clinical Practice. Critical Care, 23, Article No. 388. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Peng, H., Liang, Z., Zhang, S. and Yang, Y. (2024) Optimal Target Mean Arterial Pressure for Patients with Sepsis-Associated Encephalopathy: A Retrospective Cohort Study. BMC Infectious Diseases, 24, Article No. 902. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fedriga, M., Martini, S., Iodice, F.G., Sortica da Costa, C., Pezzato, S., Moscatelli, A., et al. (2024) Cerebral Autoregulation in Pediatric and Neonatal Intensive Care: A Scoping Review. Journal of Cerebral Blood Flow & Metabolism, 44, 1208-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Santos, D.P.D.A.D., Thirumala, P.D., Reddy, G., Barros, D.F.D., Faria, V.N.R., Shandal, V., et al. (2022) Risk of Perioperative Stroke and Cerebral Autoregulation Monitoring: A Systematic Review. Arquivos de Neuro-Psiquiatria, 80, 1196-1203. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hogue, C.W., Brown, C.H., Hori, D., Ono, M., Nomura, Y., Balmert, L.C., et al. (2021) Personalized Blood Pressure Management during Cardiac Surgery with Cerebral Autoregulation Monitoring: A Randomized Trial. Seminars in Thoracic and Cardiovascular Surgery, 33, 429-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Spilka, J.M., O'Halloran, C.P., Marino, B.S. and Brady, K.M. (2021) Perspective on Cerebral Autoregulation Monitoring in Neonatal Cardiac Surgery Requiring Cardiopulmonary Bypass. Frontiers in Neurology, 12, Article 740185. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Peng, Q., Liu, X., Ai, M., Huang, L., Li, L., Liu, W., et al. (2024) Cerebral Autoregulation-Directed Optimal Blood Pressure Management Reduced the Risk of Delirium in Patients with Septic Shock. Journal of Intensive Medicine, 4, 376-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Knot, H.J. and Nelson, M.T. (1998) Regulation of Arterial Diameter and Wall [Ca2+] in Cerebral Arteries of Rat by Membrane Potential and Intravascular Pressure. The Journal of Physiology, 508, 199-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
王春艺, 李刚, 王军, 等. 脑血管二氧化碳反应性研究进展[J]. 中华医学杂志, 2016, 96(18): 1470-1472.
|
|
[14]
|
Gupta, A.K., Menon, D.K., Czosnyka, M., Smielewski, P. and Jones, J.G. (1997) Thresholds for Hypoxic Cerebral Vasodilation in Volunteers. Anesthesia & Analgesia, 85, 817-820. [Google Scholar] [CrossRef]
|
|
[15]
|
Bonnet, P., Gebremedhin, D., Rush, N.J., et al. (1991) Effects of Hypoxia on a Potassium Channel in Cat Cerebral Arterial Muscle Cells. Zeitschrift fur Kardiologie, 80, 25-27.
|
|
[16]
|
Pearce, W.J., Ashwal, S., Long, D.M. and Cuevas, J. (1992) Hypoxia Inhibits Calcium Influx in Rabbit Basilar and Carotid Arteries. American Journal of Physiology-Heart and Circulatory Physiology, 262, H106-H113. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lacombe, P., Miller, M.C. and Seylaz, J. (1985) Sympathetic Regulation of Cerebral Blood Flow during Reflex Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 249, H672-H680. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Morita, Y., Erik Hardebo, a. and Bouskela, E. (1994) Influence of Cerebrovascular Parasympathetic Nerves on Resting Cerebral Blood Flow, Spontaneous Vasomotion, Autoregulation, Hypercapnic Vasodilation and Sympathetic Vasoconstriction. Journal of the Autonomic Nervous System, 49, 9-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
吉林省医学会神经病学分会, 吉林省卒中学会. 动态脑血流自动调节功能评估在神经系统疾病中的临床应用专家共识(2021) [J]. 中华脑血管病杂志(电子版), 2021, 15(3): 140-152.
|
|
[20]
|
Gould, I.G., Tsai, P., Kleinfeld, D. and Linninger, A. (2016) The Capillary Bed Offers the Largest Hemodynamic Resistance to the Cortical Blood Supply. Journal of Cerebral Blood Flow & Metabolism, 37, 52-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Esfandi, H., Javidan, M., Anderson, R.M., et al. (2024) Depth-Dependent Contributions of Various Vascular Zones to Cerebral Autoregulation and Functional Hyperemia: An In-Silico Analysis. bioRxiv.
|
|
[22]
|
Aaslid, R., Lindegaard, K.F., Sorteberg, W. and Nornes, H. (1989) Cerebral Autoregulation Dynamics in Humans. Stroke, 20, 45-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Giller, C.A. (1991) A Bedside Test for Cerebral Autoregulation Using Transcranial Doppler Ultrasound. Acta Neurochirurgica, 108, 7-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rynkowski, C.B., de Oliveira Manoel, A.L., dos Reis, M.M., Puppo, C., Worm, P.V., Zambonin, D., et al. (2019) Early Transcranial Doppler Evaluation of Cerebral Autoregulation Independently Predicts Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 31, 253-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Czosnyka, M., Smielewski, P., Kirkpatrick, P., Menon, D.K. and Pickard, J.D. (1996) Monitoring of Cerebral Autoregulation in Head-Injured Patients. Stroke, 27, 1829-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pham, P., Bindra, J., Aneman, A., Chuan, A., Worthington, J.M. and Jaeger, M. (2018) Noninvasive Monitoring of Dynamic Cerebrovascular Autoregulation and ‘optimal Blood Pressure’ in Normal Adult Subjects. Neurocritical Care, 30, 201-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bindra, J., Pham, P., Aneman, A., Chuan, A. and Jaeger, M. (2015) Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using near Infrared Spectroscopy and the Finometer Photoplethysmograph. Neurocritical Care, 24, 442-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chacón, M., Jara, J.L. and Panerai, R.B. (2014) A New Model-Free Index of Dynamic Cerebral Blood Flow Autoregulation. PLOS ONE, 9, e108281. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hori, D., Hogue, C., Adachi, H., Max, L., Price, J., Sciortino, C., et al. (2016) Perioperative Optimal Blood Pressure as Determined by Ultrasound Tagged near Infrared Spectroscopy and Its Association with Postoperative Acute Kidney Injury in Cardiac Surgery Patients. Interactive CardioVascular and Thoracic Surgery, 22, 445-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Aries, M.J.H., Czosnyka, M., Budohoski, K.P., Steiner, L.A., Lavinio, A., Kolias, A.G., et al. (2012) Continuous Determination of Optimal Cerebral Perfusion Pressure in Traumatic Brain Injury. Critical Care Medicine, 40, 2456-2463. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hori, D., Brown, C., Ono, M., Rappold, T., Sieber, F., Gottschalk, A., et al. (2014) Arterial Pressure above the Upper Cerebral Autoregulation Limit during Cardiopulmonary Bypass Is Associated with Postoperative Delirium. British Journal of Anaesthesia, 113, 1009-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nwafor, D.C., Brichacek, A.L., Mohammad, A.S., Griffith, J., Lucke-Wold, B.P., Benkovic, S.A., et al. (2019) Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment. Journal of Central Nervous System Disease, 11, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pfister, D., Siegemund, M., Dell-Kuster, S., Smielewski, P., Rüegg, S., Strebel, S.P., et al. (2008) Cerebral Perfusion in Sepsis-Associated Delirium. Critical Care, 12, Article No. R63. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Vallet, B. (2003) Bench-to-Bedside Review: Endothelial Cell Dysfunction in Severe Sepsis: A Role in Organ Dysfunction? Critical Care, 7, 130-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Huang, Y., Chen, R., Jiang, L., Li, S. and Xue, Y. (2021) Basic Research and Clinical Progress of Sepsis-Associated Encephalopathy. Journal of Intensive Medicine, 1, 90-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Crippa, I.A., Subirà, C., Vincent, J., Fernandez, R.F., Hernandez, S.C., Cavicchi, F.Z., et al. (2018) Impaired Cerebral Autoregulation Is Associated with Brain Dysfunction in Patients with Sepsis. Critical Care, 22, Article No. 327. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Schramm, P., Klein, K.U., Falkenberg, L., Berres, M., Closhen, D., Werhahn, K.J., et al. (2012) Impaired Cerebrovascular Autoregulation in Patients with Severe Sepsis and Sepsis-Associated Delirium. Critical Care, 16, Article No. R181. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bindra, J., Pham, P., Chuan, A., Jaeger, M. and Aneman, A. (2016) Is Impaired Cerebrovascular Autoregulation Associated with Outcome in Patients Admitted to the ICU with Early Septic Shock? Critical Care and Resuscitation, 18, 95-101. [Google Scholar] [CrossRef]
|
|
[39]
|
Rosenblatt, K., Walker, K.A., Goodson, C., Olson, E., Maher, D., Brown, C.H., et al. (2019) Cerebral Autoregulation–guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series. Journal of Intensive Care Medicine, 35, 1453-1464. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Rivera-Lara, L., Zorrilla-Vaca, A., Healy, R.J., Ziai, W., Hogue, C., Geocadin, R., et al. (2018) Determining the Upper and Lower Limits of Cerebral Autoregulation with Cerebral Oximetry Autoregulation Curves: A Case Series. Critical Care Medicine, 46, e473-e477. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Critical Care Medicine, 49, e1063-e1143.
|
|
[42]
|
El-Khoury, J.M. (2021) The Dimethylarginines (Asymmetric and Symmetric): A Deadly Combination in Sepsis. The Journal of Applied Laboratory Medicine, 6, 577-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
van Wijk, X.M.R., Yun, C. and Lynch, K.L. (2020) Evaluation of Biomarkers in Sepsis: High Dimethylarginine (ADMA and SDMA) Concentrations Are Associated with Mortality. The Journal of Applied Laboratory Medicine, 6, 592-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Leiper, J., Nandi, M., Torondel, B., Murray-Rust, J., Malaki, M., O’Hara, B., et al. (2007) Disruption of Methylarginine Metabolism Impairs Vascular Homeostasis. Nature Medicine, 13, 198-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Feihl, F., Waeber, B. and Liaudet, L. (2001) Is Nitric Oxide Overproduction the Target of Choice for the Management of Septic Shock? Pharmacology & Therapeutics, 91, 179-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Polunina, A.G., Golukhova, E.Z., Guekht, A.B., Lefterova, N.P. and Bokeria, L.A. (2014) Cognitive Dysfunction after On-Pump Operations: Neuropsychological Characteristics and Optimal Core Battery of Tests. Stroke Research and Treatment, 2014, Article ID: 302824. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Duan, X., Zhu, T., Chen, C., Zhang, G., Zhang, J., Wang, L., et al. (2018) Serum Glial Cell Line-Derived Neurotrophic Factor Levels and Postoperative Cognitive Dysfunction after Surgery for Rheumatic Heart Disease. The Journal of Thoracic and Cardiovascular Surgery, 155, 958-965.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shaban, A. and Leira, E.C. (2021) Neurologic Complications of Heart Surgery. Handbook of Clinical Neurology, 177, 65-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Selnes, O.A., Goldsborough, M.A., Borowicz, L.M. and McKhann, G.M. (1999) Neurobehavioural Sequelae of Cardiopulmonary B Ypass. The Lancet, 353, 1601-1606. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Steinmetz, J. and Rasmussen, L.S. (2015) Peri‐Operative Cognitive Dysfunction and Protection. Anaesthesia, 71, 58-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Salameh, A., Dhein, S., Dähnert, I. and Klein, N. (2016) Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass. International Journal of Molecular Sciences, 17, Article 1945. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nomura, Y., Faegle, R., Hori, D., Al-Qamari, A., Nemeth, A.J., Gottesman, R., et al. (2018) Cerebral Small Vessel, but Not Large Vessel Disease, Is Associated with Impaired Cerebral Autoregulation during Cardiopulmonary Bypass: A Retrospective Cohort Study. Anesthesia & Analgesia, 127, 1314-1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hori, D., Max, L., Laflam, A., Brown, C., Neufeld, K.J., Adachi, H., et al. (2016) Blood Pressure Deviations from Optimal Mean Arterial Pressure during Cardiac Surgery Measured with a Novel Monitor of Cerebral Blood Flow and Risk for Perioperative Delirium: A Pilot Study. Journal of Cardiothoracic and Vascular Anesthesia, 30, 606-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Caldas, J.R., Panerai, R.B., Bor-Seng-Shu, E., Ferreira, G.S.R., Camara, L., Passos, R.H., et al. (2019) Dynamic Cerebral Autoregulation: A Marker of Post-Operative Delirium? Clinical Neurophysiology, 130, 101-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Kasputytė, G., Kumpaitienė, B., Švagždienė, M., Andrejaitienė, J., Gailiušas, M., Širvinskas, E., et al. (2024) The Association of Cerebral Autoregulation Dysfunction and Postoperative Memory Impairment in Cardiac Surgery Patients. Medicina, 60, Article 1337. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Dimitropoulos, A., McQuillen, P.S., Sethi, V., Moosa, A., Chau, V., Xu, D., et al. (2013) Brain Injury and Development in Newborns with Critical Congenital Heart Disease. Neurology, 81, 241-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Licht, D.J., Wang, J., Silvestre, D.W., Nicolson, S.C., Montenegro, L.M., Wernovsky, G., et al. (2004) Preoperative Cerebral Blood Flow Is Diminished in Neonates with Severe Congenital Heart Defects. The Journal of Thoracic and Cardiovascular Surgery, 128, 841-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ortinau, C., Beca, J., Lambeth, J., Ferdman, B., Alexopoulos, D., Shimony, J.S., et al. (2012) Regional Alterations in Cerebral Growth Exist Preoperatively in Infants with Congenital Heart Disease. The Journal of Thoracic and Cardiovascular Surgery, 143, 1264-1270.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Brady, K.M., Mytar, J.O., Lee, J.K., Cameron, D.E., Vricella, L.A., Thompson, W.R., et al. (2010) Monitoring Cerebral Blood Flow Pressure Autoregulation in Pediatric Patients during Cardiac Surgery. Stroke, 41, 1957-1962. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wagerle, L.C., Russo, P., Dahdah, N.S., Kapadia, N. and Davis, D.A. (1998) Endothelial Dysfunction in Cerebral Microcirculation during Hypothermic Cardiopulmonary Bypass in Newborn Lambs. The Journal of Thoracic and Cardiovascular Surgery, 115, 1047-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ingyinn, M., Lee, J., Short, B.L. and Viswanathan, M. (2000) Venoarterial Extracorporeal Membrane Oxygenation Impairs Basal Nitric Oxide Production in Cerebral Arteries of Newborn Lambs. Pediatric Critical Care Medicine, 1, 161-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ingyinn, M., Rais-Bahrami, K., Viswanathan, M. and Short, B.L. (2006) Altered Cerebrovascular Responses after Exposure to Venoarterial Extracorporeal Membrane Oxygenation: Role of the Nitric Oxide Pathway. Pediatric Critical Care Medicine, 7, 368-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ortega, S.B., Pandiyan, P., Windsor, J., Torres, V.O., Selvaraj, U.M., Lee, A., et al. (2019) A Pilot Study Identifying Brain-Targeting Adaptive Immunity in Pediatric Extracorporeal Membrane Oxygenation Patients with Acquired Brain Injury. Critical Care Medicine, 47, e206-e213. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Millar, J.E., Fanning, J.P., McDonald, C.I., McAuley, D.F. and Fraser, J.F. (2016) The Inflammatory Response to Extracorporeal Membrane Oxygenation (ECMO): A Review of the Pathophysiology. Critical Care, 20, Article No. 387. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Joram, N., Beqiri, E., Pezzato, S., Moscatelli, A., Robba, C., Liet, J., et al. (2021) Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring among Children Supported by ECMO. Neurocritical Care, 35, 480-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Joram, N., Beqiri, E., Pezzato, S., Moscatelli, A., Robba, C., Liet, J., et al. (2020) Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocritical Care, 34, 935-945. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Tian, F., Morriss, M.C., Chalak, L., Venkataraman, R., Ahn, C., Liu, H., et al. (2017) Impairment of Cerebral Autoregulation in Pediatric Extracorporeal Membrane Oxygenation Associated with Neuroimaging Abnormalities. Neurophotonics, 4, Article ID: 041410. [Google Scholar] [CrossRef] [PubMed]
|