|
[1]
|
Wang, Z., Deng, Q., Xu, C.Z., et al. (2024) Macrophage Polarization Regulation Shed Lights on Immunotherapy for CaOx Kidney Stone Disease. Biomedicine & Pharmacotherapy, 179, Article ID: 117336. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dominguez-Gutierrez, P.R., Kwenda, E.P., Khan, S.R. and Canales, B.K. (2020) Immunotherapy for Stone Disease. Current Opinion in Urology, 30, 183-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, H., Zhou, Y., Xu, W., Liu, J., Wang, S. and Jiang, H. (2022) The Role of Autophagy in Calcium Oxalate Kidney Stone: A Systematic Review of the Literature. Frontiers in Physiology, 13, Article ID: 1008264. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sun, Y., Li, B., Song, B., Xia, Y., Ye, Z., Lin, F., et al. (2025) UHRF1 Promotes Calcium Oxalate-Induced Renal Fibrosis by Renal Lipid Deposition via Bridging AMPK Dephosphorylation. Cell Biology and Toxicology, 41, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hidayatulloh, A., Firdausy, A.F., Mahyuddin, M.H., Atsira, O.P., Priandhini, S.A., Ibtisam, N., et al. (2023) Giant Bladder Stone and Rectal Prolapse Complication in Pediatric Patient: Case Report and Literature Review. International Journal of Surgery Case Reports, 111, Article ID: 108740. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bargagli, M., Tio, M.C., Waikar, S.S. and Ferraro, P.M. (2020) Dietary Oxalate Intake and Kidney Outcomes. Nutrients, 12, Article No. 2673. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Crivelli, J.J., Mitchell, T., Knight, J., Wood, K.D., Assimos, D.G., Holmes, R.P., et al. (2020) Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 13, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kumar, P., Laurence, E., Crossman, D.K., Assimos, D.G., Murphy, M.P. and Mitchell, T. (2023) Oxalate Disrupts Monocyte and Macrophage Cellular Function via Interleukin-10 and Mitochondrial Reactive Oxygen Species (ROS) Signaling. Redox Biology, 67, Article ID: 102919. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Siener, R., Ernsten, C., Welchowski, T. and Hesse, A. (2024) Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention. Nutrients, 16, Article No. 2688. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yuan, P., Sun, X., Liu, X., Hutterer, G., Pummer, K., Hager, B., et al. (2021) Kaempferol Alleviates Calcium Oxalate Crystal-Induced Renal Injury and Crystal Deposition via Regulation of the AR/NOX2 Signaling Pathway. Phytomedicine, 86, Article ID: 153555. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yao, R., Pan, J., He, R., Hou, B., Suo, X., Li, G., et al. (2024) Pectolinarigenin Alleviates Calcium Oxalate-Induced Renal Inflammation and Oxidative Stress by Binding to HIF-1α. International Immunopharmacology, 143, Article ID: 113284. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Geraghty, R., Wood, K. and Sayer, J.A. (2020) Calcium Oxalate Crystal Deposition in the Kidney: Identification, Causes and Consequences. Urolithiasis, 48, 377-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Alexander, R.T., Fuster, D.G. and Dimke, H. (2022) Mechanisms Underlying Calcium Nephrolithiasis. Annual Review of Physiology, 84, 559-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zainodini, N., Dousdampanis, P., Ahmadi, Z., Mohamadi, M. and Nazari, A. (2023) Associations of Oxalate Consumption and Some Individual Habits with the Risk of Kidney Stones. Chinese Medical Sciences Journal, 38, 250-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Noonin, C. and Thongboonkerd, V. (2024) Beneficial Roles of Gastrointestinal and Urinary Microbiomes in Kidney Stone Prevention via Their Oxalate-Degrading Ability and Beyond. Microbiological Research, 282, Article ID: 127663. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Huang, Y., Zhang, Y.H., Chi, Z.P., Huang, R., Huang, H., Liu, G., et al. (2019) The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urologia Internationalis, 104, 167-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kowalczyk, N.S., Prochaska, M.L. and Worcester, E.M. (2023) Metabolomic Profiles and Pathogenesis of Nephrolithiasis. Current Opinion in Nephrology & Hypertension, 32, 490-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lordumrongkiat, N., Chotechuang, N., Prasanth, M.I., Jindatip, D., Ma-on, C., Chuenwisad, K., et al. (2022) Hydrozitla Inhibits Calcium Oxalate Stone Formation in Nephrolithic Rats and Promotes Longevity in Nematode Caenorhabditis elegans. Scientific Reports, 12, Article No. 5102. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, W., Zheng, J., Chen, M., Liu, B., Liu, Z. and Gong, L. (2022) Simultaneous Determination of Oxalate and Citrate in Urine and Serum of Calcium Oxalate Kidney Stone Rats by IP-RP LC-MS/MS. Journal of Chromatography B, 1208, Article ID: 123395. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, B., Li, J., Wang, B., Wang, G., Li, P., Guo, H., et al. (2021) Hydroxycitrate Prevents Calcium Oxalate Crystallization and Kidney Injury in a Nephrolithiasis Rat Model. Urolithiasis, 50, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, X., Yuan, P., Sun, X. and Chen, Z. (2020) Hydroxycitric Acid Inhibits Renal Calcium Oxalate Deposition by Reducing Oxidative Stress and Inflammation. Current Molecular Medicine, 20, 527-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Deng, J., Yu, B., Chang, Z., Wu, S., Li, G., Chen, W., et al. (2022) Cerium Oxide-Based Nanozyme Suppresses Kidney Calcium Oxalate Crystal Depositions via Reversing Hyperoxaluria-Induced Oxidative Stress Damage. Journal of Nanobiotechnology, 20, Article No. 516. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dong, F., Jiang, S., Tang, C., Wang, X., Ren, X., Wei, Q., et al. (2022) Trimethylamine N-Oxide Promotes Hyperoxaluria-Induced Calcium Oxalate Deposition and Kidney Injury by Activating Autophagy. Free Radical Biology and Medicine, 179, 288-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kanashiro, A. and Angerri, O. (2021) Urinary pH Relevance on Urolithiasis Management. Archivos Espanoles de Urologia, 74, 102-111.
|
|
[25]
|
Deng, Z., Tan, J., Zhang, R., et al. (2022) Mechanism and Influencing Factors of Crystal-Cell Interaction in the Formation of Calcium Oxalate Stones. Journal of Central South University Medical Sciences, 47, 555-561.
|
|
[26]
|
Chen, J., Sun, X. and Ouyang, J. (2020) Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6982948. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sromicki, J. and Hess, B. (2020) Simple Dietary Advice Targeting Five Urinary Parameters Reduces Urinary Supersaturation in Idiopathic Calcium Oxalate Stone Formers. Urolithiasis, 48, 425-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zayed, S., Goldfarb, D.S. and Joshi, S. (2023) Popular Diets and Kidney Stones. Advances in Kidney Disease and Health, 30, 529-536. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gupta, M., Gallante, B., Bamberger, J.N., Khusid, J.A., Parkhomenko, E., Chandhoke, R., et al. (2021) Prospective Randomized Evaluation of Idiopathic Hyperoxaluria Treatments. Journal of Endourology, 35, 1844-1851. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
An, L., Li, S., Chang, Z., Lei, M., He, Z., Xu, P., et al. (2025) Gut Microbiota Modulation via Fecal Microbiota Transplantation Mitigates Hyperoxaluria and Calcium Oxalate Crystal Depositions Induced by High Oxalate Diet. Gut Microbes, 17, Article ID: 2457490. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Borin, J.F., Knight, J., Holmes, R.P., Joshi, S., Goldfarb, D.S. and Loeb, S. (2022) Plant-Based Milk Alternatives and Risk Factors for Kidney Stones and Chronic Kidney Disease. Journal of Renal Nutrition, 32, 363-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ferraro, P.M., Bargagli, M., Trinchieri, A. and Gambaro, G. (2020) Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients, 12, Article No. 779. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ben Othman, R., bouzid, K., Ben Sassi, A., Naija, O., Ferjani, W., Mizouri, R., et al. (2024) Prospective Study Investigating the Influence of Nutritional Intervention on Biochemical Profiles in Patients with Recurrent Urolithiasis. Urologia Journal, 92, 96-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Balawender, K., Łuszczki, E., Mazur, A. and Wyszyńska, J. (2024) The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients, 16, Article No. 1932. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Goldfarb, D.S., Modersitzki, F., Asplin, J.R. and Nazzal, L. (2023) Effect of a High-Citrate Beverage on Urine Chemistry in Patients with Calcium Kidney Stones. Urolithiasis, 51, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Siener, R., Ernsten, C., Speller, J., Scheurlen, C., Sauerbruch, T. and Hesse, A. (2024) Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients, 16, Article No. 264. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
De-Mul, A., Bacchetta, J. and Lemoine, S. (2024) Management of Patients with Kidney Stones. Néphrologie & Thérapeutique, 20, 650-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Conway, R. (2020) Allopurinol and Chronic Kidney Disease. The New England Journal of Medicine, 383, 1689-1690.
|
|
[39]
|
Feig, D.I. (2020) Urate-Lowering Therapy and Chronic Kidney Disease Progression. New England Journal of Medicine, 382, 2567-2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Walter, K. (2022) Kidney Stones. JAMA, 328, 898. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lai, S., Jiao, B., Diao, T., Seery, S., Hu, M., Wang, M., et al. (2020) Optimal Management of Large Proximal Ureteral Stones (> 10 mm): A Systematic Review and Meta-Analysis of 12 Randomized Controlled Trials. International Journal of Surgery, 80, 205-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Petrides, N., Ismail, S., Anjum, F. and Sriprasad, S. (2020) How to Maximize the Efficacy of Shockwave Lithotripsy. Turkish Journal of Urology, 46, S19-S26. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Boissier, R., Rodriguez-Faba, O., Zakri, R.H., Hevia, V., Budde, K., Figueiredo, A., et al. (2023) Evaluation of the Effectiveness of Interventions on Nephrolithiasis in Transplanted Kidney. European Urology Focus, 9, 491-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Schlomer, B.J. (2020) Urologic Treatment of Nephrolithiasis. Current Opinion in Pediatrics, 32, 288-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yoon, J.H., Park, S., Kim, S.C., Park, S., Moon, K.H., Cheon, S.H., et al. (2021) Outcomes of Extracorporeal Shock Wave Lithotripsy for Ureteral Stones According to ESWL Intensity. Translational Andrology and Urology, 10, 1588-1595. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Constantinou, B.T., Benedicto, B.C., Porto, B.C., Belkovsky, M., Passerotti, C.C., Artifon, E.L., et al. (2024) PCNL vs. Two Staged RIRS for Kidney Stones Greater than 20 mm: Systematic Review, Meta-Analysis, and Trial Sequential Analysis. Minerva Urology and Nephrology, 76, 31-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hartung, F.O., Müller, K.J., Herrmann, J., Grüne, B., Michel, M.S. and Rassweiler-Seyfried, M.C. (2023) Comparison of Endoscopic versus CT Assessment of Stone-Free Status after Percutaneous Nephrolithotomy (PCNL). Urolithiasis, 51, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Liu, Y., Zhu, W. and Zeng, G. (2021) Percutaneous Nephrolithotomy with Suction: Is This the Future? Current Opinion in Urology, 31, 95-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Reeves, T., Pietropaolo, A., Gadzhiev, N., Seitz, C. and Somani, B.K. (2020) Role of Endourological Procedures (PCNL and URS) on Renal Function: A Systematic Review. Current Urology Reports, 21, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Proietti, S., Knoll, T. and Giusti, G. (2016) Contemporary Ureteroscopic Management of Renal Stones. International Journal of Surgery, 36, 681-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Takazawa, R., Kitayama, S. and Tsujii, T. (2011) Successful Outcome of Flexible Ureteroscopy with Holmium Laser Lithotripsy for Renal Stones 2 Cm or Greater. International Journal of Urology, 19, 264-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Cocuzza, M., Colombo Jr, J.R., Cocuzza, A.L., Mascarenhas, F., Vicentini, F., Mazzucchi, E., et al. (2008) Outcomes of Flexible Ureteroscopic Lithotripsy with Holmium Laser for Upper Urinary Tract Calculi. International Brazilian Journal of Urology, 34, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Mi, Y., Ren, K., Pan, H., Zhu, L., Wu, S., You, X., et al. (2015) Flexible Ureterorenoscopy (F-URS) with Holmium Laser versus Extracorporeal Shock Wave Lithotripsy (ESWL) for Treatment of Renal Stone < 2 cm: A Meta-Analysis. Urolithiasis, 44, 353-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Jin, L., Yang, B., Zhou, Z. and Li, N. (2019) Comparative Efficacy on Flexible Ureteroscopy Lithotripsy and Miniaturized Percutaneous Nephrolithotomy for the Treatment of Medium-Sized Lower-Pole Renal Calculi. Journal of Endourology, 33, 914-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liang, H., Liang, L., Lin, Y., Yu, Y., Xu, X., Liang, Z., et al. (2023) Application of Tip-Bendable Ureteral Access Sheath in Flexible Ureteroscopic Lithotripsy: An Initial Experience of 224 Cases. BMC Urology, 23, Article No. 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
He, M., Dong, Y., Cai, W., Cai, J., Xie, Y., Yu, M., et al. (2024) Recent Advances in the Treatment of Renal Stones Using Flexible Ureteroscopys. International Journal of Surgery, 110, 4320-4328. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xie, H., Huang, Z., Xue, J., et al. (2024) Analysis of the Value of Flexible Ureteroscopy in the Treatment of Renal Calculi. Alternative Therapies in Health and Medicine, 30, 202-206.
|