草酸钙结石形成机制及防治的研究进展
Advances in Calcium Oxalate Stone Formation and Prevention
DOI: 10.12677/acm.2025.1541315, PDF, HTML, XML,   
作者: 雷祥安:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;王晓宁*:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;赣南医科大学第一附属医院泌尿外科,江西 赣州
关键词: CaOx结石形成机制防治Calcium Oxalate Stone Management Formation
摘要: 草酸钙(Calcium Oxalate, CaOx)结石是泌尿系统结石中最为常见的一种类型,严重影响患者的健康和生活质量。本文旨在对CaOx结石的形成机制及防治的研究进展进行综述,阐述了CaOx结石形成的多种机制,包括尿液成分异常、晶体形成与生长、抑制物缺乏等方面,并介绍目前临床及研究中针对CaOx结石的防治方法,为临床实践及进一步研究提供参考。
Abstract: Calcium oxalate stones, the most common type of urinary stones, significantly affect patient health and quality of life. This review summarizes advances in understanding their formation mechanisms—including abnormal urine components, crystal formation/growth, and inhibitor deficiency—and current prevention/treatment strategies such as dietary modifications, hydration, pharmacological interventions, and minimally invasive procedures. These insights aim to guide clinical practice and future research.
文章引用:雷祥安, 王晓宁. 草酸钙结石形成机制及防治的研究进展[J]. 临床医学进展, 2025, 15(4): 3429-3436. https://doi.org/10.12677/acm.2025.1541315

1. 引言

泌尿系结石作为泌尿系统最为常见的疾病,在我国有众多的患者。流行病学统计结果显示,全国泌尿系结石的发病率为1%~5%,南方地区的发病率高于北方地区,为5%~10%。泌尿系结石的成分有很多种类,主要分为CaOx、磷酸钙、胱氨酸、尿酸等类型的结石,且临床上常见的结石往往都不是单一成份的,主要以混合型的结石呈现。其中以CaOx为主要成分的结石所占比例最高,约占所有结石类型的70%~80% [1] [2]。近年来,CaOx结石的复发率一直处于较高水平,术后10年复发率约为20%~50%,术后20年为30%~50%的概率复发[3] [4]。CaOx结石的形成不仅给患者带来了肾绞痛、腰痛、血尿等身体上的痛苦,还可能导致泌尿系统梗阻、肾积水、感染等严重并发症[5],影响肾脏功能,重度肾积水可能导致肾脏功能结构大部分被破坏,被迫行患肾切除术,进一步增加了病人及社会的医疗负担。因此,深入了解CaOx结石的形成机制,对于开发有效的防治策略及进一步研究具有重要意义。

2. CaOx结石形成的机制

2.1. 尿液成分异常

2.1.1. 高草酸尿

草酸是CaOx结石形成的关键因素之一。正常情况下,体内草酸来源主要有内源性和外源性。内源性草酸由体内的甘氨酸、维生素C等代谢产生,约占人体草酸来源的80% [6];外源性草酸主要来自食物中的草酸盐,如菠菜、豆类、葡萄、茶叶等。如果摄入过多草酸盐或内源性草酸生成过多,超过肾脏的排泄能力,就会导致尿液中草酸浓度过高[7]

肠道吸收草酸过多常见于短肠综合征、小肠切除术后等肠道疾病患者。在正常肠道中,草酸与钙离子结合形成不溶性CaOx,减少草酸吸收。但肠道疾病患者肠道内环境改变,肠道菌群失调,胆盐吸收障碍,导致肠道对草酸盐的吸收增加,进而使尿液中草酸浓度升高[8]。研究表明,短肠综合征患者尿液草酸排泄量可比正常人高出2~3倍[9]

人体内草酸主要由肝脏通过甘氨酸、羟脯氨酸等前体物质合成。当体内某些代谢途径异常时,如乙醛酸代谢障碍,可导致内源性草酸合成增加。乙醛酸在正常代谢过程中可通过乙醛酸脱氢酶等作用转化为其他物质,但在原发性高草酸尿症患者中,由于编码乙醛酸脱氢酶等关键酶的基因突变,导致酶活性降低或缺失,乙醛酸不能正常代谢,大量转化为草酸,使得内源性草酸合成显著增加[10] [11]

肾脏是草酸排泄的主要器官,当肾脏功能受损或肾小管对草酸的重吸收和分泌功能异常时,也会引起高草酸尿。肾小管上皮细胞存在多种草酸转运蛋白,负责草酸的重吸收和分泌。当这些转运蛋白功能异常时,可导致肾脏对草酸的排泄失衡,引起高草酸尿[12]

2.1.2. 高钙尿

在CaOx结石患者群体中,高钙尿症是一个普遍现象,近30%的此类患者存在钙代谢异常[13]。尽管钙元素能够提升尿液中离子的活性并增强CaOx、磷酸钙晶体的过饱和状态,但当尿钙浓度超标时反而会引发螯合反应。而且,钙离子还会通过中和尿路结石抑制因子的作用,间接加速结晶沉积过程。

甲状旁腺功能亢进是导致高钙尿的重要原因之一,甲状旁腺激素(PTH)分泌过多,促进骨钙动员,使血钙升高,进而导致尿钙排泄增加。PTH通过与成骨细胞表面的PTH受体结合,激活一系列细胞内信号通路,促进破骨细胞活性,加速骨吸收,使骨钙释放进入血液,导致血钙升高[14]

此外,维生素D代谢异常也可引起高钙尿。维生素D在体内经羟化作用转化为具有活性的1,25-二羟维生素D3,它可促进肠道对钙的吸收,同时也可作用于肾脏,增加肾小管对钙的重吸收[15]。当维生素D代谢异常,如维生素D中毒或一些遗传性维生素D抵抗综合征时,可导致肠道钙吸收增加以及肾小管对钙的重吸收异常,引起高钙尿。肾小管重吸收钙功能障碍也是高钙尿的原因之一。肾小管对钙的重吸收主要发生在近端小管、髓袢升支粗段和远端小管[16]。在这些部位,存在多种钙离子转运蛋白,这些转运蛋白主要负责钙离子的跨膜转运。当这些转运蛋白功能异常时,可导致肾小管对钙的重吸收减少,尿钙排泄增加。

2.1.3. 其他成分异常

除了草酸和钙,尿液中其他成分的异常也与CaOx结石的形成有关。例如,高尿酸尿可通过异质成核促进CaOx晶体的形成[17]。尿酸在尿液中以尿酸盐的形式存在,当尿液pH值降低时,尿酸盐溶解度下降,容易形成尿酸结晶。这些尿酸结晶可作为CaOx晶体形成的核心,通过异质成核作用促进CaOx晶体的形成。

胱氨酸尿症患者由于肾小管对胱氨酸等氨基酸的转运障碍,导致尿液中胱氨酸浓度升高,胱氨酸结晶可作为CaOx结石形成的核心。胱氨酸是一种含硫氨基酸,在肾小管上皮细胞中,通过特定的转运蛋白进行重吸收。当这些转运蛋白发生基因突变时,其转运功能受损,导致胱氨酸在尿液中大量积聚,形成胱氨酸结晶,进而促进CaOx结石的形成[18]

低枸橼酸尿症作为CaOx结石形成的重要致病机制,其病理机制主要在于枸橼酸根离子与游离钙离子的特异性结合作用。在正常生理条件下,二者通过配位化学作用形成稳定的五元环状络合物,这种水溶性螯合物的生成可显著降低尿液中钙离子的活性浓度[19],使尿钙饱和度维持在临界和稳定阈值之下。当尿液中枸橼酸浓度不足时,这种重要的代谢调节作用被削弱,导致钙离子过饱和指数升高,促使CaOx晶体的异相成核[20]。此外,枸橼酸盐还能通过竞争性吸附作用改变晶体表面电荷分布,抑制晶体的聚集生长和固相转化过程。值得注意的是,这种离子螯合效应不仅能直接降低钙离子的生物利用度,还能通过维持尿液过饱和状态的动态平衡,有效阻止晶体晶核的形成及其后续的链式生长反应,从而在多个维度上发挥抑制CaOx结石形成的生理保护作用[21]。正常情况下,尿液中的枸橼酸主要来源于肾脏的合成和分泌。当肾脏功能受损或一些代谢性疾病影响枸橼酸的合成和分泌时,可导致低枸橼酸尿。

2.2. 晶体形成与生长

2.2.1. 成核作用

成核是CaOx结石形成的起始步骤,分为均相成核和异相成核。均相成核是指当尿液中草酸根离子和钙离子浓度超过其溶解度时,在没有任何外来物质的情况下,自发形成CaOx晶核的过程[22]。然而,在生理状态下,尿液中存在多种抑制物,如枸橼酸、镁离子、尿调节素等,这些抑制物可吸附在晶体表面,阻止离子进一步聚集,从而增加了均相成核的能量屏障,使得均相成核相对较难发生。

异相成核则是在尿液中存在的外来物质,如细胞碎片、细菌、蛋白质等表面,CaOx晶体更容易形成晶核。这些外来物质为CaOx晶体的形成提供了模板,降低了成核的能量屏障。研究发现,在泌尿系统感染患者中,CaOx结石的发病率明显升高,可能与细菌介导的异相成核有关[23]

此外,尿液中的一些蛋白质,如骨桥蛋白(OPN),也可影响成核过程。OPN是一种带负电荷的糖蛋白,可与CaOx晶体表面结合,改变晶体表面的电荷分布,促进晶体的聚集和生长,从而间接影响成核过程。

2.2.2. 晶体生长与聚集

一旦晶核形成,在适宜的尿液环境中,CaOx晶体将不断生长。晶体生长的速度取决于尿液中草酸根离子和钙离子的浓度、过饱和度以及晶体表面的活性位点等因素[24]。过饱和度是影响晶体生长的关键因素,当尿液中草酸根离子和钙离子浓度超过其溶解度时,形成过饱和状态,驱动晶体生长[25]。同时,晶体之间还会发生聚集现象,多个晶体相互结合形成更大的聚集体,这些聚集体进一步发展就可能形成结石。此外,尿液的pH值也会影响晶体的生长和聚集。CaOx晶体在不同pH值环境下的溶解度和晶体结构会发生变化[26]。在酸性环境下,CaOx晶体以一水合物形式为主,其溶解度相对较低,更容易生长和聚集;而在碱性环境下,CaOx晶体以二水合物形式为主,溶解度相对较高,晶体生长和聚集相对较慢。

2.3. 抑制物缺乏

尿液中存在多种抑制CaOx结石形成的物质,如枸橼酸、镁离子、焦磷酸盐、骨桥蛋白、尿调节素等。这些抑制物通过不同的机制发挥作用,如降低尿液中离子的活性、抑制晶体的成核、生长和聚集等。

3. CaOx结石的防治

3.1. 饮食调整

3.1.1. 限制草酸摄入

减少富含草酸食物的摄入是预防CaOx结石的重要措施之一。常见的高草酸食物包括菠菜、巧克力、坚果、茶等。菠菜中草酸含量较高,每100 g菠菜中草酸含量可达600~1000 mg [27]-[30]。通过限制这些食物的摄入,可以降低尿液中草酸的浓度,减少CaOx结石形成的风险。然而,过度限制草酸摄入可能会导致营养不均衡,因此应在保证营养的前提下,合理控制草酸的摄入量。例如,可以通过水焯等烹饪方式去除部分食物中的草酸,降低其草酸含量[31]

3.1.2. 适当补钙

传统观点认为高钙饮食可能促进CaOx结石生成,但最新研究表明,适量钙摄入可在肠道中与草酸结合生成难溶性CaOx,抑制草酸吸收,从而有效降低尿草酸水平[32]。建议每天摄入适量的钙(800~1200 mg),可通过饮食或钙剂补充。富含钙的食物有牛奶、豆制品、鱼虾等。但对于甲状旁腺功能亢进等引起的高钙尿患者,应在医生指导下调整钙的摄入量,避免血钙进一步升高。

3.1.3. 增加液体摄入

通过大量饮水是预防CaOx结石最简单有效的方法。增加液体摄入可以稀释尿液,降低尿液中草酸根离子、钙离子等结石成分的浓度,减少晶体形成的机会[32]。建议每天饮水量不少于2000 mL,使每天的尿量保持在2000 mL以上。同时,应避免饮用含糖饮料和咖啡等可能增加结石形成风险的饮品[33]。研究表明,每天尿量保持在2000 mL以上的人群,CaOx结石的复发率明显低于尿量不足的人群[34]

3.2. 药物治疗

3.2.1. 枸橼酸盐

枸橼酸盐是治疗CaOx结石的常用药物之一。它可以增加尿液中枸橼酸的浓度,与钙离子结合形成可溶性复合物,降低尿液中钙离子的活性,从而抑制CaOx晶体的形成和生长[35]-[37]。常用的枸橼酸盐制剂有枸橼酸钾、枸橼酸钠等。研究显示,服用枸橼酸盐制剂可显著降低CaOx结石患者的结石复发率。

3.2.2. 噻嗪类利尿剂

噻嗪类利尿剂通过调控肾小管钙代谢通路,抑制钙离子重吸收过程以降低尿钙排出,进而有效抑制CaOx结晶的成核与生长[36]。该类药物同时可适度提升尿枸橼酸盐分泌量,通过双路径协同作用增强泌尿系统抗结石形成能力。常用的噻嗪类利尿剂有氢氯噻嗪等。但长期使用噻嗪类利尿剂可能会引起低钾血症等不良反应,需要定期监测血钾水平。研究发现,使用噻嗪类利尿剂治疗高钙尿性CaOx结石患者,可使尿钙排泄量降低。

3.2.3. 其他药物

除了枸橼酸盐和噻嗪类利尿剂,还有一些其他药物也在CaOx结石的治疗中发挥作用。例如,别嘌醇可通过降低血尿酸水平,减少尿酸对CaOx结石形成的促进作用,适用于伴有高尿酸尿的CaOx结石患者[38]。别嘌醇在体内代谢为别黄嘌呤,可抑制黄嘌呤氧化酶的活性,减少尿酸的生成[39],对于因肠道疾病引起的高草酸尿患者,可使用考来烯胺等药物,通过结合肠道内的草酸盐,减少草酸的吸收。

3.3. 手术治疗

对于已经形成的较大CaOx结石,当保守治疗无效时,通常需要采用手术治疗。当前临床实践中广泛采用的手术治疗方式主要涵盖体外冲击波碎石术(ESWL)、经皮肾镜碎石取石术(PCNL)、输尿管镜碎石取石术(URL)以及输尿管软镜碎石术(FURL) [40] [41]

体外冲击波碎石术(ESWL)主要应用于治疗直径不足2 cm的肾结石及输尿管上段结石,其利用体外产生的聚焦冲击波将结石分解成细小颗粒,促进其随尿液自然排出[42]。该技术因具备非侵入性、术后康复周期短等显著优势而被临床广泛采用,但对于一些质地坚硬、体积较大的结石,碎石效果可能不理想,且可能会引起肾损伤、血尿等并发症[43]-[45]

经皮肾镜取石术(PCNL)是泌尿外科处理大体积肾结石(直径 > 2 cm)的主要手段,其通过经皮穿刺构建操作路径,借助内窥镜实施碎石及清除[46]-[48]。尽管该术式对大尺寸结石清除效率显著,但因属侵入性操作,存在术后出血风险、继发感染等潜在并发症[49]

输尿管镜取石术(URL)主要用于处理输尿管中下段结石,其操作是通过输尿管镜经尿道进入输尿管,借助激光或超声等碎石设备将结石粉碎后取出。该技术具有创伤小、术后恢复快的优势,但若患者存在输尿管明显扭曲或结石嵌顿紧密等情况,可能导致手术难度显著增加。

输尿管软镜碎石术(FURL)凭借创伤小、疼痛轻、碎石效果佳等优势,已逐步取代传统开放手术,成为治疗肾结石及输尿管上段结石的首选方案[50]-[54]。然而该术式在碎石效率方面存在不足,对于体积较大或质地坚硬的结石,往往需分次手术才能完成治疗[55]-[57]

对于一名泌尿外科医生而言,我们应当根据结石的大小、位置、数量以及患者的具体情况选择合适的手术方式。同时,术后还需要采取相应的预防措施,如饮食调整、药物治疗等,以降低结石复发率。

4. 小结与展望

CaOx结石作为泌尿系结石的主要类型(占70%~80%),其形成机制涉及多因素交互作用。尿液成分异常是核心病理基础,包括高草酸尿、高钙尿以及低枸橼酸尿。结晶动力学过程涵盖异质成核、取向附生以及抑制物(如酸性黏多糖)功能受损。Randall斑学说进一步解释了CaOx结石的起始位点,即肾乳头间质钙磷酸盐沉积穿透上皮形成成石核心。此外,肠道菌群失调(如产草酸杆菌减少)和炎症反应(ROS/NLRP3通路激活)也被证实参与结石形成。

近年来,尽管临床防治手段(如饮食干预、药物调控及微创技术)已取得显著进展,但术后高复发率(术后10年复发率约为20%~50%)仍是亟待解决的难题。未来研究我们还需要聚焦以下方向:深入解析晶体–细胞互作分子机制及遗传易感性与环境因素的协同作用,重点阐明乙醛酸代谢通路异常及肾小管草酸转运蛋白调控机制;开发基于尿液生化检测与代谢评估的个性化预防方案,探索靶向抑制晶体聚集或促进抑制物分泌的新型药物,以及通过肠道菌群调节或代谢工程技术减少内源性草酸生成;推广多模态碎石技术并结合术后实时监测优化管理,同时整合多学科技术构建结石预测模型,推动从被动治疗向主动预防的模式转变,最终实现CaOx结石的全周期防控,降低结石疾病的社会医疗负担。

NOTES

*通讯作者。

参考文献

[1] Wang, Z., Deng, Q., Xu, C.Z., et al. (2024) Macrophage Polarization Regulation Shed Lights on Immunotherapy for CaOx Kidney Stone Disease. Biomedicine & Pharmacotherapy, 179, Article ID: 117336.
https://doi.org/10.1016/j.biopha.2024.117336
[2] Dominguez-Gutierrez, P.R., Kwenda, E.P., Khan, S.R. and Canales, B.K. (2020) Immunotherapy for Stone Disease. Current Opinion in Urology, 30, 183-189.
https://doi.org/10.1097/mou.0000000000000729
[3] Li, H., Zhou, Y., Xu, W., Liu, J., Wang, S. and Jiang, H. (2022) The Role of Autophagy in Calcium Oxalate Kidney Stone: A Systematic Review of the Literature. Frontiers in Physiology, 13, Article ID: 1008264.
https://doi.org/10.3389/fphys.2022.1008264
[4] Sun, Y., Li, B., Song, B., Xia, Y., Ye, Z., Lin, F., et al. (2025) UHRF1 Promotes Calcium Oxalate-Induced Renal Fibrosis by Renal Lipid Deposition via Bridging AMPK Dephosphorylation. Cell Biology and Toxicology, 41, Article No. 39.
https://doi.org/10.1007/s10565-025-09991-9
[5] Hidayatulloh, A., Firdausy, A.F., Mahyuddin, M.H., Atsira, O.P., Priandhini, S.A., Ibtisam, N., et al. (2023) Giant Bladder Stone and Rectal Prolapse Complication in Pediatric Patient: Case Report and Literature Review. International Journal of Surgery Case Reports, 111, Article ID: 108740.
https://doi.org/10.1016/j.ijscr.2023.108740
[6] Bargagli, M., Tio, M.C., Waikar, S.S. and Ferraro, P.M. (2020) Dietary Oxalate Intake and Kidney Outcomes. Nutrients, 12, Article No. 2673.
https://doi.org/10.3390/nu12092673
[7] Crivelli, J.J., Mitchell, T., Knight, J., Wood, K.D., Assimos, D.G., Holmes, R.P., et al. (2020) Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 13, Article No. 62.
https://doi.org/10.3390/nu13010062
[8] Kumar, P., Laurence, E., Crossman, D.K., Assimos, D.G., Murphy, M.P. and Mitchell, T. (2023) Oxalate Disrupts Monocyte and Macrophage Cellular Function via Interleukin-10 and Mitochondrial Reactive Oxygen Species (ROS) Signaling. Redox Biology, 67, Article ID: 102919.
https://doi.org/10.1016/j.redox.2023.102919
[9] Siener, R., Ernsten, C., Welchowski, T. and Hesse, A. (2024) Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention. Nutrients, 16, Article No. 2688.
https://doi.org/10.3390/nu16162688
[10] Yuan, P., Sun, X., Liu, X., Hutterer, G., Pummer, K., Hager, B., et al. (2021) Kaempferol Alleviates Calcium Oxalate Crystal-Induced Renal Injury and Crystal Deposition via Regulation of the AR/NOX2 Signaling Pathway. Phytomedicine, 86, Article ID: 153555.
https://doi.org/10.1016/j.phymed.2021.153555
[11] Yao, R., Pan, J., He, R., Hou, B., Suo, X., Li, G., et al. (2024) Pectolinarigenin Alleviates Calcium Oxalate-Induced Renal Inflammation and Oxidative Stress by Binding to HIF-1α. International Immunopharmacology, 143, Article ID: 113284.
https://doi.org/10.1016/j.intimp.2024.113284
[12] Geraghty, R., Wood, K. and Sayer, J.A. (2020) Calcium Oxalate Crystal Deposition in the Kidney: Identification, Causes and Consequences. Urolithiasis, 48, 377-384.
https://doi.org/10.1007/s00240-020-01202-w
[13] Alexander, R.T., Fuster, D.G. and Dimke, H. (2022) Mechanisms Underlying Calcium Nephrolithiasis. Annual Review of Physiology, 84, 559-583.
https://doi.org/10.1146/annurev-physiol-052521-121822
[14] Zainodini, N., Dousdampanis, P., Ahmadi, Z., Mohamadi, M. and Nazari, A. (2023) Associations of Oxalate Consumption and Some Individual Habits with the Risk of Kidney Stones. Chinese Medical Sciences Journal, 38, 250-256.
https://doi.org/10.24920/004207
[15] Noonin, C. and Thongboonkerd, V. (2024) Beneficial Roles of Gastrointestinal and Urinary Microbiomes in Kidney Stone Prevention via Their Oxalate-Degrading Ability and Beyond. Microbiological Research, 282, Article ID: 127663.
https://doi.org/10.1016/j.micres.2024.127663
[16] Huang, Y., Zhang, Y.H., Chi, Z.P., Huang, R., Huang, H., Liu, G., et al. (2019) The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urologia Internationalis, 104, 167-176.
https://doi.org/10.1159/000504417
[17] Kowalczyk, N.S., Prochaska, M.L. and Worcester, E.M. (2023) Metabolomic Profiles and Pathogenesis of Nephrolithiasis. Current Opinion in Nephrology & Hypertension, 32, 490-495.
https://doi.org/10.1097/mnh.0000000000000903
[18] Lordumrongkiat, N., Chotechuang, N., Prasanth, M.I., Jindatip, D., Ma-on, C., Chuenwisad, K., et al. (2022) Hydrozitla Inhibits Calcium Oxalate Stone Formation in Nephrolithic Rats and Promotes Longevity in Nematode Caenorhabditis elegans. Scientific Reports, 12, Article No. 5102.
https://doi.org/10.1038/s41598-022-08316-8
[19] Li, W., Zheng, J., Chen, M., Liu, B., Liu, Z. and Gong, L. (2022) Simultaneous Determination of Oxalate and Citrate in Urine and Serum of Calcium Oxalate Kidney Stone Rats by IP-RP LC-MS/MS. Journal of Chromatography B, 1208, Article ID: 123395.
https://doi.org/10.1016/j.jchromb.2022.123395
[20] Yang, B., Li, J., Wang, B., Wang, G., Li, P., Guo, H., et al. (2021) Hydroxycitrate Prevents Calcium Oxalate Crystallization and Kidney Injury in a Nephrolithiasis Rat Model. Urolithiasis, 50, 47-53.
https://doi.org/10.1007/s00240-021-01283-1
[21] Liu, X., Yuan, P., Sun, X. and Chen, Z. (2020) Hydroxycitric Acid Inhibits Renal Calcium Oxalate Deposition by Reducing Oxidative Stress and Inflammation. Current Molecular Medicine, 20, 527-535.
https://doi.org/10.2174/1566524020666200103141116
[22] Deng, J., Yu, B., Chang, Z., Wu, S., Li, G., Chen, W., et al. (2022) Cerium Oxide-Based Nanozyme Suppresses Kidney Calcium Oxalate Crystal Depositions via Reversing Hyperoxaluria-Induced Oxidative Stress Damage. Journal of Nanobiotechnology, 20, Article No. 516.
https://doi.org/10.1186/s12951-022-01726-w
[23] Dong, F., Jiang, S., Tang, C., Wang, X., Ren, X., Wei, Q., et al. (2022) Trimethylamine N-Oxide Promotes Hyperoxaluria-Induced Calcium Oxalate Deposition and Kidney Injury by Activating Autophagy. Free Radical Biology and Medicine, 179, 288-300.
https://doi.org/10.1016/j.freeradbiomed.2021.11.010
[24] Kanashiro, A. and Angerri, O. (2021) Urinary pH Relevance on Urolithiasis Management. Archivos Espanoles de Urologia, 74, 102-111.
[25] Deng, Z., Tan, J., Zhang, R., et al. (2022) Mechanism and Influencing Factors of Crystal-Cell Interaction in the Formation of Calcium Oxalate Stones. Journal of Central South University Medical Sciences, 47, 555-561.
[26] Chen, J., Sun, X. and Ouyang, J. (2020) Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6982948.
https://doi.org/10.1155/2020/6982948
[27] Sromicki, J. and Hess, B. (2020) Simple Dietary Advice Targeting Five Urinary Parameters Reduces Urinary Supersaturation in Idiopathic Calcium Oxalate Stone Formers. Urolithiasis, 48, 425-433.
https://doi.org/10.1007/s00240-020-01194-7
[28] Zayed, S., Goldfarb, D.S. and Joshi, S. (2023) Popular Diets and Kidney Stones. Advances in Kidney Disease and Health, 30, 529-536.
https://doi.org/10.1053/j.akdh.2023.10.002
[29] Gupta, M., Gallante, B., Bamberger, J.N., Khusid, J.A., Parkhomenko, E., Chandhoke, R., et al. (2021) Prospective Randomized Evaluation of Idiopathic Hyperoxaluria Treatments. Journal of Endourology, 35, 1844-1851.
https://doi.org/10.1089/end.2021.0122
[30] An, L., Li, S., Chang, Z., Lei, M., He, Z., Xu, P., et al. (2025) Gut Microbiota Modulation via Fecal Microbiota Transplantation Mitigates Hyperoxaluria and Calcium Oxalate Crystal Depositions Induced by High Oxalate Diet. Gut Microbes, 17, Article ID: 2457490.
https://doi.org/10.1080/19490976.2025.2457490
[31] Borin, J.F., Knight, J., Holmes, R.P., Joshi, S., Goldfarb, D.S. and Loeb, S. (2022) Plant-Based Milk Alternatives and Risk Factors for Kidney Stones and Chronic Kidney Disease. Journal of Renal Nutrition, 32, 363-365.
https://doi.org/10.1053/j.jrn.2021.03.011
[32] Ferraro, P.M., Bargagli, M., Trinchieri, A. and Gambaro, G. (2020) Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients, 12, Article No. 779.
https://doi.org/10.3390/nu12030779
[33] Ben Othman, R., bouzid, K., Ben Sassi, A., Naija, O., Ferjani, W., Mizouri, R., et al. (2024) Prospective Study Investigating the Influence of Nutritional Intervention on Biochemical Profiles in Patients with Recurrent Urolithiasis. Urologia Journal, 92, 96-103.
https://doi.org/10.1177/03915603241283874
[34] Balawender, K., Łuszczki, E., Mazur, A. and Wyszyńska, J. (2024) The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients, 16, Article No. 1932.
https://doi.org/10.3390/nu16121932
[35] Goldfarb, D.S., Modersitzki, F., Asplin, J.R. and Nazzal, L. (2023) Effect of a High-Citrate Beverage on Urine Chemistry in Patients with Calcium Kidney Stones. Urolithiasis, 51, Article No. 96.
https://doi.org/10.1007/s00240-023-01468-w
[36] Siener, R., Ernsten, C., Speller, J., Scheurlen, C., Sauerbruch, T. and Hesse, A. (2024) Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients, 16, Article No. 264.
https://doi.org/10.3390/nu16020264
[37] De-Mul, A., Bacchetta, J. and Lemoine, S. (2024) Management of Patients with Kidney Stones. Néphrologie & Thérapeutique, 20, 650-657.
https://doi.org/10.1684/ndt.2024.102
[38] Conway, R. (2020) Allopurinol and Chronic Kidney Disease. The New England Journal of Medicine, 383, 1689-1690.
[39] Feig, D.I. (2020) Urate-Lowering Therapy and Chronic Kidney Disease Progression. New England Journal of Medicine, 382, 2567-2568.
https://doi.org/10.1056/nejme2015886
[40] Walter, K. (2022) Kidney Stones. JAMA, 328, 898.
https://doi.org/10.1001/jama.2022.12609
[41] Lai, S., Jiao, B., Diao, T., Seery, S., Hu, M., Wang, M., et al. (2020) Optimal Management of Large Proximal Ureteral Stones (> 10 mm): A Systematic Review and Meta-Analysis of 12 Randomized Controlled Trials. International Journal of Surgery, 80, 205-217.
https://doi.org/10.1016/j.ijsu.2020.06.025
[42] Petrides, N., Ismail, S., Anjum, F. and Sriprasad, S. (2020) How to Maximize the Efficacy of Shockwave Lithotripsy. Turkish Journal of Urology, 46, S19-S26.
https://doi.org/10.5152/tud.2020.20441
[43] Boissier, R., Rodriguez-Faba, O., Zakri, R.H., Hevia, V., Budde, K., Figueiredo, A., et al. (2023) Evaluation of the Effectiveness of Interventions on Nephrolithiasis in Transplanted Kidney. European Urology Focus, 9, 491-499.
https://doi.org/10.1016/j.euf.2022.11.019
[44] Schlomer, B.J. (2020) Urologic Treatment of Nephrolithiasis. Current Opinion in Pediatrics, 32, 288-294.
https://doi.org/10.1097/mop.0000000000000849
[45] Yoon, J.H., Park, S., Kim, S.C., Park, S., Moon, K.H., Cheon, S.H., et al. (2021) Outcomes of Extracorporeal Shock Wave Lithotripsy for Ureteral Stones According to ESWL Intensity. Translational Andrology and Urology, 10, 1588-1595.
https://doi.org/10.21037/tau-20-1397
[46] Constantinou, B.T., Benedicto, B.C., Porto, B.C., Belkovsky, M., Passerotti, C.C., Artifon, E.L., et al. (2024) PCNL vs. Two Staged RIRS for Kidney Stones Greater than 20 mm: Systematic Review, Meta-Analysis, and Trial Sequential Analysis. Minerva Urology and Nephrology, 76, 31-41.
https://doi.org/10.23736/s2724-6051.23.05577-5
[47] Hartung, F.O., Müller, K.J., Herrmann, J., Grüne, B., Michel, M.S. and Rassweiler-Seyfried, M.C. (2023) Comparison of Endoscopic versus CT Assessment of Stone-Free Status after Percutaneous Nephrolithotomy (PCNL). Urolithiasis, 51, Article No. 120.
https://doi.org/10.1007/s00240-023-01495-7
[48] Liu, Y., Zhu, W. and Zeng, G. (2021) Percutaneous Nephrolithotomy with Suction: Is This the Future? Current Opinion in Urology, 31, 95-101.
https://doi.org/10.1097/mou.0000000000000854
[49] Reeves, T., Pietropaolo, A., Gadzhiev, N., Seitz, C. and Somani, B.K. (2020) Role of Endourological Procedures (PCNL and URS) on Renal Function: A Systematic Review. Current Urology Reports, 21, Article No. 21.
https://doi.org/10.1007/s11934-020-00973-4
[50] Proietti, S., Knoll, T. and Giusti, G. (2016) Contemporary Ureteroscopic Management of Renal Stones. International Journal of Surgery, 36, 681-687.
https://doi.org/10.1016/j.ijsu.2016.11.130
[51] Takazawa, R., Kitayama, S. and Tsujii, T. (2011) Successful Outcome of Flexible Ureteroscopy with Holmium Laser Lithotripsy for Renal Stones 2 Cm or Greater. International Journal of Urology, 19, 264-267.
https://doi.org/10.1111/j.1442-2042.2011.02931.x
[52] Cocuzza, M., Colombo Jr, J.R., Cocuzza, A.L., Mascarenhas, F., Vicentini, F., Mazzucchi, E., et al. (2008) Outcomes of Flexible Ureteroscopic Lithotripsy with Holmium Laser for Upper Urinary Tract Calculi. International Brazilian Journal of Urology, 34, 143-150.
https://doi.org/10.1590/s1677-55382008000200003
[53] Mi, Y., Ren, K., Pan, H., Zhu, L., Wu, S., You, X., et al. (2015) Flexible Ureterorenoscopy (F-URS) with Holmium Laser versus Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Renal Stone < 2 cm: A Meta-Analysis. Urolithiasis, 44, 353-365.
https://doi.org/10.1007/s00240-015-0832-y
[54] Jin, L., Yang, B., Zhou, Z. and Li, N. (2019) Comparative Efficacy on Flexible Ureteroscopy Lithotripsy and Miniaturized Percutaneous Nephrolithotomy for the Treatment of Medium-Sized Lower-Pole Renal Calculi. Journal of Endourology, 33, 914-919.
https://doi.org/10.1089/end.2019.0504
[55] Liang, H., Liang, L., Lin, Y., Yu, Y., Xu, X., Liang, Z., et al. (2023) Application of Tip-Bendable Ureteral Access Sheath in Flexible Ureteroscopic Lithotripsy: An Initial Experience of 224 Cases. BMC Urology, 23, Article No. 175.
https://doi.org/10.1186/s12894-023-01347-x
[56] He, M., Dong, Y., Cai, W., Cai, J., Xie, Y., Yu, M., et al. (2024) Recent Advances in the Treatment of Renal Stones Using Flexible Ureteroscopys. International Journal of Surgery, 110, 4320-4328.
https://doi.org/10.1097/js9.0000000000001345
[57] Xie, H., Huang, Z., Xue, J., et al. (2024) Analysis of the Value of Flexible Ureteroscopy in the Treatment of Renal Calculi. Alternative Therapies in Health and Medicine, 30, 202-206.