|
[1]
|
Klinedinst, N.J., Huang, W., Nelson, A.K., Resnick, B., Renn, C., Kane, M.A., et al. (2022) Inflammatory and Immune Protein Pathways Possible Mechanisms for Pain Following Walking in Knee Osteoarthritis. Nursing Research, 71, 328-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vincent, T.L. and Miller, R.E. (2024) Molecular Pathogenesis of OA Pain: Past, Present, and Future. Osteoarthritis and Cartilage, 32, 398-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Atik, I., Gul, E. and Atik, S. (2024) Evaluation of the Relationship between Knee Osteoarthritis and Meniscus Pathologies. Malawi Medical Journal, 36, 48-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
O'Connor, M.I. (2006) Osteoarthritis of the Hip and Knee: Sex and Gender Differences. Orthopedic Clinics of North America, 37, 559-568. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tang, X., Wang, S., Zhan, S., Niu, J., Tao, K., Zhang, Y., et al. (2016) The Prevalence of Symptomatic Knee Osteoarthritis in China: Results from the China Health and Retirement Longitudinal Study. Arthritis & Rheumatology, 68, 648-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
刘康妍, 郑聪, 胡海澜. 骨关节炎流行病学研究[J]. 中华关节外科杂志(电子版), 2017, 11(3): 320-323.
|
|
[7]
|
Liu, Q., Niu, J., Huang, J., Ke, Y., Tang, X., Wu, X., et al. (2015) Knee Osteoarthritis and All-Cause Mortality: The Wuchuan Osteoarthritis Study. Osteoarthritis and Cartilage, 23, 1154-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
何方舟, 张伟滨. 非甾体类抗炎药对中国骨关节炎患者疗效及胃肠道不良反应的Meta分析[J]. 中华关节外科杂志(电子版), 2018, 12(1): 69-76.
|
|
[9]
|
Sophia Fox, A.J., Bedi, A. and Rodeo, S.A. (2009) The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health: A Multidisciplinary Approach, 1, 461-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Carballo, C.B., Nakagawa, Y., Sekiya, I. and Rodeo, S.A. (2017) Basic Science of Articular Cartilage. Clinics in Sports Medicine, 36, 413-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Martel-Pelletier, J., Boileau, C., Pelletier, J. and Roughley, P.J. (2008) Cartilage in Normal and Osteoarthritis Conditions. Best Practice & Research Clinical Rheumatology, 22, 351-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hu, G., Codina, M. and Fisher, S. (2012) Multiple Enhancers Associated with ACAN Suggest Highly Redundant Transcriptional Regulation in Cartilage. Matrix Biology, 31, 328-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, Q., Ji, Q., Wang, X., Kang, L., Fu, Y., Yin, Y., et al. (2015) SOX9 Is a Regulator of Adamtss-Induced Cartilage Degeneration at the Early Stage of Human Osteoarthritis. Osteoarthritis and Cartilage, 23, 2259-2268. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Roach, H.I., Yamada, N., Cheung, K.S.C., Tilley, S., Clarke, N.M.P., Oreffo, R.O.C., et al. (2005) Association between the Abnormal Expression of Matrix-Degrading Enzymes by Human Osteoarthritic Chondrocytes and Demethylation of Specific CPG Sites in the Promoter Regions. Arthritis & Rheumatism, 52, 3110-3124. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Neefjes, M., van Caam, A.P.M. and van der Kraan, P.M. (2020) Transcription Factors in Cartilage Homeostasis and Osteoarthritis. Biology, 9, Article 290. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yan, C. and Boyd, D.D. (2006) Regulation of Matrix Metalloproteinase Gene Expression. Journal of Cellular Physiology, 211, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yun, K. and Im, S. (2007) Transcriptional Regulation of MMP13 by Lef1 in Chondrocytes. Biochemical and Biophysical Research Communications, 364, 1009-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kobayashi, H., Hirata, M., Saito, T., Itoh, S., Chung, U. and Kawaguchi, H. (2013) Transcriptional Induction of ADAMTS5 Protein by Nuclear Factor-κB (NF-κB) Family Member RelA/p65 in Chondrocytes during Osteoarthritis Development. Journal of Biological Chemistry, 288, 28620-28629. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ripmeester, E.G.J., Timur, U.T., Caron, M.M.J. and Welting, T.J.M. (2018) Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 6, Article 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, Y., Chen, L., Wang, Y., Li, W., Lin, Y., Yu, D., et al. (2015) Overexpression of Sirtuin 6 Suppresses Cellular Senescence and NF-κB Mediated Inflammatory Responses in Osteoarthritis Development. Scientific Reports, 5, Article No. 17602. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tanaka, S., Nakamura, I., Inoue, J., Oda, H. and Nakamura, K. (2003) Signal Transduction Pathways Regulating Osteoclast Differentiation and Function. Journal of Bone and Mineral Metabolism, 21, 123-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cao, J.J., Wronski, T.J., Iwaniec, U., Phleger, L., Kurimoto, P., Boudignon, B., et al. (2005) Aging Increases Stromal/osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. Journal of Bone and Mineral Research, 20, 1659-1668. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Akkaoui, J., Yamada, C., Duarte, C., Ho, A., Vardar-Sengul, S., Kawai, T., et al. (2020) Contribution of Porphyromonas gingivalis Lipopolysaccharide to Experimental Periodontitis in Relation to Aging. GeroScience, 43, 367-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Moon, R.T., Bowerman, B., Boutros, M. and Perrimon, N. (2002) The Promise and Perils of Wnt Signaling through β-catenin. Science, 296, 1644-1646. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., et al. (2000) LDL-Receptor-Related Proteins in Wnt Signal Transduction. Nature, 407, 530-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ishibashi, M. (2024) Learning from Natural Products: Study on Actinomycetes of the Genus nocardia. Yakugaku Zasshi, 144, 33-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Massicotte, F., Lajeunesse, D., Benderdour, M., Pelletier, J., Hilal, G., Duval, N., et al. (2002) Can Altered Production of Interleukin-1β, Interleukin-6, Transforming Growth Factor-β and Prostaglandin E2 by Isolated Human Subchondral Osteoblasts Identify Two Subgroups of Osteoarthritic Patients. Osteoarthritis and Cartilage, 10, 491-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Villalvilla, A., García-Martín, A., Largo, R., Gualillo, O., Herrero-Beaumont, G. and Gómez, R. (2016) The Adipokine Lipocalin-2 in the Context of the Osteoarthritic Osteochondral Junction. Scientific Reports, 6, Article No. 29243. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Couchourel, D., Aubry, I., Delalandre, A., Lavigne, M., Martel‐Pelletier, J., Pelletier, J., et al. (2009) Altered Mineralization of Human Osteoarthritic Osteoblasts Is Attributable to Abnormal Type I Collagen Production. Arthritis & Rheumatism, 60, 1438-1450. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tannahill, G.M., et al. (2013) Succinate Is an Inflammatory Signal That Induces IL-1β through HIF-1α. Nature, 496, 238-242.
|
|
[31]
|
Fujikawa, Y. (1996) The Human Osteoclast Precursor Circulates in the Monocyte Fraction. Endocrinology, 137, 4058-4060. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Athanasou, N.A. (1995) Synovial Macrophages. Annals of the Rheumatic Diseases, 54, 392-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jimi, E., Nakamura, I., Duong, L.T., Ikebe, T., Takahashi, N., Rodan, G.A., et al. (1999) Interleukin 1 Induces Multinucleation and Bone-Resorbing Activity of Osteoclasts in the Absence of Osteoblasts/stromal Cells. Experimental Cell Research, 247, 84-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Temple-Wong, M.M., Ren, S., Quach, P., Hansen, B.C., Chen, A.C., Hasegawa, A., et al. (2016) Hyaluronan Concentration and Size Distribution in Human Knee Synovial Fluid: Variations with Age and Cartilage Degeneration. Arthritis Research & Therapy, 18, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Melchiorri, C., Meliconi, R., Frizziero, L., Silvestri, T., Pulsatelli, L., Mazzetti, I., et al. (1998) Enhanced and Coordinated in Vivo Expression of Inflammatory Cytokines and Nitric Oxide Synthase by Chondrocytes from Patients with Osteoarthritis. Arthritis & Rheumatism, 41, 2165-2174. [Google Scholar] [CrossRef]
|
|
[36]
|
Keiran, N., Ceperuelo-Mallafré, V., Calvo, E., Hernández-Alvarez, M.I., Ejarque, M., Núñez-Roa, C., et al. (2019) SUCNR1 Controls an Anti-Inflammatory Program in Macrophages to Regulate the Metabolic Response to Obesity. Nature Immunology, 20, 581-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hiroyuki, F., Akira, O., Kiyoshi, M., Shinichiro, K., Takashi, S., Toshikazu, H., Kenji, N., Hiroomi, T., Soji, M. and Haruki, O. (2002) Relation between Interleukin-18 and PGE2 in Synovial Fluid of Osteoarthritis: A Potential Therapeutic Target of Cartilage Degradation. Journal of Immunotherapy, 25, S61-S64.
|
|
[38]
|
Lee, R. and Kean, W.F. (2012) Obesity and Knee Osteoarthritis. Inflammopharmacology, 20, 53-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Felson, D.T. (1996) Weight and Osteoarthritis. The American Journal of Clinical Nutrition, 63, 430S-432S.
|
|
[40]
|
Dalmas, E., Clément, K. and Guerre-Millo, M. (2011) Defining Macrophage Phenotype and Function in Adipose Tissue. Trends in Immunology, 32, 307-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kroon, F.P.B., Veenbrink, A.I., de Mutsert, R., Visser, A.W., van Dijk, K.W., le Cessie, S., et al. (2019) The Role of Leptin and Adiponectin as Mediators in the Relationship between Adiposity and Hand and Knee Osteoarthritis. Osteoarthritis and Cartilage, 27, 1761-1767. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bao, J., Chen, W., Feng, J., Hu, P., Shi, Z. and Wu, L. (2009) Leptin Plays a Catabolic Role on Articular Cartilage. Molecular Biology Reports, 37, 3265-3272. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, X., Dong, Y., Zhang, J., Li, D., Hu, G., Yao, J., et al. (2016) Leptin Changes Differentiation Fate and Induces Senescence in Chondrogenic Progenitor Cells. Cell Death & Disease, 7, e2188-e2188. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Corriero, A., Giglio, M., Soloperto, R., Inchingolo, F., Varrassi, G. and Puntillo, F. (2024) Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain and Therapy, 13, 409-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016) Lactobacillus plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science, 351, 854-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Weaver, C.M. (2015) Diet, Gut Microbiome, and Bone Health. Current Osteoporosis Reports, 13, 125-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Johnson, K.V. and Foster, K.R. (2018) Why Does the Microbiome Affect Behaviour? Nature Reviews Microbiology, 16, 647-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Klara, S., Cecilia, E., Petra, H., Ulf, H.L., Valentina, T., Marie, K.L., Fredrik, B. and Claes, O. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367.
|
|
[50]
|
Kermgard, E., Chawla, N.K. and Wesseling-Perry, K. (2021) Gut Microbiome, Parathyroid Hormone, and Bone. Current Opinion in Nephrology & Hypertension, 30, 418-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Nakashima, M., Nakayama, T., Ohtsuru, A., Fukada, E., Niino, D., Yamazumi, K., et al. (2003) Expression of Parathyroid Hormone (PTH)-Related Peptide (PTHrP) and PTH/PTHrP Receptor in Osteoclast-Like Giant Cells. Pathology—Research and Practice, 199, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Farhat, E.K., Sher, E.K., Džidić-Krivić, A., Banjari, I. and Sher, F. (2023) Functional Biotransformation of Phytoestrogens by Gut Microbiota with Impact on Cancer Treatment. The Journal of Nutritional Biochemistry, 118, Article ID: 109368. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, Y., Zhang, M., Huan, Z., Shao, S., Zhang, X., Kong, D., et al. (2021) FSH Directly Regulates Chondrocyte Dedifferentiation and Cartilage Development. Journal of Endocrinology, 248, 193-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Takasugi, S., Iimura, S., Yasuda, M., Saito, Y. and Morifuji, M. (2025) Key Taxa of the Gut Microbiome Associated with the Relationship between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms, 13, Article 185. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Omenetti, S. and Pizarro, T.T. (2015) The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in Immunology, 6, Article 639. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Sokolove, J. and Lepus, C.M. (2013) Role of Inflammation in the Pathogenesis of Osteoarthritis: Latest Findings and Interpretations. Therapeutic Advances in Musculoskeletal Disease, 5, 77-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zeng, L., Deng, Y., He, Q., Yang, K., Li, J., Xiang, W., et al. (2022) Safety and Efficacy of Probiotic Supplementation in 8 Types of Inflammatory Arthritis: A Systematic Review and Meta-Analysis of 34 Randomized Controlled Trials. Frontiers in Immunology, 13, Article 961325. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Maldonado-Pérez, M.B., Castro-Laria, L., Caunedo-Álvarez, A., Montoya-García, M.J., Giner-García, M., Argüelles-Arias, F., et al. (2019) Does the Antitumor Necrosis Factor-Α Therapy Decrease the Vertebral Fractures Occurrence in Inflammatory Bowel Disease? Journal of Clinical Densitometry, 22, 195-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., et al. (2016) Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease. Digestion, 93, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Korsten, S.G.P.J., Hartog, M., Berends, A.J., Koenders, M.I., Popa, C.D., Vromans, H., et al. (2024) A Sustained-Release Butyrate Tablet Suppresses Ex Vivo T Helper Cell Activation of Osteoarthritis Patients in a Double-Blind Placebo-Controlled Randomized Trial. Nutrients, 16, Article 3384. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Keun-Hyung, C., Hyun Sik, N., Joo Yeon, J., Jin Seok, W., et al. (2022) Lactobacillus (LA-1) and Butyrate Inhibit Osteoarthritis by Controlling Autophagy and Inflammatory Cell Death of Chondrocytes. Frontiers in Immunology, 13, Article 930511.
|
|
[62]
|
Bo, W., Zhou, J. and Wang, K. (2018) Sodium Butyrate Abolishes the Degradation of Type II Collagen in Human Chondrocytes. Biomedicine & Pharmacotherapy, 102, 1099-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
吴霜, 袁立霞, 廖晴, 蔡义思, 钟威, 陈宏. 基于16S rDNA测序研究当归拈痛汤对膝骨关节炎小鼠肠道菌群的影响[J]. 中国实验方剂学杂志, 2024, 30(11): 9-17.
|
|
[64]
|
Xu, Z., Lv, Z., Chen, F., Zhang, Y., Xu, Z., Huo, J., et al. (2022) Dysbiosis of Human Tumor Microbiome and Aberrant Residence of Actinomyces in Tumor-Associated Fibroblasts in Young-Onset Colorectal Cancer. Frontiers in Immunology, 13, Article 1008975. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wu, Z., Takigawa, H., Maruyama, H., Nambu, T., Mashimo, C. and Okinaga, T. (2024) TLR2-Dependent and Independent Pyroptosis in dTHP-1 Cells Induced by Actinomyces oris MG-1. Biochemistry and Biophysics Reports, 38, Article ID: 101680. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Bartels, Y.L., van Lent, P.L.E.M., van der Kraan, P.M., Blom, A.B., Bonger, K.M. and van den Bosch, M.H.J. (2023) Inhibition of TLR4 Signalling to Dampen Joint Inflammation in Osteoarthritis. Rheumatology, 63, 608-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Saito, T. and Tanaka, S. (2017) Molecular Mechanisms Underlying Osteoarthritis Development: Notch and NF-κB. Arthritis Research & Therapy, 19, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sato, T., Watanabe, K., Kumada, H., Toyama, T., Tani-Ishii, N. and Hamada, N. (2012) Peptidoglycan of Actinomyces naeslundii Induces Inflammatory Cytokine Production and Stimulates Osteoclastogenesis in Alveolar Bone Resorption. Archives of Oral Biology, 57, 1522-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Hiroko, I., Eikichi, I., Kosuke, T., Koji, M., Manabu, O., Kenoki, O., et al. (2024) The Interplay between Alterations in Esophageal Microbiota Associated with Th17 Immune Response and Impaired LC20 Phosphorylation in Achalasia. Journal of Gastroenterology, 59, 361-375.
|
|
[70]
|
Leipe, J., Grunke, M., Dechant, C., Reindl, C., Kerzendorf, U., Schulze‐Koops, H., et al. (2010) Role of Th17 Cells in Human Autoimmune Arthritis. Arthritis & Rheumatism, 62, 2876-2885. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Sato, K., Suematsu, A., Okamoto, K., Yamaguchi, A., Morishita, Y., Kadono, Y., et al. (2006) Th17 Functions as an Osteoclastogenic Helper T Cell Subset That Links T Cell Activation and Bone Destruction. The Journal of Experimental Medicine, 203, 2673-2682. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Kondo, T., Chiba, T. and Tousen, Y. (2022) Short-Chain Fatty Acids, Acetate and Propionate, Directly Upregulate Osteoblastic Differentiation. International Journal of Food Sciences and Nutrition, 73, 800-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zhang, Q., Meng, N., Liu, Y., Zhao, H., Zhao, Z., Hao, D., et al. (2023) Protection Effect of Gut Microbiota Composition and Acetate Absorption against Hypertension-Induced Damages on the Longevity Population in Guangxi, China. Frontiers in Nutrition, 9, Article 1070223. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Satyavrata, S., Patricia, D.R., Joshua, D.E.M. and Mariah, S.H. (2016) A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Engineering Part A, 23, 101-114.
|
|
[75]
|
Mahon, O.R., Kelly, D.J., McCarthy, G.M. and Dunne, A. (2020) Osteoarthritis-Associated Basic Calcium Phosphate Crystals Alter Immune Cell Metabolism and Promote M1 Macrophage Polarization. Osteoarthritis and Cartilage, 28, 603-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Freitas, R.G.B.O.N., Vasques, A.C.J., da Rocha Fernandes, G., Ribeiro, F.B., Solar, I., Shivappa, N., et al. (2024) Gut Bacterial Markers Involved in Association of Dietary Inflammatory Index with Visceral Adiposity. Nutrition, 122, Article ID: 112371. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Chakraborti, C.K. (2015) New-Found Link between Microbiota and Obesity. World Journal of Gastrointestinal Pathophysiology, 6, 110-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Jin, J., Cheng, R., Ren, Y., Shen, X., Wang, J., Xue, Y., et al. (2021) Distinctive Gut Microbiota in Patients with Overweight and Obesity with Dyslipidemia and Its Responses to Long-Term Orlistat and Ezetimibe Intervention: A Randomized Controlled Open-Label Trial. Frontiers in Pharmacology, 12, Article 732541. [Google Scholar] [CrossRef] [PubMed]
|