放线菌在骨关节炎进展中的作用
The Role of Actinomycetes in the Progression of Osteoarthritis
DOI: 10.12677/acm.2025.1541317, PDF, HTML, XML,   
作者: 陈 曦, 陈浙南, 李 昕, 陈雨珂:绍兴文理学院医学院,浙江 绍兴;何 磊*:绍兴市人民医院骨科,浙江 绍兴
关键词: 骨关节炎肠道微生物放线菌肠–骨轴Osteoarthritis Gut Microbiome Actinomyces Gut-Bone Axis
摘要: 骨关节炎作为一种慢性运动系统疾病,对于中老年人(尤其是绝经后的女性)的生活质量产生了不小的影响,同时也对社会经济产生了负担。放线菌(Actinomyces)作为肠道微生物(GM)的重要组成部分,其对骨关节炎的影响暂未有报道。在这篇综述中,我们讨论了放线菌在骨关节炎进展中的作用。首先阐述了消化系统与骨关节炎之间的关系,着重阐明了肠–骨轴的作用。随后讨论了放线菌如何引起骨关节炎,尤其关注了这一过程中影响到的信号通路,哪些炎症因子有所升高,并强调了破骨细胞在这过程中的作用。同时也记录了一些其他由放线菌引起的运动系统的炎症性疾病。该研究通过阐述放线菌对骨关节炎进展的影响,希望为治疗骨关节炎提供一个新的思路和方向。
Abstract: Osteoarthritis, as a chronic musculoskeletal disorder, significantly impacts the quality of life for middle-aged and elderly individuals, particularly postmenopausal women, and also imposes a burden on the socio-economic system. Actinomyces, an important component of gut microbiota (GM), has not been previously reported for its effects on osteoarthritis. In this review, we discuss the role of Actinomyces in the progression of osteoarthritis. Initially, we elaborate on the relationship between the digestive system and osteoarthritis, with a particular focus on the gut-bone axis. Subsequently, we explore how Actinomyces may contribute to osteoarthritis, paying special attention to the signaling pathways involved in this process, the elevation of certain inflammatory factors. Additionally, we document some other inflammatory diseases of the musculoskeletal system caused by Actinomyces. This study aims to provide new insights and directions for the treatment of osteoarthritis by elucidating the impact of Actinomyces on its progression.
文章引用:陈曦, 陈浙南, 李昕, 陈雨珂, 何磊. 放线菌在骨关节炎进展中的作用[J]. 临床医学进展, 2025, 15(4): 3446-3454. https://doi.org/10.12677/acm.2025.1541317

1. 引言

骨关节炎作为一种慢性运动系统疾病,特点是引起疼痛[1] [2]、活动障碍[3],造成行动不便,进而影响人们的生活质量。目前已有确切研究表明,绝经是骨关节炎这一疾病的一项独立高危因素[4],这意味着老年女性会更容易罹患骨关节炎这一疾病,我国一项统计结果显示,受调查骨关节炎患者中,女性患者比例达到10.3%,高于男性的5.7%,其中多数为老年女性[5]。我国作为一个人口大国,该疾病患者的数量也十分庞大,据估计,截至2017年我国正有大约5000万人遭受到骨关节炎的困扰[6],这些患者生活质量受到严重影响[7],同时如此庞大的患病人数,也给我国经济带来了巨大负担[8]。正因如此,国内外学者多年来致力于研究骨关节炎,以找到防治该疾病的方法。

2. 现有对于骨关节炎发生机制的研究

2.1. 骨关节炎中软骨的变化

在OA进展过程中,软骨细胞起到了至关重要的角色,随着疾病发展,软骨细胞相关的多种因子发生变化,细胞外基质稳态失衡,最终导致软骨破坏。在软骨中,细胞外基质这一重要成分不可或缺,占到了关节软骨的95% [9]。细胞外基质受与多种因子相关,COL2A1及ACAN软骨合成的主要蛋白成分[10],在骨关节炎的初期阶段可见这两个因子的升高[11],这与调节软骨表型和活性的一个转录因子——SOX9的升高有关[12],也许是因为在骨关节炎早期软骨细胞外基质成分改变,激活SOX9,促进COL2A1及ACAN表达的升高,而随着疾病进展到晚期,可见SOX9以及COL2A1及ACAN的缺失[13]。随着骨关节炎的进展,与细胞外基质降解相关的基质金属酶(MMPs)和金属肽酶(ADAMSTs)表达量逐渐升高,前者主要成员包括MMP3、MMP13,后者起作用的主要为ADAMST4、ADAMST5 [14],在正常软骨中,上述几种基质降解酶的启动子多由于CpG点位甲基化导致DNA无法与转录因子结合,无法正常表达,因而表达量较低,不出现炎症的表现[15]。随着刺激(如炎症、负荷增加等改变)产生,这些转录因子启动子去甲基化,在染色质层面,表达量逐步上升,分解细胞外基质,产生炎症[16],这一过程受到多种炎症因子及通路调控[17] [18]。在骨关节炎进展的终末期,健康软骨表达的蛋白,如印度刺猬蛋白(IHH)、甲状旁腺激素样蛋白(PTHrP)等发生改变,激活活化甲状腺素(T3)、Wnt、Notch及TGF-β等信号,表达COL10A1、MMP13等蛋白[19],上述两种因子都会导致软骨细胞肥大。我国学者发现在OA患者膝关节中Sirt6表达下降[20],Sirt6是一种抗衰老蛋白,这一发现提示着通过该蛋白抑制软骨细胞衰老,也能有效防治骨关节炎。

2.2. 骨关节炎中破骨细胞的变化

巨噬细胞集落刺激因子(M-CSF)和NF-κB配体的受体激活因子(RANKL),在破骨细胞分化过程中,起到了重要作用,骨保护素(OPG)则起到了相反的作用[21]。在衰老过程中,RANKL/RANK轴激活,刺激破骨细胞分化[22],同时TLR9基因表达增加,TLR4基因表达下降,增强了破骨细胞对炎症介质和受损相关分子模式(DAMPs)的表达[23],产生多种炎症因子,最终造成骨关节炎。

2.3. 骨关节炎中成骨细胞的变化

成骨细胞通过合成矿化的骨基质,参与骨代谢的调节。而成骨细胞的增值分化和OPG的表达,受到Wnt/β-catenin通路的调控,β-catenin在成骨细胞胞质中受到激酶刺激后磷酸化产生活性,并与APC共同参与泛素介导的蛋白水解,最终导致骨关节炎[24] [25]。而根据一项日本的研究,诺氏菌——用于模仿感染放线菌动物状态的一种菌属,在与小鼠巨噬细胞共同培养时,可以选择性产生具有wnt信号活化作用的环状肽nocarjamide [26]。除此以外,骨关节炎中成骨细胞数量的多少,与前列腺素E2和炎症因子表达量高低有着密切关系[27]。一项通过对于LCN-2的研究,学者认为OA相关炎症的诱导,可以降低成骨细胞的存活率,并增强其释放的MMP-9的活性[28],导致胶原蛋白1α1 (COL1)和骨钙素(OCN)升高,导致软骨下骨骨硬化,最终出现骨关节炎[29]

2.4. 骨关节炎中滑膜的变化

在骨关节炎患者的关节滑膜中,可见多种细胞,如滑膜巨噬细胞、滑膜专门间充质细胞、其他如中性粒细胞等。根据现有研究,我们可以确定在M-CSF和RANKL同时表达,或M-CSF和表达RANKL的骨基质细胞存在的情况下,滑膜巨[30]噬细胞能够向破骨细胞方向分化[31],而滑膜巨噬细胞释放的前列腺素和组织蛋白酶,能够促进破骨细胞对骨质的吸收[32],也能释放IL-1β、TNF-α等因子,这些因子已被证实,在破骨对骨质吸收过程中起重要作用[33]。间充质细胞可以通过分泌润滑素和透明质酸来润滑软骨,OA患者润滑素和透明质酸含量都下降,导致疼痛[34]。OA患者关节滑液中的细胞代谢产物如NO [35]、琥珀酸盐[30]常有升高,导致IL水平升高[36],促进前列腺素的分泌[37],也能导致OA患者的疼痛。

2.5. 骨关节炎中脂肪细胞的变化

骨关节炎进展过程的众多因素中,肥胖是一个重要危险因素[38],肥胖可以通过增加关节负荷导致骨关节炎[39],除此以外,肥胖病人存在明显的M2巨噬细胞向M1巨噬细胞表型转变,这将导致软骨变性,并降低组织修复和血管生成能力[40]。同时,脂肪组织还能分泌脂肪因子(主要为瘦素) [41],有学者认为瘦素可以通过诱导胰岛素样生长因子-1和TGF-β以及MMP-2、MMP-9 [42]来介导合成代谢过程,还能刺激滑膜成纤维细胞中炎症因子的表达,改变软骨下成骨细胞中TGF-β、骨钙素和I型胶原的分泌[43],从而产生减少软骨的形成的作用。

3. 多位学者研究了消化道与骨关节炎的关系。

3.1. 肠道菌群改变通过肠–骨轴引起骨关节炎

肠道微生物是其中的一个重要因素[44],近年来,多位学者致力于研究肠道微生物对于其他多个器官的作用,成为当下一个热点。总的来说,肠道微生物对骨关节炎的作用是一个复杂的过程,学者们构建通过无菌小鼠的模型,在某些微生物刺激下,无菌小鼠表现出了低骨量,而在其他一些研究中则相反。[45]说明消化道对运动系统的影响可能受到多个因素影响,产生不同效果,甚至有时会出现相反的结果。但根据目前主流研究结果来看,正常状态下的肠道微生物大多可以通过促进营养吸收,如钙离子、维生素D,从而防治骨关节炎,改善骨骼健康[46]。而在肠道微生物对运动系统产生影响的途径中,多数微生物的作用都离不开一个重要途径:肠–骨轴。Johnson和Foster提出,肠道和大脑之间关系复杂,肠道内改变引起骨骼变化,通常与神经、激素以及免疫改变都有密切的关系[47],这一过程常由细胞代谢物发挥作用[48]。而在诸多信号传递因子中,又以5-羟色胺(5-HT)效果较为明显[49]

3.2. 肠道菌群改变通过影响内分泌引起骨关节炎

除此之外,研究表明,肠道微生物菌群能改变宿主激素水平,如甲状旁腺激素[50] [51]、雌激素[52]直接影响软骨发育及去分化[53]等,从而影响骨骼健康。与此同时,肠道微生物还能通过免疫系统,对多种细胞因子,如IL [54]、TNF-α [55]等产生影响,而这些因子在骨关节炎的进展过程中起到了重要作用[56]。因此,已经有学者尝试通过调节肠道微生物群落,来治疗骨关节炎[57]

3.3. 肠道菌群改变通过免疫系统引起骨关节炎

有一项临床研究表明,肠道免疫系统疾病,如克罗恩病及溃疡性结肠炎,可以引起TNF-α的升高,[58]这也可能产生肠道以外的炎症,导致骨关节炎。据日本学者总结,大量克罗恩病患者的肠道中梭状芽孢杆菌目细菌明显减少,这类细菌是主要的丁酸产生菌[59],而丁酸盐能够抑制骨关节炎患者的离体T辅助细胞活化[60],通过控制软骨细胞的自噬和炎性细胞死亡来抑制骨关节炎[61],还能消除人软骨细胞中II型胶原的降解[62],从而抑制骨关节炎的进展,克罗恩病患者由于丁酸盐减少,故而比常人更可能患骨关节炎。

4. 肠道放线菌在骨关节炎进展过程中起到的作用。

我国一项研究表明,使用当归这一药物,能够有效降低ACLT小鼠肠道内放线菌丰度,通过肠–关节轴,起到治疗骨关节炎的目的[63]。因此本文基于前人研究深入探究了该过程发生的机制。

4.1. 肠道放线菌对软骨细胞的影响引起骨关节炎

我国学者的一项研究表明,免疫性肠病的患者,肠道内放线菌丰度更高,多条炎症通路被激活,其中以TLR2、TLR4及NF-κB更显著[64],其中,TLR2作为NF-κB识别受体[65],而TLR4激活后,含TIR结构域的衔接蛋白(TIRAPs)募集MyD88,随后与IL-1受体相关激酶(IRAKs)相互作用。这些IRAKs自身磷酸化并激活TNF-受体相关因子6 (TRAF6),其自身泛素化并激活TGF-b-激活激酶1 (TAK1),其导致两种转录因子的激活:NF-κB和AP-1 [66]。而NF-κB通路的激活能产生多种炎症因子,如IL、TNF-α等,SOX-9表达降低,Col2A1、ACAN下降,MMPs升高,导致软骨细胞损伤,细胞外基质降解,造成骨关节炎[67]

4.2. 肠道放线菌对破骨细胞的影响引起骨关节炎

佐藤武德等人发现放线菌的肽聚糖,作用于小鼠骨髓细胞,其PGN能通过诱导破骨细胞形成,进而刺激多种炎症因子升高[68],同时还能激活肠道内的Th17,随后迁移到骨基质内,通过诱导产生IL-17,加强局部炎症,使得TNF-α及IL-1表达量上升[69],这一变化也能提高RANKL的表达,并激活破骨前体细胞[70] [71],最终导致骨关节炎。

4.3. 肠道放线菌通过对成骨细胞的影响引起骨关节炎

Takashi等人的研究表明,短链脂肪酸乙酸盐和丙酸盐可以直接上调成骨细胞分化[72]。根据我国一项研究,肠道放线菌与乙酸盐、丙酸盐的吸收有关[73]。因此,肠道放线菌数量的增多,会影响乙酸盐、丙酸盐的吸收,进而对成骨细胞分化产生影响,造成骨关节炎。

4.4. 肠道放线菌通过对滑膜巨噬细胞的影响产生骨关节炎

研究表明,活化的滑膜巨噬细胞会促进软骨分泌大量的MMP-1,MMP-3,MMP-9,MMP-13 [74] [75],造成软骨细胞外基质的破坏,进而引起骨关节炎。据报道,结肠癌患者肠道内放线菌增多时,TLR-2、TLR-4和NF-κB表达水平明显上升[64],这些因子能有效刺激关节滑膜中的M2巨噬细胞向M1巨噬细胞表型转变(尤其是TLR-4),产生大量炎症因子,如IL-6、IL-1β及TNF-α[76],导致软骨细胞炎症,细胞外基质降解,产生骨关节炎。研究表明,放线菌细胞壁中的肽聚糖(PGN)和脂磷壁酸(LTA),也能够激活巨噬细胞的TLR2受体使其能够被识别,PAMPs能够激活B细胞上的NF-κB受体,从而促成巨噬细胞炎症反应,导致多种炎症因子如IL-6、CD80等的升高[65],从而导致骨关节炎。因此抑制肠道放线菌,可以有效防止巨噬细胞活化,减轻软骨炎症,达到防治骨关节炎的目的。

4.5. 肠道放线菌通过对脂肪细胞的影响产生骨关节炎

肠道内放线菌与脂肪吸收和收集有关,研究表明放线菌数量与E-DII等级相关[77],此外,肠道内的放线菌还能产生短链脂肪酸[78],这将导致宿主脂肪组织增加,由脂肪细胞分泌的脂肪因子、炎症因子,如前列腺素E2、IL-1β、瘦素等表达量可能上升。此外,由此途径造成的肥胖还可能导致LPS浓度升高,造成TLR4和MMP13表达量上升,最终导致软骨炎症,产生骨关节炎。然而有意思的是,根据我国一项研究,与超重患者相比,对照组患者肠道内放线菌丰度明显更低[79],说明放线菌可能在人体营养摄入过程中对脂肪吸收起到重要作用,同时产生短链脂肪酸,而肥胖病人的放线菌对骨关节炎的影响还有待进一步探索。

综上,放线菌作为一种常见的肠道菌群,能够通过肠–骨轴,对不同的细胞产生影响,引起关节软骨炎症反应,最终导致骨关节炎。这一发现意味着对于骨关节炎的治疗可以不仅仅停留在止痛抗炎层面,在预防阶段即可通过人工干预胃肠道微生物的方式,延缓骨关节炎进程,乃至达到治疗骨关节炎的效果,这为后续该疾病的治疗,提供了一个全新的思路和方向。

NOTES

*通讯作者。

参考文献

[1] Klinedinst, N.J., Huang, W., Nelson, A.K., Resnick, B., Renn, C., Kane, M.A., et al. (2022) Inflammatory and Immune Protein Pathways Possible Mechanisms for Pain Following Walking in Knee Osteoarthritis. Nursing Research, 71, 328-335.
https://doi.org/10.1097/nnr.0000000000000593
[2] Vincent, T.L. and Miller, R.E. (2024) Molecular Pathogenesis of OA Pain: Past, Present, and Future. Osteoarthritis and Cartilage, 32, 398-405.
https://doi.org/10.1016/j.joca.2024.01.005
[3] Atik, I., Gul, E. and Atik, S. (2024) Evaluation of the Relationship between Knee Osteoarthritis and Meniscus Pathologies. Malawi Medical Journal, 36, 48-52.
https://doi.org/10.4314/mmj.v36i1.8
[4] O'Connor, M.I. (2006) Osteoarthritis of the Hip and Knee: Sex and Gender Differences. Orthopedic Clinics of North America, 37, 559-568.
https://doi.org/10.1016/j.ocl.2006.09.004
[5] Tang, X., Wang, S., Zhan, S., Niu, J., Tao, K., Zhang, Y., et al. (2016) The Prevalence of Symptomatic Knee Osteoarthritis in China: Results from the China Health and Retirement Longitudinal Study. Arthritis & Rheumatology, 68, 648-653.
https://doi.org/10.1002/art.39465
[6] 刘康妍, 郑聪, 胡海澜. 骨关节炎流行病学研究[J]. 中华关节外科杂志(电子版), 2017, 11(3): 320-323.
[7] Liu, Q., Niu, J., Huang, J., Ke, Y., Tang, X., Wu, X., et al. (2015) Knee Osteoarthritis and All-Cause Mortality: The Wuchuan Osteoarthritis Study. Osteoarthritis and Cartilage, 23, 1154-1157.
https://doi.org/10.1016/j.joca.2015.03.021
[8] 何方舟, 张伟滨. 非甾体类抗炎药对中国骨关节炎患者疗效及胃肠道不良反应的Meta分析[J]. 中华关节外科杂志(电子版), 2018, 12(1): 69-76.
[9] Sophia Fox, A.J., Bedi, A. and Rodeo, S.A. (2009) The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health: A Multidisciplinary Approach, 1, 461-468.
https://doi.org/10.1177/1941738109350438
[10] Carballo, C.B., Nakagawa, Y., Sekiya, I. and Rodeo, S.A. (2017) Basic Science of Articular Cartilage. Clinics in Sports Medicine, 36, 413-425.
https://doi.org/10.1016/j.csm.2017.02.001
[11] Martel-Pelletier, J., Boileau, C., Pelletier, J. and Roughley, P.J. (2008) Cartilage in Normal and Osteoarthritis Conditions. Best Practice & Research Clinical Rheumatology, 22, 351-384.
https://doi.org/10.1016/j.berh.2008.02.001
[12] Hu, G., Codina, M. and Fisher, S. (2012) Multiple Enhancers Associated with ACAN Suggest Highly Redundant Transcriptional Regulation in Cartilage. Matrix Biology, 31, 328-337.
https://doi.org/10.1016/j.matbio.2012.06.001
[13] Zhang, Q., Ji, Q., Wang, X., Kang, L., Fu, Y., Yin, Y., et al. (2015) SOX9 Is a Regulator of Adamtss-Induced Cartilage Degeneration at the Early Stage of Human Osteoarthritis. Osteoarthritis and Cartilage, 23, 2259-2268.
https://doi.org/10.1016/j.joca.2015.06.014
[14] Roach, H.I., Yamada, N., Cheung, K.S.C., Tilley, S., Clarke, N.M.P., Oreffo, R.O.C., et al. (2005) Association between the Abnormal Expression of Matrix-Degrading Enzymes by Human Osteoarthritic Chondrocytes and Demethylation of Specific CPG Sites in the Promoter Regions. Arthritis & Rheumatism, 52, 3110-3124.
https://doi.org/10.1002/art.21300
[15] Neefjes, M., van Caam, A.P.M. and van der Kraan, P.M. (2020) Transcription Factors in Cartilage Homeostasis and Osteoarthritis. Biology, 9, Article 290.
https://doi.org/10.3390/biology9090290
[16] Yan, C. and Boyd, D.D. (2006) Regulation of Matrix Metalloproteinase Gene Expression. Journal of Cellular Physiology, 211, 19-26.
https://doi.org/10.1002/jcp.20948
[17] Yun, K. and Im, S. (2007) Transcriptional Regulation of MMP13 by Lef1 in Chondrocytes. Biochemical and Biophysical Research Communications, 364, 1009-1014.
https://doi.org/10.1016/j.bbrc.2007.10.121
[18] Kobayashi, H., Hirata, M., Saito, T., Itoh, S., Chung, U. and Kawaguchi, H. (2013) Transcriptional Induction of ADAMTS5 Protein by Nuclear Factor-κB (NF-κB) Family Member RelA/p65 in Chondrocytes during Osteoarthritis Development. Journal of Biological Chemistry, 288, 28620-28629.
https://doi.org/10.1074/jbc.m113.452169
[19] Ripmeester, E.G.J., Timur, U.T., Caron, M.M.J. and Welting, T.J.M. (2018) Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 6, Article 18.
https://doi.org/10.3389/fbioe.2018.00018
[20] Wu, Y., Chen, L., Wang, Y., Li, W., Lin, Y., Yu, D., et al. (2015) Overexpression of Sirtuin 6 Suppresses Cellular Senescence and NF-κB Mediated Inflammatory Responses in Osteoarthritis Development. Scientific Reports, 5, Article No. 17602.
https://doi.org/10.1038/srep17602
[21] Tanaka, S., Nakamura, I., Inoue, J., Oda, H. and Nakamura, K. (2003) Signal Transduction Pathways Regulating Osteoclast Differentiation and Function. Journal of Bone and Mineral Metabolism, 21, 123-133.
https://doi.org/10.1007/s007740300021
[22] Cao, J.J., Wronski, T.J., Iwaniec, U., Phleger, L., Kurimoto, P., Boudignon, B., et al. (2005) Aging Increases Stromal/osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. Journal of Bone and Mineral Research, 20, 1659-1668.
https://doi.org/10.1359/jbmr.050503
[23] Akkaoui, J., Yamada, C., Duarte, C., Ho, A., Vardar-Sengul, S., Kawai, T., et al. (2020) Contribution of Porphyromonas gingivalis Lipopolysaccharide to Experimental Periodontitis in Relation to Aging. GeroScience, 43, 367-376.
https://doi.org/10.1007/s11357-020-00258-1
[24] Moon, R.T., Bowerman, B., Boutros, M. and Perrimon, N. (2002) The Promise and Perils of Wnt Signaling through β-catenin. Science, 296, 1644-1646.
https://doi.org/10.1126/science.1071549
[25] Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., et al. (2000) LDL-Receptor-Related Proteins in Wnt Signal Transduction. Nature, 407, 530-535.
https://doi.org/10.1038/35035117
[26] Ishibashi, M. (2024) Learning from Natural Products: Study on Actinomycetes of the Genus nocardia. Yakugaku Zasshi, 144, 33-37.
https://doi.org/10.1248/yakushi.23-00161-3
[27] Massicotte, F., Lajeunesse, D., Benderdour, M., Pelletier, J., Hilal, G., Duval, N., et al. (2002) Can Altered Production of Interleukin-1β, Interleukin-6, Transforming Growth Factor-β and Prostaglandin E2 by Isolated Human Subchondral Osteoblasts Identify Two Subgroups of Osteoarthritic Patients. Osteoarthritis and Cartilage, 10, 491-500.
https://doi.org/10.1053/joca.2002.0528
[28] Villalvilla, A., García-Martín, A., Largo, R., Gualillo, O., Herrero-Beaumont, G. and Gómez, R. (2016) The Adipokine Lipocalin-2 in the Context of the Osteoarthritic Osteochondral Junction. Scientific Reports, 6, Article No. 29243.
https://doi.org/10.1038/srep29243
[29] Couchourel, D., Aubry, I., Delalandre, A., Lavigne, M., Martel‐Pelletier, J., Pelletier, J., et al. (2009) Altered Mineralization of Human Osteoarthritic Osteoblasts Is Attributable to Abnormal Type I Collagen Production. Arthritis & Rheumatism, 60, 1438-1450.
https://doi.org/10.1002/art.24489
[30] Tannahill, G.M., et al. (2013) Succinate Is an Inflammatory Signal That Induces IL-1β through HIF-1α. Nature, 496, 238-242.
[31] Fujikawa, Y. (1996) The Human Osteoclast Precursor Circulates in the Monocyte Fraction. Endocrinology, 137, 4058-4060.
https://doi.org/10.1210/en.137.9.4058
[32] Athanasou, N.A. (1995) Synovial Macrophages. Annals of the Rheumatic Diseases, 54, 392-394.
https://doi.org/10.1136/ard.54.5.392
[33] Jimi, E., Nakamura, I., Duong, L.T., Ikebe, T., Takahashi, N., Rodan, G.A., et al. (1999) Interleukin 1 Induces Multinucleation and Bone-Resorbing Activity of Osteoclasts in the Absence of Osteoblasts/stromal Cells. Experimental Cell Research, 247, 84-93.
https://doi.org/10.1006/excr.1998.4320
[34] Temple-Wong, M.M., Ren, S., Quach, P., Hansen, B.C., Chen, A.C., Hasegawa, A., et al. (2016) Hyaluronan Concentration and Size Distribution in Human Knee Synovial Fluid: Variations with Age and Cartilage Degeneration. Arthritis Research & Therapy, 18, Article No. 18.
https://doi.org/10.1186/s13075-016-0922-4
[35] Melchiorri, C., Meliconi, R., Frizziero, L., Silvestri, T., Pulsatelli, L., Mazzetti, I., et al. (1998) Enhanced and Coordinated in Vivo Expression of Inflammatory Cytokines and Nitric Oxide Synthase by Chondrocytes from Patients with Osteoarthritis. Arthritis & Rheumatism, 41, 2165-2174.
https://doi.org/10.1002/1529-0131(199812)41:12<2165::aid-art11>3.3.co;2-f
[36] Keiran, N., Ceperuelo-Mallafré, V., Calvo, E., Hernández-Alvarez, M.I., Ejarque, M., Núñez-Roa, C., et al. (2019) SUCNR1 Controls an Anti-Inflammatory Program in Macrophages to Regulate the Metabolic Response to Obesity. Nature Immunology, 20, 581-592.
https://doi.org/10.1038/s41590-019-0372-7
[37] Hiroyuki, F., Akira, O., Kiyoshi, M., Shinichiro, K., Takashi, S., Toshikazu, H., Kenji, N., Hiroomi, T., Soji, M. and Haruki, O. (2002) Relation between Interleukin-18 and PGE2 in Synovial Fluid of Osteoarthritis: A Potential Therapeutic Target of Cartilage Degradation. Journal of Immunotherapy, 25, S61-S64.
[38] Lee, R. and Kean, W.F. (2012) Obesity and Knee Osteoarthritis. Inflammopharmacology, 20, 53-58.
https://doi.org/10.1007/s10787-011-0118-0
[39] Felson, D.T. (1996) Weight and Osteoarthritis. The American Journal of Clinical Nutrition, 63, 430S-432S.
[40] Dalmas, E., Clément, K. and Guerre-Millo, M. (2011) Defining Macrophage Phenotype and Function in Adipose Tissue. Trends in Immunology, 32, 307-314.
https://doi.org/10.1016/j.it.2011.04.008
[41] Kroon, F.P.B., Veenbrink, A.I., de Mutsert, R., Visser, A.W., van Dijk, K.W., le Cessie, S., et al. (2019) The Role of Leptin and Adiponectin as Mediators in the Relationship between Adiposity and Hand and Knee Osteoarthritis. Osteoarthritis and Cartilage, 27, 1761-1767.
https://doi.org/10.1016/j.joca.2019.08.003
[42] Bao, J., Chen, W., Feng, J., Hu, P., Shi, Z. and Wu, L. (2009) Leptin Plays a Catabolic Role on Articular Cartilage. Molecular Biology Reports, 37, 3265-3272.
https://doi.org/10.1007/s11033-009-9911-x
[43] Zhao, X., Dong, Y., Zhang, J., Li, D., Hu, G., Yao, J., et al. (2016) Leptin Changes Differentiation Fate and Induces Senescence in Chondrogenic Progenitor Cells. Cell Death & Disease, 7, e2188-e2188.
https://doi.org/10.1038/cddis.2016.68
[44] Corriero, A., Giglio, M., Soloperto, R., Inchingolo, F., Varrassi, G. and Puntillo, F. (2024) Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain and Therapy, 13, 409-433.
https://doi.org/10.1007/s40122-024-00602-9
[45] Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016) Lactobacillus plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science, 351, 854-857.
https://doi.org/10.1126/science.aad8588
[46] Weaver, C.M. (2015) Diet, Gut Microbiome, and Bone Health. Current Osteoporosis Reports, 13, 125-130.
https://doi.org/10.1007/s11914-015-0257-0
[47] Johnson, K.V. and Foster, K.R. (2018) Why Does the Microbiome Affect Behaviour? Nature Reviews Microbiology, 16, 647-655.
https://doi.org/10.1038/s41579-018-0014-3
[48] Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597.
https://doi.org/10.1038/nm.4106
[49] Klara, S., Cecilia, E., Petra, H., Ulf, H.L., Valentina, T., Marie, K.L., Fredrik, B. and Claes, O. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367.
[50] Kermgard, E., Chawla, N.K. and Wesseling-Perry, K. (2021) Gut Microbiome, Parathyroid Hormone, and Bone. Current Opinion in Nephrology & Hypertension, 30, 418-423.
https://doi.org/10.1097/mnh.0000000000000714
[51] Nakashima, M., Nakayama, T., Ohtsuru, A., Fukada, E., Niino, D., Yamazumi, K., et al. (2003) Expression of Parathyroid Hormone (PTH)-Related Peptide (PTHrP) and PTH/PTHrP Receptor in Osteoclast-Like Giant Cells. PathologyResearch and Practice, 199, 85-92.
https://doi.org/10.1078/0344-0338-00359
[52] Farhat, E.K., Sher, E.K., Džidić-Krivić, A., Banjari, I. and Sher, F. (2023) Functional Biotransformation of Phytoestrogens by Gut Microbiota with Impact on Cancer Treatment. The Journal of Nutritional Biochemistry, 118, Article ID: 109368.
https://doi.org/10.1016/j.jnutbio.2023.109368
[53] Wang, Y., Zhang, M., Huan, Z., Shao, S., Zhang, X., Kong, D., et al. (2021) FSH Directly Regulates Chondrocyte Dedifferentiation and Cartilage Development. Journal of Endocrinology, 248, 193-206.
https://doi.org/10.1530/joe-20-0390
[54] Takasugi, S., Iimura, S., Yasuda, M., Saito, Y. and Morifuji, M. (2025) Key Taxa of the Gut Microbiome Associated with the Relationship between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms, 13, Article 185.
https://doi.org/10.3390/microorganisms13010185
[55] Omenetti, S. and Pizarro, T.T. (2015) The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in Immunology, 6, Article 639.
https://doi.org/10.3389/fimmu.2015.00639
[56] Sokolove, J. and Lepus, C.M. (2013) Role of Inflammation in the Pathogenesis of Osteoarthritis: Latest Findings and Interpretations. Therapeutic Advances in Musculoskeletal Disease, 5, 77-94.
https://doi.org/10.1177/1759720x12467868
[57] Zeng, L., Deng, Y., He, Q., Yang, K., Li, J., Xiang, W., et al. (2022) Safety and Efficacy of Probiotic Supplementation in 8 Types of Inflammatory Arthritis: A Systematic Review and Meta-Analysis of 34 Randomized Controlled Trials. Frontiers in Immunology, 13, Article 961325.
https://doi.org/10.3389/fimmu.2022.961325
[58] Maldonado-Pérez, M.B., Castro-Laria, L., Caunedo-Álvarez, A., Montoya-García, M.J., Giner-García, M., Argüelles-Arias, F., et al. (2019) Does the Antitumor Necrosis Factor-Α Therapy Decrease the Vertebral Fractures Occurrence in Inflammatory Bowel Disease? Journal of Clinical Densitometry, 22, 195-202.
https://doi.org/10.1016/j.jocd.2018.07.010
[59] Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., et al. (2016) Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease. Digestion, 93, 59-65.
https://doi.org/10.1159/000441768
[60] Korsten, S.G.P.J., Hartog, M., Berends, A.J., Koenders, M.I., Popa, C.D., Vromans, H., et al. (2024) A Sustained-Release Butyrate Tablet Suppresses Ex Vivo T Helper Cell Activation of Osteoarthritis Patients in a Double-Blind Placebo-Controlled Randomized Trial. Nutrients, 16, Article 3384.
https://doi.org/10.3390/nu16193384
[61] Keun-Hyung, C., Hyun Sik, N., Joo Yeon, J., Jin Seok, W., et al. (2022) Lactobacillus (LA-1) and Butyrate Inhibit Osteoarthritis by Controlling Autophagy and Inflammatory Cell Death of Chondrocytes. Frontiers in Immunology, 13, Article 930511.
[62] Bo, W., Zhou, J. and Wang, K. (2018) Sodium Butyrate Abolishes the Degradation of Type II Collagen in Human Chondrocytes. Biomedicine & Pharmacotherapy, 102, 1099-1104.
https://doi.org/10.1016/j.biopha.2018.03.062
[63] 吴霜, 袁立霞, 廖晴, 蔡义思, 钟威, 陈宏. 基于16S rDNA测序研究当归拈痛汤对膝骨关节炎小鼠肠道菌群的影响[J]. 中国实验方剂学杂志, 2024, 30(11): 9-17.
[64] Xu, Z., Lv, Z., Chen, F., Zhang, Y., Xu, Z., Huo, J., et al. (2022) Dysbiosis of Human Tumor Microbiome and Aberrant Residence of Actinomyces in Tumor-Associated Fibroblasts in Young-Onset Colorectal Cancer. Frontiers in Immunology, 13, Article 1008975.
https://doi.org/10.3389/fimmu.2022.1008975
[65] Wu, Z., Takigawa, H., Maruyama, H., Nambu, T., Mashimo, C. and Okinaga, T. (2024) TLR2-Dependent and Independent Pyroptosis in dTHP-1 Cells Induced by Actinomyces oris MG-1. Biochemistry and Biophysics Reports, 38, Article ID: 101680.
https://doi.org/10.1016/j.bbrep.2024.101680
[66] Bartels, Y.L., van Lent, P.L.E.M., van der Kraan, P.M., Blom, A.B., Bonger, K.M. and van den Bosch, M.H.J. (2023) Inhibition of TLR4 Signalling to Dampen Joint Inflammation in Osteoarthritis. Rheumatology, 63, 608-618.
https://doi.org/10.1093/rheumatology/kead493
[67] Saito, T. and Tanaka, S. (2017) Molecular Mechanisms Underlying Osteoarthritis Development: Notch and NF-κB. Arthritis Research & Therapy, 19, Article No. 94.
https://doi.org/10.1186/s13075-017-1296-y
[68] Sato, T., Watanabe, K., Kumada, H., Toyama, T., Tani-Ishii, N. and Hamada, N. (2012) Peptidoglycan of Actinomyces naeslundii Induces Inflammatory Cytokine Production and Stimulates Osteoclastogenesis in Alveolar Bone Resorption. Archives of Oral Biology, 57, 1522-1528.
https://doi.org/10.1016/j.archoralbio.2012.07.012
[69] Hiroko, I., Eikichi, I., Kosuke, T., Koji, M., Manabu, O., Kenoki, O., et al. (2024) The Interplay between Alterations in Esophageal Microbiota Associated with Th17 Immune Response and Impaired LC20 Phosphorylation in Achalasia. Journal of Gastroenterology, 59, 361-375.
[70] Leipe, J., Grunke, M., Dechant, C., Reindl, C., Kerzendorf, U., Schulze‐Koops, H., et al. (2010) Role of Th17 Cells in Human Autoimmune Arthritis. Arthritis & Rheumatism, 62, 2876-2885.
https://doi.org/10.1002/art.27622
[71] Sato, K., Suematsu, A., Okamoto, K., Yamaguchi, A., Morishita, Y., Kadono, Y., et al. (2006) Th17 Functions as an Osteoclastogenic Helper T Cell Subset That Links T Cell Activation and Bone Destruction. The Journal of Experimental Medicine, 203, 2673-2682.
https://doi.org/10.1084/jem.20061775
[72] Kondo, T., Chiba, T. and Tousen, Y. (2022) Short-Chain Fatty Acids, Acetate and Propionate, Directly Upregulate Osteoblastic Differentiation. International Journal of Food Sciences and Nutrition, 73, 800-808.
https://doi.org/10.1080/09637486.2022.2078285
[73] Zhang, Q., Meng, N., Liu, Y., Zhao, H., Zhao, Z., Hao, D., et al. (2023) Protection Effect of Gut Microbiota Composition and Acetate Absorption against Hypertension-Induced Damages on the Longevity Population in Guangxi, China. Frontiers in Nutrition, 9, Article 1070223.
https://doi.org/10.3389/fnut.2022.1070223
[74] Satyavrata, S., Patricia, D.R., Joshua, D.E.M. and Mariah, S.H. (2016) A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Engineering Part A, 23, 101-114.
[75] Mahon, O.R., Kelly, D.J., McCarthy, G.M. and Dunne, A. (2020) Osteoarthritis-Associated Basic Calcium Phosphate Crystals Alter Immune Cell Metabolism and Promote M1 Macrophage Polarization. Osteoarthritis and Cartilage, 28, 603-612.
https://doi.org/10.1016/j.joca.2019.10.010
[76] Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260.
https://doi.org/10.3389/fimmu.2022.867260
[77] Freitas, R.G.B.O.N., Vasques, A.C.J., da Rocha Fernandes, G., Ribeiro, F.B., Solar, I., Shivappa, N., et al. (2024) Gut Bacterial Markers Involved in Association of Dietary Inflammatory Index with Visceral Adiposity. Nutrition, 122, Article ID: 112371.
https://doi.org/10.1016/j.nut.2024.112371
[78] Chakraborti, C.K. (2015) New-Found Link between Microbiota and Obesity. World Journal of Gastrointestinal Pathophysiology, 6, 110-119.
https://doi.org/10.4291/wjgp.v6.i4.110
[79] Jin, J., Cheng, R., Ren, Y., Shen, X., Wang, J., Xue, Y., et al. (2021) Distinctive Gut Microbiota in Patients with Overweight and Obesity with Dyslipidemia and Its Responses to Long-Term Orlistat and Ezetimibe Intervention: A Randomized Controlled Open-Label Trial. Frontiers in Pharmacology, 12, Article 732541.
https://doi.org/10.3389/fphar.2021.732541