[1]
|
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. https://doi.org/10.1016/s0140-6736(21)00218-x
|
[2]
|
Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., et al. (2019) Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. The Lancet Neurology, 18, 1091-1102. https://doi.org/10.1016/s1474-4422(19)30320-5
|
[3]
|
Tanaka, M., Toldi, J. and Vécsei, L. (2020) Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. International Journal of Molecular Sciences, 21, Article No. 2431. https://doi.org/10.3390/ijms21072431
|
[4]
|
Hestad, K., Alexander, J., Rootwelt, H. and Aaseth, J.O. (2022) The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules, 12, Article No. 998. https://doi.org/10.3390/biom12070998
|
[5]
|
Heilman, P.L., Wang, E.W., Lewis, M.M., Krzyzanowski, S., Capan, C.D., Burmeister, A.R., et al. (2020) Tryptophan Metabolites Are Associated with Symptoms and Nigral Pathology in Parkinson’s Disease. Movement Disorders, 35, 2028-2037. https://doi.org/10.1002/mds.28202
|
[6]
|
Gao, K., Mu, C., Farzi, A. and Zhu, W. (2020) Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Advances in Nutrition, 11, 709-723. https://doi.org/10.1093/advances/nmz127
|
[7]
|
Davidson, M., Rashidi, N., Nurgali, K. and Apostolopoulos, V. (2022) The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 23, Article No. 9968. https://doi.org/10.3390/ijms23179968
|
[8]
|
Pathak, S., Nadar, R., Kim, S., Liu, K., Govindarajulu, M., Cook, P., et al. (2024) The Influence of Kynurenine Metabolites on Neurodegenerative Pathologies. International Journal of Molecular Sciences, 25, Article No. 853. https://doi.org/10.3390/ijms25020853
|
[9]
|
Covarrubias, A.J., Perrone, R., Grozio, A. and Verdin, E. (2020) NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nature Reviews Molecular Cell Biology, 22, 119-141. https://doi.org/10.1038/s41580-020-00313-x
|
[10]
|
Badawy, A.A. (2017) Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. International Journal of Tryptophan Research, 10. https://doi.org/10.1177/1178646917691938
|
[11]
|
Roth, W., Zadeh, K., Vekariya, R., Ge, Y. and Mohamadzadeh, M. (2021) Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, 22, Article No. 2973. https://doi.org/10.3390/ijms22062973
|
[12]
|
Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., et al. (2022) Tryptophan Metabolism: Mechanism-Oriented Therapy for Neurological and Psychiatric Disorders. Frontiers in Immunology, 13, Article ID: 985378. https://doi.org/10.3389/fimmu.2022.985378
|
[13]
|
Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326. https://doi.org/10.1016/j.cmet.2023.06.004
|
[14]
|
Savitz, J. (2019) The Kynurenine Pathway: A Finger in Every Pie. Molecular Psychiatry, 25, 131-147. https://doi.org/10.1038/s41380-019-0414-4
|
[15]
|
Marszalek-Grabska, M., Walczak, K., Gawel, K., Wicha-Komsta, K., Wnorowska, S., Wnorowski, A., et al. (2021) Kynurenine Emerges from the Shadows—Current Knowledge on Its Fate and Function. Pharmacology & Therapeutics, 225, Article ID: 107845. https://doi.org/10.1016/j.pharmthera.2021.107845
|
[16]
|
Ostapiuk, A. and Urbanska, E.M. (2021) Kynurenic Acid in Neurodegenerative Disorders—Unique Neuroprotection or Double-Edged Sword? CNS Neuroscience & Therapeutics, 28, 19-35. https://doi.org/10.1111/cns.13768
|
[17]
|
Zhen, D., Liu, J., Zhang, X.D. and Song, Z. (2022) Kynurenic Acid Acts as a Signaling Molecule Regulating Energy Expenditure and Is Closely Associated with Metabolic Diseases. Frontiers in Endocrinology, 13, Article ID: 847611. https://doi.org/10.3389/fendo.2022.847611
|
[18]
|
Krause, D., Suh, H., Tarassishin, L., Cui, Q.L., Durafourt, B.A., Choi, N., et al. (2011) The Tryptophan Metabolite 3-Hydroxyanthranilic Acid Plays Anti-Inflammatory and Neuroprotective Roles during Inflammation: Role of Hemeoxygenase-1. The American Journal of Pathology, 179, 1360-1372. https://doi.org/10.1016/j.ajpath.2011.05.048
|
[19]
|
Xu, B., Zhang, P., Tang, X., Wang, S., Shen, J., Zheng, Y., et al. (2022) Metabolic Rewiring of Kynurenine Pathway during Hepatic Ischemia-Reperfusion Injury Exacerbates Liver Damage by Impairing NAD Homeostasis. Advanced Science (Weinh), 9, e2204697. https://doi.org/10.1002/advs.202204697
|
[20]
|
Guidetti, P., Bates, G.P., Graham, R.K., Hayden, M.R., Leavitt, B.R., MacDonald, M.E., et al. (2006) Elevated Brain 3-Hydroxykynurenine and Quinolinate Levels in Huntington Disease Mice. Neurobiology of Disease, 23, 190-197. https://doi.org/10.1016/j.nbd.2006.02.011
|
[21]
|
Sala, A., Campagnoli, M., Perani, E., Romano, A., Labò, S., Monzani, E., et al. (2004) Human Α-1-Microglobulin Is Covalently Bound to Kynurenine-Derived Chromophores. Journal of Biological Chemistry, 279, 51033-51041. https://doi.org/10.1074/jbc.m408242200
|
[22]
|
Tanaka, M. and Vécsei, L. (2021) Monitoring the Kynurenine System: Concentrations, Ratios or What Else? Advances in Clinical and Experimental Medicine, 30, 775-778. https://doi.org/10.17219/acem/139572
|
[23]
|
Silva-Adaya, D., Pérez-De La Cruz, V., Villeda-Hernández, J., Carrillo-Mora, P., González-Herrera, I.G., García, E., et al. (2011) Protective Effect of L-Kynurenine and Probenecid on 6-Hydroxydopamine-Induced Striatal Toxicity in Rats: Implications of Modulating Kynurenate as a Protective Strategy. Neurotoxicology and Teratology, 33, 303-312. https://doi.org/10.1016/j.ntt.2010.10.002
|
[24]
|
Lee, S., Lim, H., Masliah, E. and Lee, H. (2011) Protein Aggregate Spreading in Neurodegenerative Diseases: Problems and Perspectives. Neuroscience Research, 70, 339-348. https://doi.org/10.1016/j.neures.2011.05.008
|
[25]
|
Samadi, P., Grégoire, L., Rassoulpour, A., Guidetti, P., Izzo, E., Schwarcz, R., et al. (2005) Effect of Kynurenine 3‐hydroxylase Inhibition on the Dyskinetic and Antiparkinsonian Responses to Levodopa in Parkinsonian Monkeys. Movement Disorders, 20, 792-802. https://doi.org/10.1002/mds.20596
|
[26]
|
Chang, K., Cheng, M., Tang, H., Huang, C., Wu, Y. and Chen, C. (2018) Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease. Molecular Neurobiology, 55, 6319-6328. https://doi.org/10.1007/s12035-017-0845-3
|
[27]
|
Fathi, M., Taghizadeh, F., Mojtahedi, H., Zargar Balaye Jame, S. and Markazi Moghaddam, N. (2022) The Effects of Alzheimer’s and Parkinson’s Disease on 28-Day Mortality of Covid-19. Revue Neurologique, 178, 129-136. https://doi.org/10.1016/j.neurol.2021.08.002
|
[28]
|
Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724. https://doi.org/10.1016/j.chom.2018.05.003
|
[29]
|
Ogawa, T., Matson, W.R., Beal, M.F., Myers, R.H., Bird, E.D., Milbury, P., et al. (1992) Kynurenine Pathway Abnormalities in Parkinson’s Disease. Neurology, 42, 1702-1702. https://doi.org/10.1212/wnl.42.9.1702
|
[30]
|
Meloni, M., Puligheddu, M., Carta, M., Cannas, A., Figorilli, M. and Defazio, G. (2020) Efficacy and Safety of 5‐hydroxytryptophan on Depression and Apathy in Parkinson’s Disease: A Preliminary Finding. European Journal of Neurology, 27, 779-786. https://doi.org/10.1111/ene.14179
|
[31]
|
Imamdin, A. and van der Vorst, E.P.C. (2023) Exploring the Role of Serotonin as an Immune Modulatory Component in Cardiovascular Diseases. International Journal of Molecular Sciences, 24, Article No. 1549. https://doi.org/10.3390/ijms24021549
|
[32]
|
Skorobogatov, K., De Picker, L., Verkerk, R., Coppens, V., Leboyer, M., Müller, N., et al. (2021) Brain versus Blood: A Systematic Review on the Concordance between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders. Frontiers in Immunology, 12, Article ID: 716980. https://doi.org/10.3389/fimmu.2021.716980
|
[33]
|
Lovinger, D.M. (2008) Communication Networks in the Brain: Neurons, Receptors, Neurotransmitters, and Alcohol. Alcohol Research & Health, 31, 196-214.
|
[34]
|
Fanciulli, G., Ruggeri, R.M., Grossrubatscher, E., Calzo, F.L., Wood, T.D., Faggiano, A., et al. (2020) Serotonin Pathway in Carcinoid Syndrome: Clinical, Diagnostic, Prognostic and Therapeutic Implications. Reviews in Endocrine and Metabolic Disorders, 21, 599-612. https://doi.org/10.1007/s11154-020-09547-8
|
[35]
|
Zajdel, P., Matłoka, M., Konieczny, J., Kos, T., Lammers, J.C., Cavalco, N.G., et al. (2025) Simultaneous 5-HT(1B)R Agonist/5-HT(6)R Antagonist Action as a Potential Treatment of Parkinson’s Disease and Its Comorbidities. The Journal of Pharmacology and Experimental Therapeutics, 392, Article ID: 100055. https://doi.org/10.1016/j.jpet.2024.100055
|
[36]
|
Marano, M., Pilotto, A., Padovani, A., Gupta, D., Vivacqua, G., Magliozzi, A., et al. (2024) The Chronic Use of Serotonin Norepinephrine Reuptake Inhibitors Facilitates Dyskinesia Priming in Early Parkinson’s Disease. Journal of Neurology, 271, 3711-3720. https://doi.org/10.1007/s00415-024-12400-6
|
[37]
|
Jiang, L., Wu, Y., Mo, Y., Gou, L., Chen, M., Wang, Y., et al. (2023) The Effects of Paroxetine Therapy on Depressive Symptom and Motor Function in the Treatment of Depression with Parkinson’s Disease: A Meta-Analysis. Medicine, 102, e34687. https://doi.org/10.1097/md.0000000000034687
|
[38]
|
Quan, M., Gao, J., Xu, S., Guo, D., Jia, J. and Wang, W. (2023) Comparison of Tandospirone and Escitalopram as a Symptomatic Treatment in Multiple System Atrophy-Cerebellar Ataxia: An Open-Label, Non-Controlled, 4 Weeks Observational Study. Journal of Psychiatric Research, 168, 133-139. https://doi.org/10.1016/j.jpsychires.2023.10.028
|
[39]
|
Fakhoury, M. (2015) Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Molecular Neurobiology, 53, 2778-2786. https://doi.org/10.1007/s12035-015-9152-z
|
[40]
|
Sanidad, K.Z., Rager, S.L., Carrow, H.C., Ananthanarayanan, A., Callaghan, R., Hart, L.R., et al. (2024) Gut Bacteria-Derived Serotonin Promotes Immune Tolerance in Early Life. Science Immunology, 9, eadj4775. https://doi.org/10.1126/sciimmunol.adj4775
|
[41]
|
Tronci, E., Lisci, C., Stancampiano, R., Fidalgo, C., Collu, M., Devoto, P., et al. (2013) 5-Hydroxy-Tryptophan for the Treatment of L-DOPA-Induced Dyskinesia in the Rat Parkinson’s Disease Model. Neurobiology of Disease, 60, 108-114. https://doi.org/10.1016/j.nbd.2013.08.014
|
[42]
|
Videnovic, A., Noble, C., Reid, K.J., Peng, J., Turek, F.W., Marconi, A., et al. (2014) Circadian Melatonin Rhythm and Excessive Daytime Sleepiness in Parkinson Disease. JAMA Neurology, 71, 463-469. https://doi.org/10.1001/jamaneurol.2013.6239
|
[43]
|
Zheng, K., Gao, B., Wang, H., He, J., Chen, H., Hu, Z., et al. (2024) Melatonin Ameliorates Depressive‐Like Behaviors in Ovariectomized Mice by Improving Tryptophan Metabolism via Inhibition of Gut Microbe Alistipes inops. Advanced Science, 11, e2309473. https://doi.org/10.1002/advs.202309473
|
[44]
|
Palagini, L., Manni, R., Aguglia, E., Amore, M., Brugnoli, R., Bioulac, S., et al. (2021) International Expert Opinions and Recommendations on the Use of Melatonin in the Treatment of Insomnia and Circadian Sleep Disturbances in Adult Neuropsychiatric Disorders. Frontiers in Psychiatry, 12, Article ID: 688890. https://doi.org/10.3389/fpsyt.2021.688890
|
[45]
|
Ma, H., Yan, J., Sun, W., Jiang, M. and Zhang, Y. (2022) Melatonin Treatment for Sleep Disorders in Parkinson’s Disease: A Meta-Analysis and Systematic Review. Frontiers in Aging Neuroscience, 14, Article ID: 784314. https://doi.org/10.3389/fnagi.2022.784314
|
[46]
|
Wei, G.Z., Martin, K.A., Xing, P.Y., Agrawal, R., Whiley, L., Wood, T.K., et al. (2021) Tryptophan-Metabolizing Gut Microbes Regulate Adult Neurogenesis via the Aryl Hydrocarbon Receptor. Proceedings of the National Academy of Sciences, 118, e2021091118. https://doi.org/10.1073/pnas.2021091118
|
[47]
|
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., et al. (2012) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673. https://doi.org/10.1038/mp.2012.77
|
[48]
|
Zhou, Y., Zhao, W., Quan, W., Qiao, C., Cui, C., Hong, H., et al. (2021) Dynamic Changes of Activated AHR in Microglia and Astrocytes in the Substantia Nigra-Striatum System in an Mptp-Induced Parkinson’s Disease Mouse Model. Brain Research Bulletin, 176, 174-183. https://doi.org/10.1016/j.brainresbull.2021.08.013
|
[49]
|
Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., et al. (2017) A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature, 551, 648-652. https://doi.org/10.1038/nature24661
|
[50]
|
Russell, W.R., Duncan, S.H., Scobbie, L., Duncan, G., Cantlay, L., Calder, A.G., et al. (2013) Major Phenylpropanoid‐derived Metabolites in the Human Gut Can Arise from Microbial Fermentation of Protein. Molecular Nutrition & Food Research, 57, 523-535. https://doi.org/10.1002/mnfr.201200594
|
[51]
|
Zhou, Y., Chen, Y., He, H., Peng, M., Zeng, M. and Sun, H. (2023) The Role of the Indoles in Microbiota-Gut-Brain Axis and Potential Therapeutic Targets: A Focus on Human Neurological and Neuropsychiatric Diseases. Neuropharmacology, 239, Article ID: 109690. https://doi.org/10.1016/j.neuropharm.2023.109690
|
[52]
|
Cheng, L., Wu, H., Cai, X., Zhang, Y., Yu, S., Hou, Y., et al. (2024) A Gpr35-Tuned Gut Microbe-Brain Metabolic Axis Regulates Depressive-Like Behavior. Cell Host & Microbe, 32, 227-243.e6. https://doi.org/10.1016/j.chom.2023.12.009
|
[53]
|
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158. https://doi.org/10.1126/scitranslmed.3009759
|
[54]
|
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., et al. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167, 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018
|
[55]
|
Chen, S., Chen, C., Liao, H., Wu, Y., Liou, J., Wu, M., et al. (2022) Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson’s Disease. Journal of Parkinson’s Disease, 12, 1219-1230. https://doi.org/10.3233/jpd-223179
|
[56]
|
Chung, S.H., Yoo, D., Ahn, T., Lee, W. and Hong, J. (2023) Profiling Analysis of Tryptophan Metabolites in the Urine of Patients with Parkinson’s Disease Using LC-MS/MS. Pharmaceuticals, 16, Article No. 1495. https://doi.org/10.3390/ph16101495
|
[57]
|
Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597. https://doi.org/10.1038/nm.4106
|
[58]
|
De Miranda, B.R., Miller, J.A., Hansen, R.J., Lunghofer, P.J., Safe, S., Gustafson, D.L., et al. (2013) Neuroprotective Efficacy and Pharmacokinetic Behavior of Novel Anti-Inflammatory Para-Phenyl Substituted Diindolylmethanes in a Mouse Model of Parkinson’s Disease. The Journal of Pharmacology and Experimental Therapeutics, 345, 125-138. https://doi.org/10.1124/jpet.112.201558
|
[59]
|
Scheperjans, F., Levo, R., Bosch, B., Lääperi, M., Pereira, P.A.B., Smolander, O., et al. (2024) Fecal Microbiota Transplantation for Treatment of Parkinson Disease: A Randomized Clinical Trial. JAMA Neurology, 81, 925-938. https://doi.org/10.1001/jamaneurol.2024.2305
|
[60]
|
Boros, F.A. and Vécsei, L. (2021) Tryptophan 2,3-Dioxygenase, a Novel Therapeutic Target for Parkinson’s Disease. Expert Opinion on Therapeutic Targets, 25, 877-888. https://doi.org/10.1080/14728222.2021.1999928
|
[61]
|
Iwaniak, P., Owe-Larsson, M. and Urbańska, E.M. (2024) Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson’s Disease—A Narrative Review. International Journal of Molecular Sciences, 25, Article No. 2915. https://doi.org/10.3390/ijms25052915
|
[62]
|
Bai, J., Zheng, Y. and Yu, Y. (2020) Urinary Kynurenine as a Biomarker for Parkinson’s Disease. Neurological Sciences, 42, 697-703. https://doi.org/10.1007/s10072-020-04589-x
|
[63]
|
Tong, Q., Zhang, L., Yuan, Y., Jiang, S., Zhang, R., Xu, Q., et al. (2015) Reduced Plasma Serotonin and 5-Hydroxyindoleacetic Acid Levels in Parkinson’s Disease Are Associated with Nonmotor Symptoms. Parkinsonism & Related Disorders, 21, 882-887. https://doi.org/10.1016/j.parkreldis.2015.05.016
|
[64]
|
Fathi, M., Vakili, K., Yaghoobpoor, S., Tavasol, A., Jazi, K., Hajibeygi, R., et al. (2022) Dynamic Changes in Metabolites of the Kynurenine Pathway in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 13, Article ID: 997240. https://doi.org/10.3389/fimmu.2022.997240
|
[65]
|
Fan, Y., Yang, W., Wu, W., Wang, X., Lin, Y., Wu, L., et al. (2024) Serum Neurotransmitter Analysis of Motor and Non-Motor Symptoms in Parkinson’s Patients. Frontiers in Aging Neuroscience, 16, Article ID: 1423120. https://doi.org/10.3389/fnagi.2024.1423120
|
[66]
|
Shao, Y., Li, T., Liu, Z., Wang, X., Xu, X., Li, S., et al. (2021) Comprehensive Metabolic Profiling of Parkinson’s Disease by Liquid Chromatography-Mass Spectrometry. Molecular Neurodegeneration, 16, Article No. 4. https://doi.org/10.1186/s13024-021-00425-8
|