[1]
|
Iannuzzi, J.P., King, J.A., Leong, J.H., Quan, J., Windsor, J.W., Tanyingoh, D., et al. (2022) Global Incidence of Acute Pancreatitis Is Increasing over Time: A Systematic Review and Meta-Analysis. Gastroenterology, 162, 122-134. https://doi.org/10.1053/j.gastro.2021.09.043
|
[2]
|
中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021) [J]. 中华外科杂志, 2021, 59(7): 578-587.
|
[3]
|
Boxhoorn, L., Voermans, R.P., Bouwense, S.A., Bruno, M.J., Verdonk, R.C., Boermeester, M.A., et al. (2020) Acute pancreatitis. The Lancet, 396, 726-734. https://doi.org/10.1016/s0140-6736(20)31310-6
|
[4]
|
Schepers, N.J., Bakker, O.J., Besselink, M.G., Ahmed Ali, U., Bollen, T.L., Gooszen, H.G., et al. (2018) Impact of Characteristics of Organ Failure and Infected Necrosis on Mortality in Necrotising Pancreatitis. Gut, 68, 1044-1051. https://doi.org/10.1136/gutjnl-2017-314657
|
[5]
|
Matthay, M.A., Arabi, Y., Arroliga, A.C., Bernard, G., Bersten, A.D., Brochard, L.J., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47. https://doi.org/10.1164/rccm.202303-0558ws
|
[6]
|
Fei, Y., Gao, K. and Li, W. (2018) Artificial Neural Network Algorithm Model as Powerful Tool to Predict Acute Lung Injury Following to Severe Acute Pancreatitis. Pancreatology, 18, 892-899. https://doi.org/10.1016/j.pan.2018.09.007
|
[7]
|
Dawra, R., Sah, R.P., Dudeja, V., Rishi, L., Talukdar, R., Garg, P., et al. (2011) Intra-Acinar Trypsinogen Activation Mediates Early Stages of Pancreatic Injury but Not Inflammation in Mice with Acute Pancreatitis. Gastroenterology, 141, 2210-2217.e2. https://doi.org/10.1053/j.gastro.2011.08.033
|
[8]
|
Saluja, A., Dudeja, V., Dawra, R. and Sah, R.P. (2019) Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology, 156, 1979-1993. https://doi.org/10.1053/j.gastro.2019.01.268
|
[9]
|
Zaman, S. and Gorelick, F. (2024) Acute Pancreatitis: Pathogenesis and Emerging Therapies. Journal of Pancreatology, 7, 10-20. https://doi.org/10.1097/jp9.0000000000000168
|
[10]
|
Pallagi, P., Madácsy, T., Varga, Á. and Maléth, J. (2020) Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. International Journal of Molecular Sciences, 21, Article 4005. https://doi.org/10.3390/ijms21114005
|
[11]
|
Lee, P.J. and Papachristou, G.I. (2019) New Insights into Acute Pancreatitis. Nature Reviews Gastroenterology & Hepatology, 16, 479-496. https://doi.org/10.1038/s41575-019-0158-2
|
[12]
|
Petersen, O.H., Gerasimenko, J.V., Gerasimenko, O.V., Gryshchenko, O. and Peng, S. (2021) The Roles of Calcium and ATP in the Physiology and Pathology of the Exocrine Pancreas. Physiological Reviews, 101, 1691-1744. https://doi.org/10.1152/physrev.00003.2021
|
[13]
|
Wen, L., Voronina, S., Javed, M.A., Awais, M., Szatmary, P., Latawiec, D., et al. (2015) Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology, 149, 481-492.e7. https://doi.org/10.1053/j.gastro.2015.04.015
|
[14]
|
Romac, J.M., Shahid, R.A., Swain, S.M., Vigna, S.R. and Liddle, R.A. (2018) Piezo1 Is a Mechanically Activated Ion Channel and Mediates Pressure Induced Pancreatitis. Nature Communications, 9, Article No. 1715. https://doi.org/10.1038/s41467-018-04194-9
|
[15]
|
Tóth, E., Maléth, J., Závogyán, N., Fanczal, J., Grassalkovich, A., Erdős, R., et al. (2019) Novel Mitochondrial Transition Pore Inhibitor n‐Methyl‐4‐Isoleucine Cyclosporin Is a New Therapeutic Option in Acute Pancreatitis. The Journal of Physiology, 597, 5879-5898. https://doi.org/10.1113/jp278517
|
[16]
|
Halangk, W., Lerch, M.M., Brandt-Nedelev, B., Roth, W., Ruthenbuerger, M., Reinheckel, T., et al. (2000) Role of Cathepsin B in Intracellular Trypsinogen Activation and the Onset of Acute Pancreatitis. Journal of Clinical Investigation, 106, 773-781. https://doi.org/10.1172/jci9411
|
[17]
|
Sendler, M., Maertin, S., John, D., Persike, M., Weiss, F.U., Krüger, B., et al. (2016) Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. Journal of Biological Chemistry, 291, 14717-14731. https://doi.org/10.1074/jbc.m116.718999
|
[18]
|
Sendler, M., Weiss, F., Golchert, J., Homuth, G., van den Brandt, C., Mahajan, U.M., et al. (2018) Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology, 154, 704-718.e10. https://doi.org/10.1053/j.gastro.2017.10.018
|
[19]
|
Talukdar, R., Sareen, A., Zhu, H., Yuan, Z., Dixit, A., Cheema, H., et al. (2016) Release of Cathepsin B in Cytosol Causes Cell Death in Acute Pancreatitis. Gastroenterology, 151, 747-758.e5. https://doi.org/10.1053/j.gastro.2016.06.042
|
[20]
|
Gukovskaya, A.S., Lerch, M.M., Mayerle, J., Sendler, M., Ji, B., Saluja, A.K., et al. (2024) Trypsin in Pancreatitis: The Culprit, a Mediator, or Epiphenomenon? World Journal of Gastroenterology, 30, 4417-4438. https://doi.org/10.3748/wjg.v30.i41.4417
|
[21]
|
Huang, H., Liu, Y., Daniluk, J., Gaiser, S., Chu, J., Wang, H., et al. (2013) Activation of Nuclear Factor-κB in Acinar Cells Increases the Severity of Pancreatitis in Mice. Gastroenterology, 144, 202-210. https://doi.org/10.1053/j.gastro.2012.09.059
|
[22]
|
Thiel, F.G., Asgarbeik, S., Glaubitz, J., Wilden, A., Lerch, M.M., Weiss, F.U., et al. (2023) IRAK3-Mediated Suppression of Pro-Inflammatory Myd88/IRAK Signaling Affects Disease Severity in Acute Pancreatitis. Scientific Reports, 13, Article No. 10833. https://doi.org/10.1038/s41598-023-37930-3
|
[23]
|
Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB Signaling in Inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 17023. https://doi.org/10.1038/sigtrans.2017.23
|
[24]
|
Chen, K., Lv, Z., Yang, H., Liu, Y., Long, F., Zhou, B., et al. (2016) Effects of Tocilizumab on Experimental Severe Acute Pancreatitis and Associated Acute Lung Injury. Critical Care Medicine, 44, e664-e677. https://doi.org/10.1097/ccm.0000000000001639
|
[25]
|
Sendler, M., Dummer, A., Weiss, F.U., Krüger, B., Wartmann, T., Scharffetter-Kochanek, K., et al. (2012) Tumour Necrosis Factor Α Secretion Induces Protease Activation and Acinar Cell Necrosis in Acute Experimental Pancreatitis in Mice. Gut, 62, 430-439. https://doi.org/10.1136/gutjnl-2011-300771
|
[26]
|
Glaubitz, J., Wilden, A., van den Brandt, C., Weiss, F.U., Bröker, B.M., Mayerle, J., et al. (2020) Experimental Pancreatitis Is Characterized by Rapid T Cell Activation, Th2 Differentiation That Parallels Disease Severity, and Improvement after CD4+ T Cell Depletion. Pancreatology, 20, 1637-1647. https://doi.org/10.1016/j.pan.2020.10.044
|
[27]
|
Gukovskaya, A.S., Vaquero, E., Zaninovic, V., Gorelick, F.S., Lusis, A.J., Brennan, M., et al. (2002) Neutrophils and NADPH Oxidase Mediate Intrapancreatic Trypsin Activation in Murine Experimental Acute Pancreatitis. Gastroenterology, 122, 974-984. https://doi.org/10.1053/gast.2002.32409
|
[28]
|
Merza, M., Hartman, H., Rahman, M., Hwaiz, R., Zhang, E., Renström, E., et al. (2015) Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice with Severe Acute Pancreatitis. Gastroenterology, 149, 1920-1931.e8. https://doi.org/10.1053/j.gastro.2015.08.026
|
[29]
|
Leppkes, M., Maueröder, C., Hirth, S., Nowecki, S., Günther, C., Billmeier, U., et al. (2016) Externalized Decondensed Neutrophil Chromatin Occludes Pancreatic Ducts and Drives Pancreatitis. Nature Communications, 7, Article No. 10973. https://doi.org/10.1038/ncomms10973
|
[30]
|
Liu, Q., Zhu, X. and Guo, S. (2024) From Pancreas to Lungs: The Role of Immune Cells in Severe Acute Pancreatitis and Acute Lung Injury. Immunity, Inflammation and Disease, 12, e1351. https://doi.org/10.1002/iid3.1351
|
[31]
|
Zhou, X., Jin, S., Pan, J., Lin, Q., Yang, S., Ambe, P.C., et al. (2022) Damage Associated Molecular Patterns and Neutrophil Extracellular Traps in Acute Pancreatitis. Frontiers in Cellular and Infection Microbiology, 12, Article 927193. https://doi.org/10.3389/fcimb.2022.927193
|
[32]
|
Sendler, M. and Algül, H. (2022) Pathogenese der akuten Pankreatitis. Wiener klinisches Magazin, 25, 210-217. https://doi.org/10.1007/s00740-022-00460-1
|
[33]
|
Pietruczuk, M. (2006) Alteration of Peripheral Blood Lymphocyte Subsets in Acute Pancreatitis. World Journal of Gastroenterology, 12, 5344-5351. https://doi.org/10.3748/wjg.v12.i33.5344
|
[34]
|
Yang, Z., Zhang, Y., Dong, L., Yang, C., Gou, S., Yin, T., et al. (2015) The Reduction of Peripheral Blood CD4+ T Cell Indicates Persistent Organ Failure in Acute Pancreatitis. PLOS ONE, 10, e0125529. https://doi.org/10.1371/journal.pone.0125529
|
[35]
|
Alspach, E., Lussier, D.M. and Schreiber, R.D. (2018) Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harbor Perspectives in Biology, 11, a028480. https://doi.org/10.1101/cshperspect.a028480
|
[36]
|
Li, G., Chen, H., Liu, L., Xiao, P., Xie, Y., Geng, X., et al. (2021) Role of Interleukin-17 in Acute Pancreatitis. Frontiers in Immunology, 12, Article 674803. https://doi.org/10.3389/fimmu.2021.674803
|
[37]
|
Zhou, Y., Huang, X., Jin, Y., Qiu, M., Ambe, P.C., Basharat, Z., et al. (2024) The Role of Mitochondrial Damage-Associated Molecular Patterns in Acute Pancreatitis. Biomedicine & Pharmacotherapy, 175, Article ID: 116690. https://doi.org/10.1016/j.biopha.2024.116690
|
[38]
|
Biczo, G., Vegh, E.T., Shalbueva, N., Mareninova, O.A., Elperin, J., Lotshaw, E., et al. (2018) Mitochondrial Dysfunction, through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 154, 689-703. https://doi.org/10.1053/j.gastro.2017.10.012
|
[39]
|
Han, X., Li, B., Bao, J., Wu, Z., Chen, C., Ni, J., et al. (2022) Endoplasmic Reticulum Stress Promoted Acinar Cell Necroptosis in Acute Pancreatitis through Cathepsinb-Mediated AP-1 Activation. Frontiers in Immunology, 13, Article 968639. https://doi.org/10.3389/fimmu.2022.968639
|
[40]
|
Yan, C., Ma, Y., Li, H., Cui, J., Guo, X., Wang, G., et al. (2023) Endoplasmic Reticulum Stress Promotes Caspase-1-Dependent Acinar Cell Pyroptosis through the PERK Pathway to Aggravate Acute Pancreatitis. International Immunopharmacology, 120, Article ID: 110293. https://doi.org/10.1016/j.intimp.2023.110293
|
[41]
|
Li, H., Wen, W. and Luo, J. (2022) Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines, 10, Article 108. https://doi.org/10.3390/biomedicines10010108
|
[42]
|
Tomkötter, L., Erbes, J., Trepte, C., Hinsch, A., Dupree, A., Bockhorn, M., et al. (2016) The Effects of Pancreatic Microcirculatory Disturbances on Histopathologic Tissue Damage and the Outcome in Severe Acute Pancreatitis. Pancreas, 45, 248-253. https://doi.org/10.1097/mpa.0000000000000440
|
[43]
|
胥文瀚, 夏志杨, 张小明. 急性胰腺炎微循环障碍发生机制相关研究进展[J]. 中华胰腺病杂志, 2023, 23(2): 146-149.
|
[44]
|
周瑜, 王卫星. 急性胰腺炎中微循环障碍相关研究进展[J]. 中华全科医学, 2017, 15(9): 1559-1562.
|
[45]
|
Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article ID: 110770. https://doi.org/10.1016/j.biopha.2020.110770
|
[46]
|
Shah, J. and Rana, S.S. (2020) Acute Respiratory Distress Syndrome in Acute Pancreatitis. Indian Journal of Gastroenterology, 39, 123-132. https://doi.org/10.1007/s12664-020-01016-z
|
[47]
|
Kang, H., Yang, Y., Zhu, L., et al. (2022) Role of Neutrophil Extracellular Traps in Inflammatory Evolution in Severe Acute Pancreatitis. Chinese Medical Journal, 135, 2773-2784.
|
[48]
|
Luan, Z., Zhang, X., Yin, X., Ma, X., Zhang, H., Zhang, C., et al. (2013) Downregulation of HMGB1 Protects against the Development of Acute Lung Injury after Severe Acute Pancreatitis. Immunobiology, 218, 1261-1270. https://doi.org/10.1016/j.imbio.2013.04.013
|
[49]
|
Yu, Z., Ji, M., Yan, J., Cai, Y., Liu, J., Yang, H., et al. (2015) The Ratio of Th17/Treg Cells as a Risk Indicator in Early Acute Respiratory Distress Syndrome. Critical Care, 19, Article No. 82. https://doi.org/10.1186/s13054-015-0811-2
|
[50]
|
Yang, H., Cao, R., Zhou, F., Wang, B., Xu, Q., Li, R., et al. (2024) The Role of Interleukin-22 in Severe Acute Pancreatitis. Molecular Medicine, 30, Article No. 60. https://doi.org/10.1186/s10020-024-00826-7
|
[51]
|
Huai, J. (2012) Melatonin Attenuates Acute Pancreatitis-Associated Lung Injury in Rats by Modulating Interleukin 22. World Journal of Gastroenterology, 18, 5122-5128. https://doi.org/10.3748/wjg.v18.i36.5122
|
[52]
|
Hu, X., Han, Z., Zhou, R., Su, W., Gong, L., Yang, Z., et al. (2023) Altered Gut Microbiota in the Early Stage of Acute Pancreatitis Were Related to the Occurrence of Acute Respiratory Distress Syndrome. Frontiers in Cellular and Infection Microbiology, 13, Article 1127369. https://doi.org/10.3389/fcimb.2023.1127369
|
[53]
|
Zhu, Y., He, C., Li, X., Cai, Y., Hu, J., Liao, Y., et al. (2018) Gut Microbiota Dysbiosis Worsens the Severity of Acute Pancreatitis in Patients and Mice. Journal of Gastroenterology, 54, 347-358. https://doi.org/10.1007/s00535-018-1529-0
|
[54]
|
Wang, Z., Li, F., Liu, J., Luo, Y., Guo, H., Yang, Q., et al. (2022) Intestinal Microbiota—An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Frontiers in Immunology, 13, Article 913178. https://doi.org/10.3389/fimmu.2022.913178
|
[55]
|
Li, Y., Li, J., Li, S., Zhou, S., Yang, J., Xu, K., et al. (2024) Exploring the Gut Microbiota’s Crucial Role in Acute Pancreatitis and the Novel Therapeutic Potential of Derived Extracellular Vesicles. Frontiers in Pharmacology, 15, Article 1437894. https://doi.org/10.3389/fphar.2024.1437894
|
[56]
|
Glaubitz, J., Wilden, A., Frost, F., Ameling, S., Homuth, G., Mazloum, H., et al. (2023) Activated Regulatory T-Cells Promote Duodenal Bacterial Translocation into Necrotic Areas in Severe Acute Pancreatitis. Gut, 72, 1355-1369. https://doi.org/10.1136/gutjnl-2022-327448
|
[57]
|
Sendler, M., van den Brandt, C., Glaubitz, J., Wilden, A., Golchert, J., Weiss, F.U., et al. (2020) NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice with Acute Pancreatitis. Gastroenterology, 158, 253-269.e14. https://doi.org/10.1053/j.gastro.2019.09.040
|
[58]
|
Glaubitz, J., Asgarbeik, S., Lange, R., Mazloum, H., Elsheikh, H., Weiss, F.U., et al. (2023) Immune Response Mechanisms in Acute and Chronic Pancreatitis: Strategies for Therapeutic Intervention. Frontiers in Immunology, 14, Article 1279539. https://doi.org/10.3389/fimmu.2023.1279539
|