[1]
|
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144.
|
[2]
|
Soun, J.E., Chow, D.S., Nagamine, M., Takhtawala, R.S., Filippi, C.G., Yu, W., et al. (2020) Artificial Intelligence and Acute Stroke Imaging. American Journal of Neuroradiology, 42, 2-11. https://doi.org/10.3174/ajnr.a6883
|
[3]
|
陈晓宇, 王希明. 人工智能在急性缺血性脑卒中成像中的应用进展[J]. 国际医学放射学杂志, 2022, 45(4): 444-448.
|
[4]
|
Zaharchuk, G. and Davidzon, G. (2021) Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Seminars in Nuclear Medicine, 51, 134-142. https://doi.org/10.1053/j.semnuclmed.2020.10.001
|
[5]
|
Zaharchuk, G., Gong, E., Wintermark, M., Rubin, D. and Langlotz, C.P. (2018) Deep Learning in Neuroradiology. American Journal of Neuroradiology, 39, 1776-1784. https://doi.org/10.3174/ajnr.a5543
|
[6]
|
Shinohara, Y., Takahashi, N., Lee, Y., Ohmura, T. and Kinoshita, T. (2019) Development of a Deep Learning Model to Identify Hyperdense MCA Sign in Patients with Acute Ischemic Stroke. Japanese Journal of Radiology, 38, 112-117. https://doi.org/10.1007/s11604-019-00894-4
|
[7]
|
鲁君, 张归玲, 朱文珍. 人工智能在缺血性脑卒中影像中的应用进展[J]. 中国医学影像学杂志, 2022, 30(4): 396-400.
|
[8]
|
黄聪雯, 洪建斌, 许启仲, 等. CT平扫和MRI检查在诊断急性缺血性脑卒中的效果对比[J]. 现代医用影像学, 2017, 26(3): 701-702, 705.
|
[9]
|
於帆, ARMAN SHA, 张苗, 等. 人工智能在急性缺血性脑卒中影像的研究进展[J]. 中华老年心脑血管病杂志, 2023, 25(3): 334-336.
|
[10]
|
Abedi, V., Goyal, N., Tsivgoulis, G., Hosseinichimeh, N., Hontecillas, R., Bassaganya-Riera, J., et al. (2017) Novel Screening Tool for Stroke Using Artificial Neural Network. Stroke, 48, 1678-1681. https://doi.org/10.1161/strokeaha.117.017033
|
[11]
|
Guberina, N., Dietrich, U., Radbruch, A., Goebel, J., Deuschl, C., Ringelstein, A., et al. (2018) Detection of Early Infarction Signs with Machine Learning-Based Diagnosis by Means of the Alberta Stroke Program Early CT Score (ASPECTS) in the Clinical Routine. Neuroradiology, 60, 889-901. https://doi.org/10.1007/s00234-018-2066-5
|
[12]
|
Sales Barros, R., Tolhuisen, M.L., Boers, A.M., Jansen, I., Ponomareva, E., Dippel, D.W.J., et al. (2019) Automatic Segmentation of Cerebral Infarcts in Follow-Up Computed Tomography Images with Convolutional Neural Networks. Journal of NeuroInterventional Surgery, 12, 848-852. https://doi.org/10.1136/neurintsurg-2019-015471
|
[13]
|
国家卫生健康委员会脑卒中防治工程委员会神经影像专业委员会, 中华医学会放射学分会神经学组. 脑血管病影像规范化应用中国指南[J]. 中华放射学杂志, 2019, 53(11): 916-940.
|
[14]
|
Mair, G., White, P., Bath, P.M., Muir, K., Martin, C., Dye, D., et al. (2023) Accuracy of Artificial Intelligence Software for CT Angiography in Stroke. Annals of Clinical and Translational Neurology, 10, 1072-1082. https://doi.org/10.1002/acn3.51790
|
[15]
|
Rodrigues, G., Barreira, C.M., Bouslama, M., Haussen, D.C., Al-Bayati, A., Pisani, L., et al. (2021) Automated Large Artery Occlusion Detection in Stroke: A Single-Center Validation Study of an Artificial Intelligence Algorithm. Cerebrovascular Diseases, 51, 259-264. https://doi.org/10.1159/000519125
|
[16]
|
Sheth, S.A., Lopez-Rivera, V., Barman, A., Grotta, J.C., Yoo, A.J., Lee, S., et al. (2019) Machine Learning-Enabled Automated Determination of Acute Ischemic Core from Computed Tomography Angiography. Stroke, 50, 3093-3100. https://doi.org/10.1161/strokeaha.119.026189
|
[17]
|
Öman, O., Mäkelä, T., Salli, E., Savolainen, S. and Kangasniemi, M. (2019) 3D Convolutional Neural Networks Applied to CT Angiography in the Detection of Acute Ischemic Stroke. European Radiology Experimental, 3, Article No. 8. https://doi.org/10.1186/s41747-019-0085-6
|
[18]
|
梁奕, 柳柏玉, 杨威威, 等. 人工智能在头颈部CTA中的应用价值[J]. 医学影像学杂志, 2022, 32(10): 1824-1826.
|
[19]
|
吴彬彬, 余永强. CTP全脑灌注成像参数与Hcy的相关性及对缺血性脑卒中的诊断[J]. 影像科学与光化学, 2022, 40(5): 1269-1273.
|
[20]
|
王思迅, 陆东, 李婕, 等. 应用CT脑CTP联合头颈CTA诊断缺血性脑卒中的临床价值[J]. 中国CT和MRI杂志, 2022, 20(9): 11-12.
|
[21]
|
Murray, N.M., Unberath, M., Hager, G.D. and Hui, F.K. (2019) Artificial Intelligence to Diagnose Ischemic Stroke and Identify Large Vessel Occlusions: A Systematic Review. Journal of NeuroInterventional Surgery, 12, 156-164. https://doi.org/10.1136/neurintsurg-2019-015135
|
[22]
|
Kasasbeh, A.S., Christensen, S., Parsons, M.W., Campbell, B., Albers, G.W. and Lansberg, M.G. (2019) Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core. Stroke, 50, 1578-1581. https://doi.org/10.1161/strokeaha.118.022649
|
[23]
|
Hoving, J.W., Marquering, H.A., Majoie, C.B.L.M., Yassi, N., Sharma, G., Liebeskind, D.S., et al. (2018) Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients with Acute Ischemic Stroke. Stroke, 49, 2368-2375. https://doi.org/10.1161/strokeaha.118.020846
|
[24]
|
王彦平, 李鑫, 张玉强, 等. 多模式MRI在急性缺血性脑卒中患者行溶栓治疗中的指导作用[J]. 现代科学仪器, 2023, 40(2): 91-95.
|
[25]
|
魏晓辉, 杨小飞, 黄煜, 等. DWI在急性缺血性脑卒中的临床应用[J]. 西部中医药, 2015, 28(6): 152-153.
|
[26]
|
Kim, Y., Lee, J., Yu, I., Song, H., Baek, I., Seong, J., et al. (2019) Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network. Stroke, 50, 1444-1451. https://doi.org/10.1161/strokeaha.118.024261
|
[27]
|
Bouts, M.J., Tiebosch, I.A., van der Toorn, A., Viergever, M.A., Wu, O. and Dijkhuizen, R.M. (2013) Early Identification of Potentially Salvageable Tissue with MRI-Based Predictive Algorithms after Experimental Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 33, 1075-1082. https://doi.org/10.1038/jcbfm.2013.51
|
[28]
|
Wu, O., Winzeck, S., Giese, A., Hancock, B.L., Etherton, M.R., Bouts, M.J.R.J., et al. (2019) Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. Stroke, 50, 1734-1741. https://doi.org/10.1161/strokeaha.119.025373
|
[29]
|
Winzeck, S., Mocking, S.J.T., Bezerra, R., Bouts, M.J.R.J., McIntosh, E.C., Diwan, I., et al. (2019) Ensemble of Convolutional Neural Networks Improves Automated Segmentation of Acute Ischemic Lesions Using Multiparametric Diffusion-Weighted MRI. American Journal of Neuroradiology, 40, 938-945. https://doi.org/10.3174/ajnr.a6077
|
[30]
|
Zhang, R., Zhao, L., Lou, W., Abrigo, J.M., Mok, V.C.T., Chu, W.C.W., et al. (2018) Automatic Segmentation of Acute Ischemic Stroke from DWI Using 3-D Fully Convolutional DenseNets. IEEE Transactions on Medical Imaging, 37, 2149-2160. https://doi.org/10.1109/tmi.2018.2821244
|