类风湿性关节炎相关间质性肺疾病的药物治疗新进展
New Advances in the Pharmacological Management of Rheumatoid Arthritis-Related Interstitial Lung Disease
DOI: 10.12677/acm.2025.1541314, PDF, HTML, XML,   
作者: 杨 燕:重庆医科大学,重庆;张 劼*:重庆医科大学,重庆;重庆市人民医院老年病科,重庆
关键词: 类风湿性关节炎间质性肺疾病抗纤维化药物免疫抑制剂Rheumatoid Arthritis Interstitial Lung Disease Antifibrotic Drugs Immunosuppressants
摘要: 类风湿性关节炎(RA)是一种全身性炎症性疾病,RA最常见的关节外表现是肺部受累。间质性肺疾病(ILD)是类风湿性关节炎的常见并发症,发病率和死亡率都很高。目前,国际上对RA-ILD的最佳治疗方法尚未明确。对于RA-ILD患者,目标应该是缓解RA和阻止ILD的进展。因此,了解RA-ILD的治疗方案的最新进展,这对改善患者预后至关重要。RA治疗包括常规合成的改善病情的抗风湿药物(DMARDs),生物合成DMARDs,以及靶向合成DMARDs,而这些药物也被常规用于对RA-ILD的治疗评估。本篇综述中不仅总结了上述药物用于RA-ILD最新进展,还评价了抗纤维化药物用于治疗RA-ILD的新进展。本文通过对这些药物的最新进展进行总结,为临床指导RA-ILD用药提供参考依据。
Abstract: Rheumatoid arthritis (RA) is a systemic inflammatory disease and the most common extra-articular manifestation of RA is pulmonary involvement. Interstitial lung disease (ILD) is a common complication of rheumatoid arthritis with high morbidity and mortality. Currently, the optimal treatment for RA-ILD is not well defined internationally. For patients with RA-ILD, the goal should be to alleviate RA and halt the progression of ILD. Therefore, it is important to be aware of the latest advances in treatment options for RA-ILD, which are essential for improving patient prognosis. RA treatments include conventional synthetic disease-modifying antirheumatic drugs (DMARDs), biosynthetic DMARDs, and targeted synthetic DMARDs, which are also routinely used for therapeutic evaluation of RA-ILD. In this review, we not only summarise the latest advances in the use of the above drugs for RA-ILD, but also evaluate the new advances in the use of antifibrotic drugs for the treatment of RA-ILD. By summarising the latest advances of these drugs, this article provides a reference basis for clinical guidance on the use of drugs for RA-ILD.
文章引用:杨燕, 张劼. 类风湿性关节炎相关间质性肺疾病的药物治疗新进展[J]. 临床医学进展, 2025, 15(4): 3420-3428. https://doi.org/10.12677/acm.2025.1541314

1. 引言

类风湿关节炎是以关节炎症和肿胀为主要特征的全身炎症反应性自身免疫性疾病,它的全球患病率 < 1%,其发病机制可能与其自身免疫性疾病有关。它的免疫系统过度活跃,通常会导致关节外表现[1] [2]。根据相关研究,关节外表现的患病率大约为40%,如心血管和呼吸功能障碍。其中肺部受累频繁,对气道、浆膜、实质组织都有潜在影响[3] [4]。尽管在RA的各种肺部表现中可能发生支气管扩张、细支气管炎、环杓关节炎、结节和胸膜炎,但RA相关ILD是最常见的肺部表现,与死亡率增加最相关[5]-[7]。类风湿性关节炎(Rheumatoid Arthritis, RA)相关性间质性肺疾病(Interstitial Lung Disease, ILD)占RA患者总死亡人数的13%,RA-ILD患者的5年生存率显著较低,为35%~39% [8]。总体而言,RA-ILD患者的死亡风险是不伴ILD的RA患者的3倍[9]

虽然国际上已经发表了关于指导RA-ILD患者管理的建议[10] [11],但目前国际科学学会没有专门针对RA-ILD患者开始或升级治疗的指南。RA-ILD的治疗应根据患者的需要进行个体化治疗,基于多学科评估其ILD的严重程度和进展、关节疾病和RA的其他表现以及并发症[7]。如上所述,FVC和DLCO较低或降低,纤维化广泛或恶化的患者,包括HRCT显示为UIP (Usual Interstitial Pneumonia, UIP)型的患者,可能从早期治疗中受益。本文将从以下几个方面来总结关于RA-ILD药物治疗的最新进展。

2. 抗纤维化治疗

RA-ILD是一种严重的关节外表现,据报道,大约一半的患者会出现ILD进展,一旦出现临床症状,它与死亡率增加有关,估计比无ILD的RA高2至10倍[12]-[16]。在10%~30%的RA患者中可观察到ILD,与其他系统性自身免疫性风湿性疾病相关的ILD相比,RA-ILD的特征是纤维化ILD亚型的频率较高,其中UIP和非特异性间质性肺炎(Nonspecific Interstitial Pneumonia, NSIP)是RA-ILD最常见的组织病理学亚型[4] [17]。在RA-ILD中观察到的UIP模式与特发性肺纤维化(Idiopathic Pulmonary Fibrosis, IPF)非常相似,两者都与进行性肺纤维化(Progressive Pulmonary Fibrosis, PPF)的高风险和短期死亡率增加有关。此外,一些RA患者合并NSIP型ILD也可能发展为进行性纤维化模式[7]。肺功能下降,HRCT显示纤维化增加,以及无其他原因的呼吸道症状恶化通常被认为是PPF的证据[18] [19]。鉴于PPF预后不良,并且认识到进行性纤维化导致的任何肺功能丧失都是不可逆的,因此治疗PPF是有充分理由[20]-[22]

IPF与其他ILDs在发病机制和病程上的相似性促使研究对IPF有效的药物作为其他纤维化ILDs的潜在治疗方法[7]。早期识别和开始抗纤维化治疗已被证明对IPF [23]和其他纤维化ILD [24]有效,最近对RA-ILD的研究表明其效果相似。并且也有文献报道在对IPF和RA-ILD的研究中,发现RA-ILD和IPF在常见的环境风险因素、UIP模式的高患病率、疾病进展风险和生存期差这几方面拥有相同特征[25]。其中在INBUILD研究的亚组分析和TRAIL1研究的次要结果都表明抗纤维化药物对RA-ILD患者FVC下降有显著影响,但预计还会有更多数据证实这些结果[26]-[28]

迄今为止,最广泛用于治疗RA-ILD的药物是吡非尼酮和尼达尼布,这两种药物最初是由美国食品和药物管理局(FDA)开发并批准用于治疗IPF [29]。在Juge PA等人开展的一项关于在RA-ILD患者中使用抗纤维化药物治疗的回顾性队列研究中,他们发现抗纤维化治疗开始后,FVCpp的下降有显著改善(开始后每年−0.3%,而抗纤维化开始前每年−6.2%,p = 0.03)。尼达尼布和吡非尼酮具有相似的FVCpp轨迹,证实了抗纤维化起始与FVCpp的适度改善轨迹相关,这表明了可能对肺功能下降有潜在的积极作用[30]。有研究提到,将RA-ILD患者分为UIP和非UIP疾病模式是决定治疗过程的重要因素[10]。其次RA-UIP和IPF中的UIP的发病机制十分相似,所以也有相关研究将抗纤维药物治疗应用于RA-UIP模式的病人。在Solomon等人发表的关于吡非尼酮治疗RA-ILD的随机实验中,发现与安慰剂相比,接受吡非尼酮治疗的UIP型的RA-ILD患者中FVC年下降率为−0.2%,而不使用吡非尼酮的UIP患者的FVC年下降率为−3.81%。这表明了,患有UIP型疾病的RA-ILD患者可以从吡非尼酮中获益最多[6] [31]。但这篇研究对DLCO下降的影响未能进行充分评估,且安慰剂组不仅病情明显加重,基线DLCO更低,基线纤维化程度更大,而且UIP模式也更丰富(78%对54%)。总的来说,这些因素可能导致这个研究中吡非尼酮的益处被夸大。与此同时,在Matteson等人发表的关于尼达尼治疗进行性纤维化ILD的INBUILD临床试验数据中,由于INBUILD试验丰富了ILD的UIP模式,因此试验中86.5%的RA-ILD患者具有UIP样疾病模式。总共评估了89例RA-ILD患者(42例使用尼达尼布,47例使用安慰剂)的数据,发现尼达尼布可减缓FVC下降的速度(尼达尼布组为−82.6 mL/年,安慰剂组为−199.3 mL/年,p = 0.037) [32]。虽然RA-ILD中的UIP模式与IPF相似更容易发生急性加重发作,但在RA-ILD的患者中也有约三分之一的NSIP患者,并且与UIP相比,NSIP与关节表现持续时间更长、疾病进展风险更低和治疗反应更好相关。但从生存期出发,相关研究提到与RA-ILD的非UIP模式相比,在RA患者中观察到的UIP模式预测的生存期更差[17] [33] [34]

尽管吡非尼酮和尼达尼布有抗纤维化治疗作用,但它们无法逆转现有纤维化、促进肺修复或降低死亡率。因此,迫切需要其他有效的治疗方法。所以除了上述的两种抗纤维化药物,还有其他潜在的抗纤维化治疗也可能在未来用于治疗RA-ILD上,如磷酸二酯酶4 (Pan-phosphodiesterase 4, PDE 4)抑制剂、外泌体、干细胞治疗法。其中PDE 4抑制剂与抗炎和抗纤维化作用相关,并且具有减少肺部疾病中的炎症和纤维化重塑的潜力。最新研究显示,在IPF患者中开展的一项II期临床研究中,优先使用PDE4B抑制剂BI 1015550在12周内预防了肺功能下降[35]。目前正在开展的随机化III期试验中评价BI 1015550与安慰剂相比至少52周的疗效,发现与安慰剂相比,BI 1015550治疗组患者的FVC显著改善[36]。除此之外,PDE 4抑制剂还被靶向用于各种炎性病症,包括哮喘、慢性阻塞性肺病、牛皮癣、特应性皮炎、炎性肠病、风湿性关节炎、狼疮和神经炎症[35] [36]。有关类风湿关节炎机制研究中提到PDE4可以调控人类RA滑膜炎性细胞因子和趋化因子释放[37]。所以基于PDE 4抑制剂不仅拥有抗纤维化作用而且可以调控关节炎的炎症,未来将它用于治疗RA-ILD也是有潜在可能的。干细胞具有自我更新和多向分化成不同细胞类型的能力,由于其多能性、低免疫原性和旁分泌作用,它已被广泛用于治疗多种疾病,包括急性和慢性肺损伤,其中间充质干细胞(Mesenchymal Stem Cell, MSC)被常用于纤维化研究中[38]-[40]。多个研究报道中提到,通过干细胞移植可以减少炎性细胞浸润和胶原沉积,促进受损肺的修复。在临床中大多数ILD患者都已经存在不同程度的肺纤维化。因此,修复受损的肺组织和逆转肺功能丧失的能力是治疗肺纤维化的关键目标。细胞外囊泡(Extracellular Vesicle, EV)是由细胞释放的膜结合囊泡,通过旁分泌或内分泌效应调节各种信号通路,在细胞间通讯中发挥关键作用,外泌体是EV的一种关键类型[41]-[44]。研究报道外泌体可能通过影响肺纤维化中的细胞外基质沉积、巨噬细胞表型转化、调节肺纤维化相关细胞因子等因素发挥抗纤维化作用[45]-[48]。EV衍生的组合物是肺部疾病的新兴治疗选择,研究表明,肺球状细胞衍生EV可以减少博来霉素或二氧化硅诱导的肺纤维化中的胶原沉积,并且抑制肌成纤维细胞的增殖[49],MSC衍生的EV可以逆转与慢性肺部疾病相关的炎症[50]。所以除了两种被FDA允许治疗肺纤维化的药物,其他潜在的抗纤维化也可能在未来为治疗RA-ILD提供治疗方向。

3. 免疫抑制剂治疗

免疫抑制剂是用于治疗类风湿性关节炎患者的早期药物,它可以通过减少导致肺纤维化的自身免疫反应来阻碍RA向RA-ILD的进展。尽管目前还没有FDA批准的免疫抑制剂用于改善RA-ILD患者的肺功能,但一些已经显示对类似或相关疾病有效的药物正在测试中,比如JAK抑制剂(Janus Kinase inhibitors, JAKi)、肿瘤坏死因子抑制剂、白介素-6受体拮抗剂等。因此,应考虑免疫抑制剂作为RA-ILD的合理治疗方法[51]

关于JAKi在RA-ILD中使用的现有数据有限,并且该人群的安全性尚未得到很好的确定。相关文献报道,在托法替尼(JAK1 & 3抑制剂)治疗RA患者中ILD的发病率为0.18/100[52],而在RA患者中ILD的总发病率0.21/100 [53],这两组数据差距较小,且在多个临床研究中也都建议RA-ILD患者谨慎使用JAKi [53]-[56]。但也有证据表明,JAKi可以稳定或改善RA-ILD患者的肺功能[53] [57],但尚未进行安慰剂对照试验。在一项对28例接受JAKi治疗的RA-ILD患者的回顾性分析中,在中位随访期间,89%的患者FVC %预测保持稳定(变化 ≤ 20%)或改善[54]。在另一项回顾性队列分析中发现与阿达木单抗相比,接受托法替尼治疗的患者ILD的发生率更低[58]。关于JAKi治疗RA-ILD患者的有效性及安全性,在一项系统评价和meta分析中提到,文献检索了7项评估JAKi治疗RA-ILD的安全性和疗效的观察性研究,以及3项分析JAKi治疗RA患者中新发ILD风险的研究中,发现接受JAKi治疗的患者发生原发性ILD的风险较低,发生率为0.20/1000人(95% CI: 0.14~0.25),与阿巴西普和利妥昔单抗比较表明安全性和疗效特征相似[59]。Komai研究团队通过报道JAKi巴瑞替尼联合强化免疫抑制成功治疗RA-ILD恶化的一项病例报告,提出巴瑞替尼可稳定RA-ILD急性加重,并表明这种治疗可以降低RA-ILD的致死性结局的风险[60]

除了JAK抑制剂,其他免疫调节剂也被评估用于治疗RA-ILD。例如,一项263例患者的多中心回顾性研究表明,在中位随访12~18个月期间,阿巴西普单独或与其他疗法联合治疗RA-ILD的患者中,80%的患者FVC和DLCO稳定或改善[61]。与此同时,Mena等人在116例RA-ILD患者的多中心前瞻性观察性研究中发现,阿巴西普、利妥昔单抗或托珠单抗与ILD进展/死亡风险降低相关[62]。而在另一项接受霉酚酸盐、硫唑嘌呤或利妥昔单抗治疗的RA-ILD患者的多中心回顾性研究中,利妥昔单抗似乎对限制DLCO下降具有最强的影响,尽管该组因UIP疾病而丰富[63]。值得注意的是,在免疫抑制的反应中,FVC和DLCO的轨迹在UIP型疾病患者中与非UIP型疾病患者中一样显著正向移动,这表明无论影像学模式如何,RA-ILD患者都应考虑免疫抑制剂治疗。无独有偶,在一项对非常规的DMARDs药物疗效进行系统评价和Meta分析中,其中非常规的DMARDs药物包括阿巴西普、利妥昔单抗、托珠单抗、肿瘤坏死因子和JAK抑制剂,文献提出使用非常规的DMARDs药物可能稳定FVC、FEV 1和DLCO值[64]

4. 常规DMARDs药物治疗及其他药物治疗

类风湿关节炎在发作的几周到几个月内开始抗风湿治疗已经被证明对疾病的预后至关重要,但是DMARDs治疗用于RA-ILD却是一个巨大的挑战[65]。因为在RA的许多治疗中,如DMARDs和生物制剂都有肺毒性,尽管这十分罕见,但也不得不让患者产生担忧,其中关于甲氨蝶呤(Methotrexate, MTX)这种药物对肺损伤的担忧是最明显的。MTX作为常规DMARDs药物被广泛应用于RA的临床治疗中,但它可能导致RA-ILD。然而也有些研究提出了相反的观点,他们提出MTX不仅与RA-ILD的发生无关,而且可能对RA-ILD的治疗是获益的[66]。相关研究报道MTX分为高剂量和低剂量来看待,高剂量常被用作化疗剂,剂量超过500 mg,而低剂量MTX是指每周使用剂量最高达25~30 mg,低剂量MTX常用于治疗各种非恶性自身免疫性炎症性疾病,其中包括RA,低剂量MTX与以前认为的肝和肺纤维化无关[67]。除此之外其他研究也提出类似的看法。在一项由22项随机对照试验组成的大型meta分析中,包括8584名RA患者,被均分为接受MTX治疗的患者和接受其他DMARD治疗的两组患者。虽然MTX组肺部感染的风险略有增加,(RR 1.11, 95% CI 1.02~1.21),但未发现MTX与ILD相关[68]。在一项对125例RA-ILD患者的回顾性分析发现使用甲氨蝶呤与FCV%预测值下降相关[69],并且在另一项接受甲氨蝶呤治疗的回顾性分析中也提到FVC可以获得改善[70]。除了单用甲氨蝶呤,也有最新研究提到体外实验中将甲氨蝶呤联合巴瑞替尼可以阻碍上皮-间质转化(Epithelial to Mesenchy-mal Transition, EMT)进展[71],而EMT是肺纤维化的关键事件。因此,与其担忧抗风湿药物对肺的毒性,不如将关键点放在RA症状本身的控制,因为相关文献认为在对RA的治疗中,炎症治疗不充分反而是驱动RA患者向ILD进展的核心关键[72]

除了DMARDs药物,在Albrecht等人的研究中,他们通过回顾2007年至2020年德国RA-ILD的药物处方,评估了常规DMARDs、糖皮质激素、镇痛药、阿片类药物和抗纤维化药物的使用情况。他们发现免疫抑制剂的使用量在增加,与此同时抗纤维化药物的使用量也是在增加的,而糖皮质激素和非甾体抗炎药物的使用情况是有所下降[73]。在另一项回顾性研究中发现在具有UIP模式的RA患者中,其中84例患者中有一半单独使用糖皮质激素或联合使用其他免疫抑制药物可改善或稳定病情[28],但考虑到激素的毒副作用,包括感染和骨质疏松的风险,长期使用皮质类固醇治疗是不鼓励的。

5. 总结与展望

RA-ILD是一种预后不良的疾病,具有相当高的死亡率,控制炎症和纤维化具有重要意义。本文综述了目前临床试验中用于治疗RA-ILD的药物,这包括了抗纤维化治疗、免疫抑制剂治疗等其他治疗方法。对于RA-ILD患者,目标应该是缓解RA和阻止ILD的进展。目前抗纤维化治疗已被证明可以减缓纤维化性ILD的进展,抗纤维化药物尼达尼布、吡非尼酮已被批准用于治疗由ILD引起的进行性肺纤维化患者,但目前也有其他的抗纤维化治疗应用于ILD的治疗中,比如PDE 4抑制剂、外泌体、干细胞,这都可能在未来用于RA-ILD的治疗。在IPF的治疗中暂不推荐患者使用免疫抑制剂,但在RA-ILD患者的治疗方法中包括免疫抑制剂,因为该疾病源于自身免疫性疾病。此外,免疫抑制对RA-ILD的患者有改善肺功能的潜力。无论是单用抗纤维化药物或免疫抑制剂治疗,还是两者联合,这都为RA-ILD的治疗提供了方向。这些趋势表明治疗RA-ILD的实践模式正在发生变化,仍需要多中心临床试验来解决各种治疗方案的有效性和安全性问题。

NOTES

*通讯作者。

参考文献

[1] Liang, M., Matteson, E.L., Abril, A. and Distler, J.H.W. (2022) The Role of Antifibrotics in the Treatment of Rheumatoid Arthritis-Associated Interstitial Lung Disease. Therapeutic Advances in Musculoskeletal Disease, 14.
https://doi.org/10.1177/1759720x221074457
[2] Safiri, S., Kolahi, A.A., Hoy, D., Smith, E., Bettampadi, D., Mansournia, M.A., et al. (2019) Global, Regional and National Burden of Rheumatoid Arthritis 1990-2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Annals of the Rheumatic Diseases, 78, 1463-1471.
https://doi.org/10.1136/annrheumdis-2019-215920
[3] Turesson, C., O’Fallon, W.M., Crowson, C.S., Gabriel, S.E. and Matteson, E.L. (2003) Extra-Articular Disease Manifestations in Rheumatoid Arthritis: Incidence Trends and Risk Factors over 46 Years. Annals of the Rheumatic Diseases, 62, 722-727.
https://doi.org/10.1136/ard.62.8.722
[4] Suda, T. (2015) Up-to-Date Information on Rheumatoid Arthritis-Associated Interstitial Lung Disease. Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine, 9, CCRPM.S23289.
https://doi.org/10.4137/ccrpm.s23289
[5] Farquhar, H., Vassallo, R., Edwards, A.L. and Matteson, E.L. (2019) Pulmonary Complications of Rheumatoid Arthritis. Seminars in Respiratory and Critical Care Medicine, 40, 194-207.
https://doi.org/10.1055/s-0039-1683995
[6] Spagnolo, P., Lee, J.S., Sverzellati, N., Rossi, G. and Cottin, V. (2018) The Lung in Rheumatoid Arthritis: Focus on Interstitial Lung Disease. Arthritis & Rheumatology, 70, 1544-1554.
https://doi.org/10.1002/art.40574
[7] Koduri, G. and Solomon, J.J. (2023) Identification, Monitoring, and Management of Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis & Rheumatology, 75, 2067-2077.
https://doi.org/10.1002/art.42640
[8] Yamakawa, H., Sato, S., Nishizawa, T., Kawabe, R., Oba, T., Kato, A., et al. (2020) Impact of Radiological Honeycombing in Rheumatoid Arthritis-Associated Interstitial Lung Disease. BMC Pulmonary Medicine, 20, Article No. 25.
https://doi.org/10.1186/s12890-020-1061-x
[9] Bongartz, T., Nannini, C., Medina‐Velasquez, Y.F., Achenbach, S.J., Crowson, C.S., Ryu, J.H., et al. (2010) Incidence and Mortality of Interstitial Lung Disease in Rheumatoid Arthritis: A Population‐Based Study. Arthritis & Rheumatism, 62, 1583-1591.
https://doi.org/10.1002/art.27405
[10] Narváez, J., Díaz del Campo Fontecha, P., Brito García, N., Bonilla, G., Aburto, M., Castellví, I., et al. (2022) SER-SEPAR Recommendations for the Management of Rheumatoid Arthritis-Related Interstitial Lung Disease. Part 2: Treatment. Reumatología Clínica (English Edition), 18, 501-512.
https://doi.org/10.1016/j.reumae.2022.03.004
[11] Yu, K., Chen, H., Cheng, T., Jan, Y., Weng, M., Lin, Y., et al. (2022) Consensus Recommendations on Managing the Selected Comorbidities Including Cardiovascular Disease, Osteoporosis, and Interstitial Lung Disease in Rheumatoid Arthritis. Medicine, 101, e28501.
https://doi.org/10.1097/md.0000000000028501
[12] Hyldgaard, C., Ellingsen, T., Hilberg, O. and Bendstrup, E. (2019) Rheumatoid Arthritis-Associated Interstitial Lung Disease: Clinical Characteristics and Predictors of Mortality. Respiration, 98, 455-460.
https://doi.org/10.1159/000502551
[13] Zamora-Legoff, J.A., Krause, M.L., Crowson, C.S., Ryu, J.H. and Matteson, E.L. (2016) Patterns of Interstitial Lung Disease and Mortality in Rheumatoid Arthritis. Rheumatology, 56, 344-350.
https://doi.org/10.1093/rheumatology/kew391
[14] Brooks, R., Baker, J.F., Yang, Y., Roul, P., Kerr, G.S., Reimold, A.M., et al. (2022) The Impact of Disease Severity Measures on Survival in U.S. Veterans with Rheumatoid Arthritis-Associated Interstitial Lung Disease. Rheumatology, 61, 4667-4677.
[15] Sparks, J.A., Jin, Y., Cho, S., Vine, S., Desai, R., Doyle, T.J., et al. (2021) Prevalence, Incidence and Cause-Specific Mortality of Rheumatoid Arthritis–associated Interstitial Lung Disease among Older Rheumatoid Arthritis Patients. Rheumatology, 60, 3689-3698.
https://doi.org/10.1093/rheumatology/keaa836
[16] Qiu, M., Jiang, J., Nian, X., Wang, Y., Yu, P., Song, J., et al. (2021) Factors Associated with Mortality in Rheumatoid Arthritis-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Respiratory Research, 22, Article No. 264.
https://doi.org/10.1186/s12931-021-01856-z
[17] Kim, E.J., Elicker, B.M., Maldonado, F., Webb, W.R., Ryu, J.H., Van Uden, J.H., et al. (2009) Usual Interstitial Pneumonia in Rheumatoid Arthritis-Associated Interstitial Lung Disease. European Respiratory Journal, 35, 1322-1328.
https://doi.org/10.1183/09031936.00092309
[18] Raghu, G., Remy-Jardin, M., Richeldi, L., Thomson, C.C., Inoue, Y., Johkoh, T., et al. (2022) Idiopathic Pulmonary Fibrosis (an Up-date) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 205, e18-e47.
[19] Huang, S., Kronzer, V.L., Dellaripa, P.F., Deane, K.D., Bolster, M.B., Nagaraja, V., et al. (2020) Rheumatoid Arthritis–associated Interstitial Lung Disease: Current Update on Prevalence, Risk Factors, and Pharmacologic Treatment. Current Treatment Options in Rheumatology, 6, 337-353.
https://doi.org/10.1007/s40674-020-00160-z
[20] Bendstrup, E., Møller, J., Kronborg-White, S., Prior, T.S. and Hyldgaard, C. (2019) Interstitial Lung Disease in Rheumatoid Arthritis Remains a Challenge for Clinicians. Journal of Clinical Medicine, 8, Article 2038.
https://doi.org/10.3390/jcm8122038
[21] England, B.R. and Hershberger, D. (2020) Management Issues in Rheumatoid Arthritis-Associated Interstitial Lung Disease. Current Opinion in Rheumatology, 32, 255-263.
https://doi.org/10.1097/bor.0000000000000703
[22] George, P.M., Spagnolo, P., Kreuter, M., Altinisik, G., Bonifazi, M., Martinez, F.J., et al. (2020) Progressive Fibrosing Interstitial Lung Disease: Clinical Uncertainties, Consensus Recommendations, and Research Priorities. The Lancet Respiratory Medicine, 8, 925-934.
https://doi.org/10.1016/s2213-2600(20)30355-6
[23] King, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., et al. (2014) A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2083-2092.
https://doi.org/10.1056/nejmoa1402582
[24] Flaherty, K.R., Wells, A.U., Cottin, V., Devaraj, A., Walsh, S.L.F., Inoue, Y., et al. (2019) Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine, 381, 1718-1727.
https://doi.org/10.1056/nejmoa1908681
[25] Kadura, S. and Raghu, G. (2021) Rheumatoid Arthritis-Interstitial Lung Disease: Manifestations and Current Concepts in Pathogenesis and Management. European Respiratory Review, 30, Article ID: 210011.
https://doi.org/10.1183/16000617.0011-2021
[26] Solomon, J.J., Danoff, S.K., Woodhead, F.A., Hurwitz, S., Maurer, R., Glaspole, I., et al. (2023) Safety, Tolerability, and Efficacy of Pirfenidone in Patients with Rheumatoid Arthritis-Associated Interstitial Lung Disease: A Randomised, Double-Blind, Place-Bo-Controlled, Phase 2 Study. The Lancet Respiratory Medicine, 11, 87-96.
[27] Yang, M., Wu, Y., Liu, X., Zhao, C., Li, T., Li, T., et al. (2023) Efficacy and Safety of Antifibrotic Agents in the Treatment of CTD-ILD and RA-ILD: A Systematic Review and Meta-Analysis. Respiratory Medicine, 216, Article ID: 107329.
https://doi.org/10.1016/j.rmed.2023.107329
[28] Matteson, E.L., Kelly, C., Distler, J.H.W., Hoffmann‐Vold, A., Seibold, J.R., Mittoo, S., et al. (2022) Nintedanib in Patients with Autoimmune Disease-Related Progressive Fibrosing Interstitial Lung Diseases: Subgroup Analysis of the inbuild Trial. Arthritis & Rheumatology, 74, 1039-1047.
https://doi.org/10.1002/art.42075
[29] Noble, P.W., Albera, C., Bradford, W.Z., Costabel, U., Glassberg, M.K., Kardatzke, D., et al. (2011) Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis (CAPACITY): Two Randomised Trials. The Lancet, 377, 1760-1769.
https://doi.org/10.1016/s0140-6736(11)60405-4
[30] Juge, P., Hayashi, K., McDermott, G.C., Vanni, K.M.M., Kowalski, E., Qian, G., et al. (2024) Effectiveness and Tolerability of Antifibrotics in Rheumatoid Arthritis-Associated Interstitial Lung Disease. Seminars in Arthritis and Rheumatism, 64, Article ID: 152312.
https://doi.org/10.1016/j.semarthrit.2023.152312
[31] Nurmi, H.M., Purokivi, M.K., Kärkkäinen, M.S., Kettunen, H., Selander, T.A. and Kaarteenaho, R.L. (2016) Variable Course of Disease of Rheumatoid Arthritis-Associated Usual Interstitial Pneumonia Compared to Other Subtypes. BMC Pulmonary Medicine, 16, Article No. 107.
https://doi.org/10.1186/s12890-016-0269-2
[32] Wells, A.U., Flaherty, K.R., Brown, K.K., Inoue, Y., Devaraj, A., Richeldi, L., et al. (2020) Nintedanib in Patients with Progressive Fibrosing Interstitial Lung Diseases-Subgroup Analyses by Interstitial Lung Disease Diagnosis in the INBUILD Trial: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Trial. The Lancet Respiratory Medicine, 8, 453-460.
[33] Tsuchiya, Y., Takayanagi, N., Sugiura, H., Miyahara, Y., Tokunaga, D., Kawabata, Y., et al. (2010) Lung Diseases Directly Associated with Rheumatoid Arthritis and Their Relationship to Outcome. European Respiratory Journal, 37, 1411-1417.
https://doi.org/10.1183/09031936.00019210
[34] Solomon, J.J., Chung, J.H., Cosgrove, G.P., Demoruelle, M.K., Fernandez-Perez, E.R., Fischer, A., et al. (2015) Predictors of Mortality in Rheumatoid Arthritis-Associated Interstitial Lung Disease. European Respiratory Journal, 47, 588-596.
https://doi.org/10.1183/13993003.00357-2015
[35] Chambers, R.C. (2022) Preferential PDE4B Inhibition—A Step toward a New Treatment for Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 386, 2235-2236.
https://doi.org/10.1056/nejme2205411
[36] Kolb, M., Crestani, B. and Maher, T.M. (2023) Phosphodiesterase 4B Inhibition: A Potential Novel Strategy for Treating Pulmonary Fibrosis. European Respiratory Review, 32, Article ID: 220206.
https://doi.org/10.1183/16000617.0206-2022
[37] Crilly, A., Robertson, S.E., Reilly, J.H., Gracie, J.A., Lai, W., Leung, B.P., et al. (2011) Phosphodiesterase 4 (PDE4) Regulation of Proinflammatory Cytokine and Chemokine Release from Rheumatoid Synovial Membrane. Annals of the Rheumatic Diseases, 70, 1130-1137.
https://doi.org/10.1136/ard.2010.134825
[38] Mirzaei, H., Sahebkar, A., Sichani, L.S., Moridikia, A., Nazari, S., Sadri Nahand, J., et al. (2017) Therapeutic Application of Multipotent Stem Cells. Journal of Cellular Physiology, 233, 2815-2823.
https://doi.org/10.1002/jcp.25990
[39] Sneddon, J.B., Tang, Q., Stock, P., Bluestone, J.A., Roy, S., Desai, T., et al. (2018) Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell, 22, 810-823.
https://doi.org/10.1016/j.stem.2018.05.016
[40] Kim, M.Y., Yu, K., Kenderian, S.S., Ruella, M., Chen, S., Shin, T., et al. (2018) Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell, 173, 1439-1453.e19.
https://doi.org/10.1016/j.cell.2018.05.013
[41] Fujita, Y. (2022) Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis and Therapeutics. Inflammation and Regeneration, 42, Article No. 23.
https://doi.org/10.1186/s41232-022-00210-0
[42] Quan, Y., Wang, Z., Gong, L., Peng, X., Richard, M.A., Zhang, J., et al. (2017) Exosome miR-371b-5p Promotes Proliferation of Lung Alveolar Progenitor Type II Cells by Using PTEN to Orchestrate the PI3K/Akt Signaling. Stem Cell Research & Therapy, 8, Article No. 138.
https://doi.org/10.1186/s13287-017-0586-2
[43] Mathieu, M., Martin-Jaular, L., Lavieu, G. and Théry, C. (2019) Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nature Cell Biology, 21, 9-17.
https://doi.org/10.1038/s41556-018-0250-9
[44] Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750.
[45] Zhu, L., Chen, Y., Chen, M. and Wang, W. (2021) Mechanism of Mir-204-5p in Exosomes Derived from Bronchoalveolar Lavage Fluid on the Progression of Pulmonary Fibrosis via Ap1s2. Annals of Translational Medicine, 9, 1068-1068.
https://doi.org/10.21037/atm-20-8033
[46] Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., et al. (2019) Mesenchymal Stromal Cell Exosomes Prevent and Revert Experimental Pulmonary Fibrosis through Modulation of Monocyte Phenotypes. JCI Insight, 4, e128060.
https://doi.org/10.1172/jci.insight.128060
[47] Yi, X., Wei, X., Lv, H., An, Y., Li, L., Lu, P., et al. (2019) Exosomes Derived from MicroRNA-30b-3p-Overexpressing Mesenchymal Stem Cells Protect against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting SAA3. Experimental Cell Research, 383, Article ID: 111454.
https://doi.org/10.1016/j.yexcr.2019.05.035
[48] Guiot, J., Cambier, M., Boeckx, A., Henket, M., Nivelles, O., Gester, F., et al. (2020) Macrophage-Derived Exosomes Attenuate Fibrosis in Airway Epithelial Cells through Delivery of Antifibrotic miR-142-3p. Thorax, 75, 870-881.
https://doi.org/10.1136/thoraxjnl-2019-214077
[49] Martin-Medina, A., Lehmann, M., Burgy, O., Hermann, S., Baarsma, H.A., Wagner, D.E., et al. (2018) Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 198, 1527-1538.
https://doi.org/10.1164/rccm.201708-1580oc
[50] Fujita, Y., Kadota, T., Araya, J., Ochiya, T. and Kuwano, K. (2018) Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. Journal of Clinical Medicine, 7, Article 355.
https://doi.org/10.3390/jcm7100355
[51] Jeong, E., Hong, H., Lee, Y. and Kim, K. (2024) Potential Rheumatoid Arthritis-Associated Interstitial Lung Disease Treatment and Computational Approach for Future Drug Development. International Journal of Molecular Sciences, 25, Article 2682.
https://doi.org/10.3390/ijms25052682
[52] Citera, G., Mysler, E., Madariaga, H., Cardiel, M.H., Castañeda, O., Fischer, A., et al. (2020) Incidence Rates of Interstitial Lung Disease Events in Tofacitinib-Treated Rheumatoid Arthritis Patients. JCR: Journal of Clinical Rheumatology, 27, e482-e490.
https://doi.org/10.1097/rhu.0000000000001552
[53] Herrinton, L.J., Harrold, L.R., Liu, L., Raebel, M.A., Taharka, A., Winthrop, K.L., et al. (2013) Association between Anti‐Tnf‐α Therapy and Interstitial Lung Disease. Pharmacoepidemiology and Drug Safety, 22, 394-402.
https://doi.org/10.1002/pds.3409
[54] Venerito, V., Manfredi, A., Carletto, A., Gentileschi, S., Atzeni, F., Guiducci, S., et al. (2023) Evolution of Rheumatoid-Arthritis-Associated Interstitial Lung Disease in Patients Treated with JAK Inhibitors: A Retrospective Exploratory Study. Journal of Clinical Medicine, 12, Article 957.
[55] Ytterberg, S.R., Bhatt, D.L., Mikuls, T.R., Koch, G.G., Fleischmann, R., Rivas, J.L., et al. (2022) Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. New England Journal of Medicine, 386, 316-326.
https://doi.org/10.1056/nejmoa2109927
[56] Palomäki, A., Palotie, A., Koskela, J., Eklund, K.K., Pirinen, M., Ripatti, S., et al. (2021) Lifetime Risk of Rheumatoid Arthritis-Associated Interstitial Lung Disease in MUC5B Mutation Carriers. Annals of the Rheumatic Diseases, 80, 1530-1536.
https://doi.org/10.1136/annrheumdis-2021-220698
[57] Tardella, M., Di Carlo, M., Carotti, M., Ceccarelli, L., Giovagnoni, A. and Salaffi, F. (2022) A Retrospective Study of the Efficacy of JAK Inhibitors or Abatacept on Rheumatoid Arthritis-Interstitial Lung Disease. Inflammopharmacology, 30, 705-712.
https://doi.org/10.1007/s10787-022-00936-w
[58] Baker, M.C., Liu, Y., Lu, R., Lin, J., Melehani, J. and Robinson, W.H. (2023) Incidence of Interstitial Lung Disease in Patients with Rheumatoid Arthritis Treated with Biologic and Targeted Synthetic Disease-Modifying Antirheumatic Drugs. JAMA Network Open, 6, e233640.
https://doi.org/10.1001/jamanetworkopen.2023.3640
[59] Narváez, J., Aguilar-Coll, M., Roig-Kim, M., Maymó-Paituvi, P., Palacios-Olid, J., Nolla, J.M., et al. (2024) Janus Kinase Inhibitors in Rheumatoid Arthritis-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Autoimmunity Reviews, 23, Article ID: 103636.
https://doi.org/10.1016/j.autrev.2024.103636
[60] Komai, T., Sawada, T., Tsuchiya, H., Harada, H., Shoda, H. and Fujio, K. (2023) Resolution of Exacerbated Rheumatoid Arthritis-Associated Interstitial Lung Disease under Baricitinib Treatment. Scandinavian Journal of Rheumatology, 53, 146-148.
https://doi.org/10.1080/03009742.2023.2274707
[61] Fernández-Díaz, C., Atienza-Mateo, B., Castañeda, S., Melero-Gonzalez, R.B., Ortiz-SanJuan, F., Loricera, J., et al. (2021) Abatacept in Monotherapyvscombined in Interstitial Lung Disease of Rheumatoid Arthritis—Multicentre Study of 263 Caucasian Patients. Rheumatology, 61, 299-308.
https://doi.org/10.1093/rheumatology/keab317
[62] Mena-Vázquez, N., Rojas-Gimenez, M., Romero-Barco, C.M., Manrique-Arija, S., Francisco, E., Aguilar-Hurtado, M.C., et al. (2021) Predictors of Progression and Mortality in Patients with Prevalent Rheumatoid Arthritis and Interstitial Lung Disease: A Prospective Cohort Study. Journal of Clinical Medicine, 10, Article 874.
https://doi.org/10.3390/jcm10040874
[63] Matson, S.M., Baqir, M., Moua, T., Marll, M., Kent, J., Iannazzo, N.S., et al. (2023) Treatment Outcomes for Rheumatoid Arthritis-Associated Interstitial Lung Disease. Chest, 163, 861-869.
https://doi.org/10.1016/j.chest.2022.11.035
[64] Kerschbaumer, A., Sepriano, A., Bergstra, S.A., Smolen, J.S., van der Heijde, D., Caporali, R., et al. (2023) Efficacy of Synthetic and Biological Dmards: A Systematic Literature Review Informing the 2022 Update of the EULAR Recommendations for the Management of Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 82, 95-106.
https://doi.org/10.1136/ard-2022-223365
[65] Di Matteo, A., Bathon, J.M. and Emery, P. (2023) Rheumatoid Arthritis. The Lancet, 402, 2019-2033.
https://doi.org/10.1016/s0140-6736(23)01525-8
[66] Fragoulis, G.E., Conway, R. and Nikiphorou, E. (2019) Methotrexate and Interstitial Lung Disease: Controversies and Questions. a Narrative Review of the Literature. Rheumatology, 58, 1900-1906.
https://doi.org/10.1093/rheumatology/kez337
[67] Gupta, K. and Ravindran, V. (2025) Low-Dose Methotrexate in Rheumatology: A Reinvented Drug. Journal of the Royal College of Physicians of Edinburgh, 55, 59-68.
https://doi.org/10.1177/14782715241312256
[68] Conway, R., Low, C., Coughlan, R.J., O’Donnell, M.J. and Carey, J.J. (2014) Methotrexate and Lung Disease in Rheumatoid Arthritis: A Meta‐Analysis of Randomized Controlled Trials. Arthritis & Rheumatology, 66, 803-812.
https://doi.org/10.1002/art.38322
[69] Kim, K., Woo, A., Park, Y., Yong, S.H., Lee, S.H., Lee, S.H., et al. (2022) Protective Effect of Methotrexate on Lung Function and Mortality in Rheumatoid Arthritis-Related Interstitial Lung Disease: A Retrospective Cohort Study. Therapeutic Advances in Respiratory Disease, 16.
https://doi.org/10.1177/17534666221135314
[70] Rojas-Serrano, J., González-Velásquez, E., Mejía, M., Sánchez-Rodríguez, A. and Carrillo, G. (2012) Interstitial Lung Disease Related to Rheumatoid Arthritis: Evolution after Treatment. Reumatología Clínica, 8, 68-71.
https://doi.org/10.1016/j.reuma.2011.12.008
[71] Kurushima, S., Koga, T., Umeda, M., Iwamoto, N., Miyashita, R., Tokito, T., et al. (2024) Impact of Janus Kinase Inhibitors and Methotrexate on Interstitial Lung Disease in Rheumatoid Arthritis Patients. Frontiers in Immunology, 15, Article 1501146.
https://doi.org/10.3389/fimmu.2024.1501146
[72] Robles-Pérez, A., Luburich, P., Bolivar, S., Dorca, J., Nolla, J.M., Molina-Molina, M., et al. (2020) A Prospective Study of Lung Disease in a Cohort of Early Rheumatoid Arthritis Patients. Scientific Reports, 10, Article No. 15640.
https://doi.org/10.1038/s41598-020-72768-z
[73] Albrecht, K., Strangfeld, A., Marschall, U. and Callhoff, J. (2023) Interstitial Lung Disease in Rheumatoid Arthritis: Incidence, Prevalence and Related Drug Prescriptions between 2007 and 2020. RMD Open, 9, e002777.
https://doi.org/10.1136/rmdopen-2022-002777