色氨酸相关代谢产物在帕金森病中的研究进展
Research Progress of Tryptophan-Related Metabolites in Parkinson’s Disease
DOI: 10.12677/acm.2025.1541318, PDF, HTML, XML,    科研立项经费支持
作者: 徐利丽, 邵 娴:绍兴市人民医院医学研究中心,浙江 绍兴;单 跃:绍兴市人民医院麻醉科,浙江 绍兴;何玲燕*:绍兴市人民医院中医科,浙江 绍兴
关键词: 色氨酸代谢产物帕金森病生物标志物Tryptophan Metabolites Parkinson’s Disease Biomarkers
摘要: 研究表明色氨酸代谢异常会影响神经功能,参与帕金森病(PD)的发生发展。本文综述了色氨酸三大代谢物途径,包括犬尿氨酸途径、血清素途径和吲哚代谢途径在PD进展中的作用。通过综合探讨色氨酸从饮食摄入,到肠道微生物分解,再到各种限速酶代谢合成,最终产生犬尿酸类、5-羟色胺和吲哚类物质,参与神经炎症、代谢、免疫反应和神经功能等病理生理过程,清晰地阐述不同代谢物调节PD发病的生物学作用及潜在机制。我们建议,对微生物组、色氨酸–犬尿氨酸途径代谢物和芳香烃受体的综合分析将有助于揭示PD发病的新机制,为PD的早期诊断和病情监测提供新思路。
Abstract: Studies have shown that abnormal tryptophan metabolism can affect neurological function and participate in the occurrence and development of Parkinson’s disease (PD). This article reviews the roles of three major metabolite pathways, including kynurenine pathway, serotonin pathway, and indole metabolic pathway, in the progression of PD. By comprehensively exploring the pathophysiological processes of neuroinflammation, metabolism, immune response and neurological function, the biological role and potential mechanism of different metabolites in regulating the pathogenesis of PD were clearly elaborated by comprehensively exploring the pathophysiological processes of tryptophan from dietary intake, intestinal microbial decomposition, and then to the metabolism and synthesis of various rate-limiting enzymes, and finally producing kynuculin, serotonin, and indole, which are involved in neuroinflammation, metabolism, immune response, and neurological function. We suggest that a comprehensive analysis of the microbiome, tryptophan-kynurenine pathway metabolites, and aryl hydrocarbon receptors will help to reveal new mechanisms of PD pathogenesis and provide new ideas for early diagnosis and disease monitoring of PD.
文章引用:徐利丽, 邵娴, 单跃, 何玲燕. 色氨酸相关代谢产物在帕金森病中的研究进展[J]. 临床医学进展, 2025, 15(4): 3455-3464. https://doi.org/10.12677/acm.2025.1541318

1. 引言

帕金森病(Parkinson’s disease, PD)是第二大常见的与衰老相关的进行性神经退行性疾病。其神经病理学特征包括黑质多巴胺能神经元的缺失,以及神经元内路易小体的形成——这类聚集物由α-突触核蛋白、神经丝和泛素构成[1]。帕金森病的临床表现包括运动症状(如静止性震颤、运动迟缓、运动不能、肌强直和步态障碍)以及非运动症状(如焦虑、抑郁和认知障碍),最终导致患者严重残疾[2]。PD发病机制复杂,涉及多种生物学途径和代谢过程。其中,色氨酸作为一种必须氨基酸,除参与蛋白质合成外,还可被代谢为多种生物活性化合物,包括犬尿氨酸类、吲哚类和5-羟色胺(5-HT),这些代谢产物在调节神经功能方面均发挥着重要作用[3]

色氨酸代谢产物已被证明在神经退行性疾病中具有重要作用[4]。帕金森病患者的血浆中3-羟基犬尿氨酸水平升高,而犬尿喹啉酸的水平则降低,这与患者的症状严重程度密切相关[5]。越来越多的证据表明,肠道菌群组成的改变会影响局部色氨酸代谢,进而影响脑功能[6] [7]。肠道微生物能够通过代谢色氨酸生成多种生物活性分子,这些分子不仅参与调节免疫反应,还可能通过影响神经递质的合成和代谢,进而影响中枢神经系统的功能[8]。因此,通过调节色氨酸代谢途径可能成为PD的一种治疗策略,本文综述了色氨酸代谢的改变如何影响PD的临床表现,并探索其作为潜在生物标志物和治疗靶点的可能性。

2. 色氨酸代谢途径及其影响

色氨酸是人体必需氨基酸,无法直接合成,必须通过食物获取。人体内色氨酸水平取决于食物摄入量和色氨酸代谢途径的活性。色氨酸代谢途径分为三类:犬尿氨酸途径、血清素途径和吲哚代谢途径。色氨酸通过复杂的代谢途径生成犬尿酸类、5-羟色胺和吲哚类物质等化合物,分别参与神经元功能、免疫调节及代谢稳态等生理过程[9] [10]。色氨酸在蛋白质合成中起限速作用,但摄入色氨酸仅有1%~2%用于此目的。在外周和大脑中,色氨酸的主要代谢通路是色氨酸–犬尿氨酸代谢途径,约95%的色氨酸通过该途径被代谢[11]。剩余2%~3%的色氨酸则进入血清素或吲哚代谢途径。色氨酸仅以游离形式通过血脑屏障(blood-brain barrier, BBB),约占其血清总量的10%~15% [12]

色氨酸首先通过色氨酸羟化酶(TPH)转化为5-HT,然后进一步代谢为5-羟基吲哚乙酸(5-HIAA),这是5-HT的主要代谢产物。另一方面,色氨酸也可以通过犬尿氨酸途径代谢,主要由色氨酸-2,3-双加氧酶(IDO)和色氨酸-2,3-双加氧酶(TDO)催化,生成犬尿氨酸,进一步转化为奎宁酸和其他代谢产物。这些代谢物在神经炎症、神经保护和神经毒性中发挥重要作用。此外,色氨酸在肠道微生物群的作用下可以转化为吲哚类物质,通过激活芳香烃受体(AhR)参与免疫调节以及各种细胞过程[13]

3. 色氨酸相关代谢产物在PD发生发展中的作用

3.1. 犬尿氨酸途径相关代谢产物

如前所述,犬尿氨酸代谢途径是色氨酸的主要代谢途径。然而,犬尿氨酸类物质具有多种截然不同的生物活性,包括细胞毒性/细胞保护性、促氧化/抗氧化性以及促炎/抗炎性。色氨酸–犬尿氨酸代谢途径的代谢产物被分为神经保护性和神经毒性两类。

具有神经保护作用的代谢物包括犬尿氨酸(KYN)、犬尿喹啉酸(KYNA)、黄尿酸(XA)和3-羟基犬尿氨酸(3-HK) [14]。KYN本身具有自由基清除剂的氧化还原特性,且已被鉴定为内源性AhR的配体,可作为外源物质靶点和转录因子发挥作用。KYNA是一种神经保护剂、抗癫痫和抗炎的化合物,能够阻断离子型谷氨酸受体[15]。KYNA也是AhR和G蛋白偶联孤儿受体35 (GPR35)的激动剂,可激活下游相关通过发挥抑制神经细胞凋亡的作用[16]。KYNA的缺乏被认为是多种代谢、心血管或大脑疾病发展的重要因素[17]。在暴露于细胞因子的原代胶质细胞中,3-HK诱导血红素氧合酶-1发挥抗炎和细胞保护特性[18]

具有神经毒性特性的代谢物包括:喹啉酸(Quinoline acid, QA)和3-羟基犬尿喹啉酸(3-HANA)。QA是一种经典的兴奋性毒素,在高浓度下作用于NMDA受体的激动剂结合位点,而在低的生理水平下,它作为NAD⁺生成的中间体参与氧化磷酸化。然而,在长时间暴露于QA时,即使在低浓度下,该化合物也可能诱导神经元丢失[16]。此外,QA可能刺激谷氨酸释放并抑制其再摄取,从而增强谷氨酸介导的神经毒性。QA也被报道促进脂质过氧化[19]。3-HK能够诱导氧化损伤和细胞死亡,大脑中3-HK水平的增加与包括亨廷顿病在内的多种神经退行性疾病有关[20]。也有研究报道,在血液透析患者的尿液中发现了3-HK修饰的蛋白质,表现出外周KYNA水平升高[21]

因此,不同犬尿氨酸类物质的作用可能取决于局部底物浓度、酶活性及广义上的细胞微环境[22]。此外,内源性因子(如色氨酸可利用性)与外源性调节因子(如炎症状态和环境毒素暴露)共同构成的复杂网络,可能改变特定犬尿氨酸类物质的最终生物学效应。

3.2. 犬尿氨酸途径失衡在PD中的研究进展

KYNA被证明可在PD动物模型中防止神经退行性变[23]。同样的,应用丙磺舒和KYN,导致大脑中KYNA增加,被证明可减少6-OHDA的毒性、神经元损伤和行为变化[24]。此外,给予犬尿氨酸3-单氧化酶抑制剂导致KYN增加和KYNA形成增加,缓解了左旋多巴诱导的运动障碍[25]。然而,临床研究的结果却没有动物实验那么理想。在PD患者的红细胞中检测到更高的KYNA活性,以及增加的KYN/Trp比率、较低的血浆Trp和更高的KYN [26]。也有研究发现血清KYNA水平没有发生变化;但KAT I和KAT II活性的降低[27]。另一方面,在PD患者的脑脊液中,KYNA水平减少,而QA水平增加[28]。一项涉及539名参与者的荟萃分析揭示了在PD中,与对照组相比,血液中的Trp水平显著降低,但在脑脊液中并非如此。在PD患者的大脑中,前额皮质、豆状核和黑质中的KYN和KYNA水平均降低[29]。尽管大量实验室依据证明色氨酸–犬尿氨酸途径在PD的发展中起着重要作用,但与临床研究的观察结果仍存在矛盾。这一矛盾可能取决于PD的阶段、共病、伴随炎症和环境因素。未来仍需要更多的临床研究来明确KYNA在PD不同阶段的水平,以及KYNA是否真的具有改善神经退变的作用。

3.3. 血清素代谢途径相关代谢产物

5-HT途径主要与中枢神经系统中的血清素能神经元相关。色氨酸通过色氨酸羟化酶转化为5-羟色氨酸(5-HTP)。5-HTP经芳香族氨基酸脱羧酶作用生成5-HT。5-HT还能进一步转化为褪黑素,从而进一步调节睡眠–觉醒周期。90%~95%的5-HT在肠道中合成,可调节胃肠蠕动、分泌和局部免疫。其余部分在中枢神经系统(5%~10%)集中于中缝核,投射至全脑,调节情绪、睡眠、认知和运动控制[30]。血小板和肥大细胞不合成5-HT,但它们可以在被激活后储存和释放5-HT [31]。血小板能够穿过BBB,是5-HT的主要来源。色氨酸和犬尿氨酸可以穿过BBB,而其他代谢物,如5-HT、KYNA和QA,则不能穿过BBB。这意味着大脑中的这些代谢物来源于神经元、星形胶质细胞和小胶质细胞,或者是携带5-HT的血小板[32]

5-HT被储存在神经末梢的囊泡中。在神经元刺激下,5-HT被释放到突触间隙中,与突触后神经元上的受体结合并传递信号[33]。5-HT还可以在松果体中代谢生成褪黑素,对于调节昼夜节律和睡眠–觉醒周期非常重要[34]。由于5-HT是一种参与情绪调节的关键神经递质,因此该途径的紊乱可能对心理健康产生影响。

3.4. 血清素代谢途径在PD中的保护作用

5-HT及其代谢产物在PD的非运动症状中发挥重要作用。研究表明,PD患者的血浆5-HT和5-羟吲哚乙酸(5-HIAA)水平显著降低,这些变化与抑郁、疼痛等非运动症状密切相关[35]。此外,5-HT能神经元的退化也是PD的一个重要病理特征,这种退化不仅影响情绪和认知功能,还与睡眠障碍和自主神经功能障碍有关[36]。选择性5-HT再摄取抑制剂帕罗西汀和艾司西酞普兰等药物已被证明对PD伴抑郁患者有显著疗效,能够显著改善抑郁症状[37] [38]。选择性5-HT再摄取抑制剂常用于通过调节大脑中的5-HT水平来治疗抑郁症等疾病[39]。此外,与特定病原体自由(SPF)小鼠相比,无菌(GF)小鼠的血清5-HT浓度降低,这为肠道细菌对5-HT水平的影响提供了证据[40]

相比于安慰剂,5-HTP治疗可有效改善PD患者抑郁症状,但对冷漠症状无效[30]。对抗左旋多巴诱导的细胞外5-HT水平降低的方法是给予5-HT前体5-HTP。当与外周脱羧酶抑制剂联合使用时,5-HTP能够增加中枢5-HT水平。在PD患者中使用5-HTP,不仅可能对抑郁症状有益,还可能对运动障碍产生影响。这可能与左旋多巴衍生的多巴胺竞争进入5-HT突触囊泡的储存,从而减少依赖5-HT的DA释放以及5-HT受体的直接激活有关[41]

PD患者褪黑素分泌的昼夜节律紊乱,这可能是PD患者白天过度嗜睡的基础。褪黑素是一种神经激素,夜间由松果体合成和分泌,可调节多种生物功能的昼夜节律,包括睡眠/觉醒节律[42]。但补充褪黑素也可通过改变肠道菌群结构影响色氨酸代谢[43]。一项随机对照试验的结果显示褪黑素对PD患者快速眼动睡眠行为障碍无效[44]。但是,近期又有研究发现褪黑素可以显著改善PD患者的主观和客观睡眠质量,并且具有良好的安全性和耐受性[45]

综上,血清素代谢途径相关产物5-HT,5-HTP和褪黑素均对PD有保护作用。上述研究提示除直接作用于神经系统外,肠道菌群也介导相关代谢物的保护作用,即微生物–肠–脑轴可能作为血清素代谢途径相关产物发挥神经保护作用的机制之一,有待进一步明确。

3.5. 吲哚代谢途径相关代谢产物

色氨酸的第三条途径为吲哚代谢途径,这需要肠道菌群参与,在肠道内完成。特定的肠道微生物群能够将色氨酸转化为吲哚及其衍生物,包括吲哚丙酸、吲哚-3-乙酸(IAA)、吲哚-3-丙酸(IPA)、吲哚-3-乙醛(3-IAld)和色胺等[46]。多种肠道菌群,包括乳酸菌、双歧杆菌、拟杆菌和梭菌,能够代谢色氨酸。微生物群可能通过免疫细胞和上皮细胞中的色氨酸犬尿氨酸途径代谢色氨酸,在肠嗜铬细胞中通过血清素途径代谢,并转化为包括AhR配体在内的多种其他分子[47]。在肝脏中,外源代谢酶如细胞色素P450和硫酸转移酶将吲哚转化为吲哚-3-硫酸酯(IS)、氧杂吲哚和异色氨酸。由于不同个体肠道微生物群种类的多样性,不同人之间吲哚的产生存在定性和定量的差异[48]

吲哚、IPA和IAld有助于维持上皮屏障,增强黏液分泌,增加黏液层厚度,改善肠道屏障功能,并减轻炎症反应[49]。孕烷X受体(PXR)、Toll样受体4 (TLR-4)和AhR参与了减少肠道通透性和降低炎症[50]。因此,增加色氨酸犬尿氨酸途径中AhR配体的合成应该能够减少“肠漏综合征”,并减轻局部免疫变化。反之,减少来自微生物代谢的潜在有害物质的吸收,将对大脑产生保护作用[51]。一项最新研究表明,在受到应激的小鼠中,补充3-IAld能够产生抗抑郁效果[52]。成年无菌小鼠的BBB通透性增加,使用拟杆菌属和梭菌属进行单菌定植并补充丁酸钠可以降低BBB的通透性[53]。这些数据表明,微生物群诱导的代谢物能够影响BBB的通透性,而AhR是这些代谢物发挥生物性作用的关键配体。

3.6. 吲哚类代谢物改善PD的研究进展

近年来,越来越多的研究表明肠道微生物群与PD密切相关[54]。PD患者在发病前后,肠道微生物的丰度也存在差异[54]。一项针对PD患者及其同住家庭成员的临床对照实验显示,PD患者体内吲哚及其衍生物的水平远高于对照组,且这些代谢物的水平与肠道微生物的丰度相关。当饮食条件相同时,PD患者与家庭成员的血浆色氨酸水平相同,但吲哚及其衍生物的水平却存在差异。这表明PD患者的肠道微生物结构与常人不同,导致了这些代谢物水平的变化[55]。但也有研究发现,除IAA外,尿液样本中的大多数色氨酸代谢物在对照和PD患者之间没有显著差异[56]。这说明吲哚类代谢物在体内经过代谢,被各个器官摄取或重吸收,其代谢可能非常复杂。

大量针对PD的研究表明,IPA可抑制蛋白质异常聚集,防止氧化应激诱导的神经元死亡,并促进神经祖细胞分化为成熟神经元[46]。临床试验结果也表明,PD患者的肠道菌群改变可能通过影响IPA等代谢物水平进而干预疾病进展。IPA与PD两大核心发病机制的关联体现在:其可能通过降低内质网应激相关伴侣蛋白GRP94的表达水平以减少神经元死亡;此外,IPA具有组蛋白去乙酰化酶抑制剂活性,与异常蛋白聚集呈现正相关性[51]。通常认为IPA通过与其配体AhR结合发挥作用。在啮齿动物的中枢神经系统中,AhR蛋白及其mRNA在星形胶质细胞、小胶质细胞和神经元中被检测到,并且存在于所有脑区[57]。但关于AhR在PD中的作用研究主要局限于动物研究。在MPTP诱导的模型中,纹状体和黑质致密部中AhR阳性的微胶质细胞和胶质细胞数量增加,而酪氨酸羟化酶表达的AhR阳性神经元数量减少。在小鼠中,二吲哚甲烷可通过激活AhR配体促进抗炎反应,防止MPTP模型中黑质多巴胺能神经元的丢失[58]。根据现有结果,IPA可能对PD的两种广泛认可的病理机制具有特定的阻断效应。尽管IPA治疗PD的具体机制尚待研究,但具有治疗PD的潜在效果。

综上所述,由于肠道菌群是色氨酸吲哚代谢途径所必须的,因此靶向微生物–肠–脑轴来调节吲哚代谢物水平可能目前治疗PD的潜在手段。现有研究也初步证实粪菌移植具有改善PD患者的运动和非运动症状[59],但仍需要大量研究来证明其安全性。

4. 色氨酸及其代谢产物在帕金森病中的生物标志物潜力

色氨酸及其代谢产物在PD中的生物标志物潜力日益受到关注。研究表明,KYN及其衍生物3-HK和QA在PD患者的血浆和脑脊液中均呈现出显著的升高,这些代谢物可作为PD诊断的早期标志物[60] [61]。也有研究发现,尿KYN与PD严重程度和轻度认知障碍显著相关,是早期PD的新型生物标志物[62]。最近的研究显示,3-HK的血浆浓度与PD的临床症状及神经影像学指标如黑质铁含量有显著相关性,这提示其可能作为PD的生物标志物[5]。此外,PD患者的血清中5-HT及5-HIAA的水平显著降低,这可能影响患者的情绪和认知功能。通过监测这些代谢物的变化,研究人员能够更早地识别出PD的潜在风险,从而为早期干预提供依据[63]

随着对色氨酸代谢途径的深入研究,色氨酸及其代谢产物的检测也为评估PD疾病进展和治疗反应提供了新的思路。研究发现,KYN水平与PD患者的运动和非运动症状的严重程度相关,或可成为监测疾病进展的潜在生物标志物[64]。此外,血浆中QA的浓度变化也被认为可以反映PD患者的神经炎症状态,进而为治疗效果的评估提供依据[4]。在临床研究中,结合色氨酸代谢物的检测与其他生物标志物的监测,可以更全面地评估PD患者的疾病状态。例如,色氨酸代谢的紊乱与PD患者的认知功能下降相关,黄尿酸(XA)浓度和3-HK的转化率与运动障碍学会统一帕金森病评定量表(UPDRS)评分呈负相关,而5-HT和GABA水平与PD患者的非运动症状呈负相关。监测这些代谢物的变化有助于了解患者的认知状态及其随时间的变化[65]。定期监测色氨酸及其代谢物的水平,可以为临床医生提供重要的信息,以调整治疗方案,优化患者的治疗效果。

综上所述,色氨酸及其代谢产物在帕金森病的早期诊断和疾病监测中展现出良好的应用潜力,未来的研究应继续探索其在临床应用中的有效性和可靠性,以期为PD患者提供更为精准的诊断、监测和管理方案。

5. 结论

色氨酸相关代谢产物在PD研究中的蓬勃发展,开辟了我们理解这一复杂神经退行性疾病的新视角。尽管已有一些初步进展,但对色氨酸代谢产物在PD中的具体作用及其临床应用的理解仍显不足。综合现有研究结果,我们认为色氨酸代谢物在PD领域的未来研究应注重以下四点:① 色氨酸代谢产物与神经炎症、氧化应激以及神经保护机制密切相关。但不同研究之间的结果存在一定的差异,可能与研究设计、对象选择、检测方法等多种因素有关[26] [28] [32]。因此,制定统一监测标准和检测手段成为解决这一问题的有效方法。未来的研究应更加注重标准化研究方法,确保结果的可重复性和可靠性,以支持对色氨酸代谢产物在PD中的功能评价。② 针对色氨酸代谢产物作为生物标志物的潜力,相关研究应更加深入。研究者应关注代谢产物的稳定性、特异性以及在不同病程阶段的变化,以期为临床提供更具指导意义的检测指标。③ 跨学科的合作将是推动色氨酸相关代谢产物在PD研究中取得突破的关键[66]。整合生物化学、神经科学以及临床医学等多个领域的知识与资源,开展多中心大规模的临床研究,从而加速PD的研究进展,为PD的早期诊断和个体化治疗开辟新的路径。④ 随着以肠道菌群为切入点靶向微生物–肠–脑轴治疗PD的临床和基础研究的大量涌现,相关粪菌移植、益生菌/合生元的开发,以及色氨酸小分子代谢物相关产品将为PD的治疗提供新方向。

基金项目

绍兴市科技计划项目(2022A14013, 2023A14014);绍兴市卫生健康项目(2022KY022)。

NOTES

*通讯作者。

参考文献

[1] Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303.
https://doi.org/10.1016/s0140-6736(21)00218-x
[2] Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., et al. (2019) Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. The Lancet Neurology, 18, 1091-1102.
https://doi.org/10.1016/s1474-4422(19)30320-5
[3] Tanaka, M., Toldi, J. and Vécsei, L. (2020) Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. International Journal of Molecular Sciences, 21, Article No. 2431.
https://doi.org/10.3390/ijms21072431
[4] Hestad, K., Alexander, J., Rootwelt, H. and Aaseth, J.O. (2022) The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules, 12, Article No. 998.
https://doi.org/10.3390/biom12070998
[5] Heilman, P.L., Wang, E.W., Lewis, M.M., Krzyzanowski, S., Capan, C.D., Burmeister, A.R., et al. (2020) Tryptophan Metabolites Are Associated with Symptoms and Nigral Pathology in Parkinson’s Disease. Movement Disorders, 35, 2028-2037.
https://doi.org/10.1002/mds.28202
[6] Gao, K., Mu, C., Farzi, A. and Zhu, W. (2020) Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Advances in Nutrition, 11, 709-723.
https://doi.org/10.1093/advances/nmz127
[7] Davidson, M., Rashidi, N., Nurgali, K. and Apostolopoulos, V. (2022) The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 23, Article No. 9968.
https://doi.org/10.3390/ijms23179968
[8] Pathak, S., Nadar, R., Kim, S., Liu, K., Govindarajulu, M., Cook, P., et al. (2024) The Influence of Kynurenine Metabolites on Neurodegenerative Pathologies. International Journal of Molecular Sciences, 25, Article No. 853.
https://doi.org/10.3390/ijms25020853
[9] Covarrubias, A.J., Perrone, R., Grozio, A. and Verdin, E. (2020) NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nature Reviews Molecular Cell Biology, 22, 119-141.
https://doi.org/10.1038/s41580-020-00313-x
[10] Badawy, A.A. (2017) Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. International Journal of Tryptophan Research, 10.
https://doi.org/10.1177/1178646917691938
[11] Roth, W., Zadeh, K., Vekariya, R., Ge, Y. and Mohamadzadeh, M. (2021) Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, 22, Article No. 2973.
https://doi.org/10.3390/ijms22062973
[12] Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., et al. (2022) Tryptophan Metabolism: Mechanism-Oriented Therapy for Neurological and Psychiatric Disorders. Frontiers in Immunology, 13, Article ID: 985378.
https://doi.org/10.3389/fimmu.2022.985378
[13] Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326.
https://doi.org/10.1016/j.cmet.2023.06.004
[14] Savitz, J. (2019) The Kynurenine Pathway: A Finger in Every Pie. Molecular Psychiatry, 25, 131-147.
https://doi.org/10.1038/s41380-019-0414-4
[15] Marszalek-Grabska, M., Walczak, K., Gawel, K., Wicha-Komsta, K., Wnorowska, S., Wnorowski, A., et al. (2021) Kynurenine Emerges from the Shadows—Current Knowledge on Its Fate and Function. Pharmacology & Therapeutics, 225, Article ID: 107845.
https://doi.org/10.1016/j.pharmthera.2021.107845
[16] Ostapiuk, A. and Urbanska, E.M. (2021) Kynurenic Acid in Neurodegenerative Disorders—Unique Neuroprotection or Double-Edged Sword? CNS Neuroscience & Therapeutics, 28, 19-35.
https://doi.org/10.1111/cns.13768
[17] Zhen, D., Liu, J., Zhang, X.D. and Song, Z. (2022) Kynurenic Acid Acts as a Signaling Molecule Regulating Energy Expenditure and Is Closely Associated with Metabolic Diseases. Frontiers in Endocrinology, 13, Article ID: 847611.
https://doi.org/10.3389/fendo.2022.847611
[18] Krause, D., Suh, H., Tarassishin, L., Cui, Q.L., Durafourt, B.A., Choi, N., et al. (2011) The Tryptophan Metabolite 3-Hydroxyanthranilic Acid Plays Anti-Inflammatory and Neuroprotective Roles during Inflammation: Role of Hemeoxygenase-1. The American Journal of Pathology, 179, 1360-1372.
https://doi.org/10.1016/j.ajpath.2011.05.048
[19] Xu, B., Zhang, P., Tang, X., Wang, S., Shen, J., Zheng, Y., et al. (2022) Metabolic Rewiring of Kynurenine Pathway during Hepatic Ischemia-Reperfusion Injury Exacerbates Liver Damage by Impairing NAD Homeostasis. Advanced Science (Weinh), 9, e2204697.
https://doi.org/10.1002/advs.202204697
[20] Guidetti, P., Bates, G.P., Graham, R.K., Hayden, M.R., Leavitt, B.R., MacDonald, M.E., et al. (2006) Elevated Brain 3-Hydroxykynurenine and Quinolinate Levels in Huntington Disease Mice. Neurobiology of Disease, 23, 190-197.
https://doi.org/10.1016/j.nbd.2006.02.011
[21] Sala, A., Campagnoli, M., Perani, E., Romano, A., Labò, S., Monzani, E., et al. (2004) Human Α-1-Microglobulin Is Covalently Bound to Kynurenine-Derived Chromophores. Journal of Biological Chemistry, 279, 51033-51041.
https://doi.org/10.1074/jbc.m408242200
[22] Tanaka, M. and Vécsei, L. (2021) Monitoring the Kynurenine System: Concentrations, Ratios or What Else? Advances in Clinical and Experimental Medicine, 30, 775-778.
https://doi.org/10.17219/acem/139572
[23] Silva-Adaya, D., Pérez-De La Cruz, V., Villeda-Hernández, J., Carrillo-Mora, P., González-Herrera, I.G., García, E., et al. (2011) Protective Effect of L-Kynurenine and Probenecid on 6-Hydroxydopamine-Induced Striatal Toxicity in Rats: Implications of Modulating Kynurenate as a Protective Strategy. Neurotoxicology and Teratology, 33, 303-312.
https://doi.org/10.1016/j.ntt.2010.10.002
[24] Lee, S., Lim, H., Masliah, E. and Lee, H. (2011) Protein Aggregate Spreading in Neurodegenerative Diseases: Problems and Perspectives. Neuroscience Research, 70, 339-348.
https://doi.org/10.1016/j.neures.2011.05.008
[25] Samadi, P., Grégoire, L., Rassoulpour, A., Guidetti, P., Izzo, E., Schwarcz, R., et al. (2005) Effect of Kynurenine 3‐hydroxylase Inhibition on the Dyskinetic and Antiparkinsonian Responses to Levodopa in Parkinsonian Monkeys. Movement Disorders, 20, 792-802.
https://doi.org/10.1002/mds.20596
[26] Chang, K., Cheng, M., Tang, H., Huang, C., Wu, Y. and Chen, C. (2018) Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease. Molecular Neurobiology, 55, 6319-6328.
https://doi.org/10.1007/s12035-017-0845-3
[27] Fathi, M., Taghizadeh, F., Mojtahedi, H., Zargar Balaye Jame, S. and Markazi Moghaddam, N. (2022) The Effects of Alzheimer’s and Parkinson’s Disease on 28-Day Mortality of Covid-19. Revue Neurologique, 178, 129-136.
https://doi.org/10.1016/j.neurol.2021.08.002
[28] Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724.
https://doi.org/10.1016/j.chom.2018.05.003
[29] Ogawa, T., Matson, W.R., Beal, M.F., Myers, R.H., Bird, E.D., Milbury, P., et al. (1992) Kynurenine Pathway Abnormalities in Parkinson’s Disease. Neurology, 42, 1702-1702.
https://doi.org/10.1212/wnl.42.9.1702
[30] Meloni, M., Puligheddu, M., Carta, M., Cannas, A., Figorilli, M. and Defazio, G. (2020) Efficacy and Safety of 5‐hydroxytryptophan on Depression and Apathy in Parkinson’s Disease: A Preliminary Finding. European Journal of Neurology, 27, 779-786.
https://doi.org/10.1111/ene.14179
[31] Imamdin, A. and van der Vorst, E.P.C. (2023) Exploring the Role of Serotonin as an Immune Modulatory Component in Cardiovascular Diseases. International Journal of Molecular Sciences, 24, Article No. 1549.
https://doi.org/10.3390/ijms24021549
[32] Skorobogatov, K., De Picker, L., Verkerk, R., Coppens, V., Leboyer, M., Müller, N., et al. (2021) Brain versus Blood: A Systematic Review on the Concordance between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders. Frontiers in Immunology, 12, Article ID: 716980.
https://doi.org/10.3389/fimmu.2021.716980
[33] Lovinger, D.M. (2008) Communication Networks in the Brain: Neurons, Receptors, Neurotransmitters, and Alcohol. Alcohol Research & Health, 31, 196-214.
[34] Fanciulli, G., Ruggeri, R.M., Grossrubatscher, E., Calzo, F.L., Wood, T.D., Faggiano, A., et al. (2020) Serotonin Pathway in Carcinoid Syndrome: Clinical, Diagnostic, Prognostic and Therapeutic Implications. Reviews in Endocrine and Metabolic Disorders, 21, 599-612.
https://doi.org/10.1007/s11154-020-09547-8
[35] Zajdel, P., Matłoka, M., Konieczny, J., Kos, T., Lammers, J.C., Cavalco, N.G., et al. (2025) Simultaneous 5-HT(1B)R Agonist/5-HT(6)R Antagonist Action as a Potential Treatment of Parkinson’s Disease and Its Comorbidities. The Journal of Pharmacology and Experimental Therapeutics, 392, Article ID: 100055.
https://doi.org/10.1016/j.jpet.2024.100055
[36] Marano, M., Pilotto, A., Padovani, A., Gupta, D., Vivacqua, G., Magliozzi, A., et al. (2024) The Chronic Use of Serotonin Norepinephrine Reuptake Inhibitors Facilitates Dyskinesia Priming in Early Parkinson’s Disease. Journal of Neurology, 271, 3711-3720.
https://doi.org/10.1007/s00415-024-12400-6
[37] Jiang, L., Wu, Y., Mo, Y., Gou, L., Chen, M., Wang, Y., et al. (2023) The Effects of Paroxetine Therapy on Depressive Symptom and Motor Function in the Treatment of Depression with Parkinson’s Disease: A Meta-Analysis. Medicine, 102, e34687.
https://doi.org/10.1097/md.0000000000034687
[38] Quan, M., Gao, J., Xu, S., Guo, D., Jia, J. and Wang, W. (2023) Comparison of Tandospirone and Escitalopram as a Symptomatic Treatment in Multiple System Atrophy-Cerebellar Ataxia: An Open-Label, Non-Controlled, 4 Weeks Observational Study. Journal of Psychiatric Research, 168, 133-139.
https://doi.org/10.1016/j.jpsychires.2023.10.028
[39] Fakhoury, M. (2015) Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Molecular Neurobiology, 53, 2778-2786.
https://doi.org/10.1007/s12035-015-9152-z
[40] Sanidad, K.Z., Rager, S.L., Carrow, H.C., Ananthanarayanan, A., Callaghan, R., Hart, L.R., et al. (2024) Gut Bacteria-Derived Serotonin Promotes Immune Tolerance in Early Life. Science Immunology, 9, eadj4775.
https://doi.org/10.1126/sciimmunol.adj4775
[41] Tronci, E., Lisci, C., Stancampiano, R., Fidalgo, C., Collu, M., Devoto, P., et al. (2013) 5-Hydroxy-Tryptophan for the Treatment of L-DOPA-Induced Dyskinesia in the Rat Parkinson’s Disease Model. Neurobiology of Disease, 60, 108-114.
https://doi.org/10.1016/j.nbd.2013.08.014
[42] Videnovic, A., Noble, C., Reid, K.J., Peng, J., Turek, F.W., Marconi, A., et al. (2014) Circadian Melatonin Rhythm and Excessive Daytime Sleepiness in Parkinson Disease. JAMA Neurology, 71, 463-469.
https://doi.org/10.1001/jamaneurol.2013.6239
[43] Zheng, K., Gao, B., Wang, H., He, J., Chen, H., Hu, Z., et al. (2024) Melatonin Ameliorates Depressive‐Like Behaviors in Ovariectomized Mice by Improving Tryptophan Metabolism via Inhibition of Gut Microbe Alistipes inops. Advanced Science, 11, e2309473.
https://doi.org/10.1002/advs.202309473
[44] Palagini, L., Manni, R., Aguglia, E., Amore, M., Brugnoli, R., Bioulac, S., et al. (2021) International Expert Opinions and Recommendations on the Use of Melatonin in the Treatment of Insomnia and Circadian Sleep Disturbances in Adult Neuropsychiatric Disorders. Frontiers in Psychiatry, 12, Article ID: 688890.
https://doi.org/10.3389/fpsyt.2021.688890
[45] Ma, H., Yan, J., Sun, W., Jiang, M. and Zhang, Y. (2022) Melatonin Treatment for Sleep Disorders in Parkinson’s Disease: A Meta-Analysis and Systematic Review. Frontiers in Aging Neuroscience, 14, Article ID: 784314.
https://doi.org/10.3389/fnagi.2022.784314
[46] Wei, G.Z., Martin, K.A., Xing, P.Y., Agrawal, R., Whiley, L., Wood, T.K., et al. (2021) Tryptophan-Metabolizing Gut Microbes Regulate Adult Neurogenesis via the Aryl Hydrocarbon Receptor. Proceedings of the National Academy of Sciences, 118, e2021091118.
https://doi.org/10.1073/pnas.2021091118
[47] Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., et al. (2012) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673.
https://doi.org/10.1038/mp.2012.77
[48] Zhou, Y., Zhao, W., Quan, W., Qiao, C., Cui, C., Hong, H., et al. (2021) Dynamic Changes of Activated AHR in Microglia and Astrocytes in the Substantia Nigra-Striatum System in an Mptp-Induced Parkinson’s Disease Mouse Model. Brain Research Bulletin, 176, 174-183.
https://doi.org/10.1016/j.brainresbull.2021.08.013
[49] Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., et al. (2017) A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature, 551, 648-652.
https://doi.org/10.1038/nature24661
[50] Russell, W.R., Duncan, S.H., Scobbie, L., Duncan, G., Cantlay, L., Calder, A.G., et al. (2013) Major Phenylpropanoid‐derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Molecular Nutrition & Food Research, 57, 523-535.
https://doi.org/10.1002/mnfr.201200594
[51] Zhou, Y., Chen, Y., He, H., Peng, M., Zeng, M. and Sun, H. (2023) The Role of the Indoles in Microbiota-Gut-Brain Axis and Potential Therapeutic Targets: A Focus on Human Neurological and Neuropsychiatric Diseases. Neuropharmacology, 239, Article ID: 109690.
https://doi.org/10.1016/j.neuropharm.2023.109690
[52] Cheng, L., Wu, H., Cai, X., Zhang, Y., Yu, S., Hou, Y., et al. (2024) A Gpr35-Tuned Gut Microbe-Brain Metabolic Axis Regulates Depressive-Like Behavior. Cell Host & Microbe, 32, 227-243.e6.
https://doi.org/10.1016/j.chom.2023.12.009
[53] Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158.
https://doi.org/10.1126/scitranslmed.3009759
[54] Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., et al. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167, 1469-1480.e12.
https://doi.org/10.1016/j.cell.2016.11.018
[55] Chen, S., Chen, C., Liao, H., Wu, Y., Liou, J., Wu, M., et al. (2022) Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson’s Disease. Journal of Parkinsons Disease, 12, 1219-1230.
https://doi.org/10.3233/jpd-223179
[56] Chung, S.H., Yoo, D., Ahn, T., Lee, W. and Hong, J. (2023) Profiling Analysis of Tryptophan Metabolites in the Urine of Patients with Parkinson’s Disease Using LC-MS/MS. Pharmaceuticals, 16, Article No. 1495.
https://doi.org/10.3390/ph16101495
[57] Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597.
https://doi.org/10.1038/nm.4106
[58] De Miranda, B.R., Miller, J.A., Hansen, R.J., Lunghofer, P.J., Safe, S., Gustafson, D.L., et al. (2013) Neuroprotective Efficacy and Pharmacokinetic Behavior of Novel Anti-Inflammatory Para-Phenyl Substituted Diindolylmethanes in a Mouse Model of Parkinson’s Disease. The Journal of Pharmacology and Experimental Therapeutics, 345, 125-138.
https://doi.org/10.1124/jpet.112.201558
[59] Scheperjans, F., Levo, R., Bosch, B., Lääperi, M., Pereira, P.A.B., Smolander, O., et al. (2024) Fecal Microbiota Transplantation for Treatment of Parkinson Disease: A Randomized Clinical Trial. JAMA Neurology, 81, 925-938.
https://doi.org/10.1001/jamaneurol.2024.2305
[60] Boros, F.A. and Vécsei, L. (2021) Tryptophan 2,3-Dioxygenase, a Novel Therapeutic Target for Parkinson’s Disease. Expert Opinion on Therapeutic Targets, 25, 877-888.
https://doi.org/10.1080/14728222.2021.1999928
[61] Iwaniak, P., Owe-Larsson, M. and Urbańska, E.M. (2024) Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson’s Disease—A Narrative Review. International Journal of Molecular Sciences, 25, Article No. 2915.
https://doi.org/10.3390/ijms25052915
[62] Bai, J., Zheng, Y. and Yu, Y. (2020) Urinary Kynurenine as a Biomarker for Parkinson’s Disease. Neurological Sciences, 42, 697-703.
https://doi.org/10.1007/s10072-020-04589-x
[63] Tong, Q., Zhang, L., Yuan, Y., Jiang, S., Zhang, R., Xu, Q., et al. (2015) Reduced Plasma Serotonin and 5-Hydroxyindoleacetic Acid Levels in Parkinson’s Disease Are Associated with Nonmotor Symptoms. Parkinsonism & Related Disorders, 21, 882-887.
https://doi.org/10.1016/j.parkreldis.2015.05.016
[64] Fathi, M., Vakili, K., Yaghoobpoor, S., Tavasol, A., Jazi, K., Hajibeygi, R., et al. (2022) Dynamic Changes in Metabolites of the Kynurenine Pathway in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 13, Article ID: 997240.
https://doi.org/10.3389/fimmu.2022.997240
[65] Fan, Y., Yang, W., Wu, W., Wang, X., Lin, Y., Wu, L., et al. (2024) Serum Neurotransmitter Analysis of Motor and Non-Motor Symptoms in Parkinson’s Patients. Frontiers in Aging Neuroscience, 16, Article ID: 1423120.
https://doi.org/10.3389/fnagi.2024.1423120
[66] Shao, Y., Li, T., Liu, Z., Wang, X., Xu, X., Li, S., et al. (2021) Comprehensive Metabolic Profiling of Parkinson’s Disease by Liquid Chromatography-Mass Spectrometry. Molecular Neurodegeneration, 16, Article No. 4.
https://doi.org/10.1186/s13024-021-00425-8