急性胰腺炎及相关急性呼吸窘迫综合征发病机制的研究进展
Research Progress on the Pathogenesis of Acute Pancreatitis and Related Acute Respiratory Distress Syndrome
DOI: 10.12677/acm.2025.1541320, PDF, HTML, XML,    科研立项经费支持
作者: 甘小冰, 苏红羽, 李业芳, 张若男:承德医学院研究生学院,河北 承德;陈治国*:承德市中心医院急诊科,河北 承德
关键词: 急性胰腺炎急性呼吸窘迫综合症发病机制免疫反应肠道菌群Acute Pancreatitis Acute Respiratory Distress Syndrome Pathogenesis Immune Response Intestinal Microbiota
摘要: 急性胰腺炎(AP)是临床常见急腹症之一,部分患者经内科积极治疗后仍会发展为重症急性胰腺炎(SAP),并伴有持续性器官衰竭。肺脏是SAP最常累及的胰腺外器官之一,其中急性呼吸窘迫综合征(ARDS)是SAP最常见且最严重的并发症之一,死亡率较高。但目前关于AP及AP相关ARDS的发病机制尚不明确,仍需进一步深入研究。了解疾病的发病机制有助于更好的管理和治疗。本文就AP及相关ARDS发病机制方面的研究进展进行综述,以期增加对疾病的认识,为找到更有效的预防和治疗方法提供思路。
Abstract: Acute pancreatitis (AP) is one of the common clinical acute abdomen. Some patients will develop into severe acute pancreatitis (SAP) even after active medical treatment, accompanied by persistent organ failure. Lung is one of the most common extrapancreatic organs involved in SAP. Among them, acute respiratory distress syndrome (ARDS) is one of the most common and serious complications of SAP, with a high mortality rate. However, the pathogenesis of AP and AP-related ARDS is still unclear, and further research is needed. Understanding the pathogenesis of the disease is helpful for better management and treatment. This article reviews the research progress on the pathogenesis of AP and related ARDS, in order to increase the understanding of the disease and provide ideas for finding more effective prevention and treatment methods.
文章引用:甘小冰, 苏红羽, 李业芳, 张若男, 陈治国. 急性胰腺炎及相关急性呼吸窘迫综合征发病机制的研究进展[J]. 临床医学进展, 2025, 15(4): 3472-3481. https://doi.org/10.12677/acm.2025.1541320

1. 引言

急性胰腺炎(Acute Pancreatitis, AP)是一种以急性发作的持续性上腹部剧烈疼痛为典型临床表现的消化系统常见疾病,是临床上常见的需住院治疗的急腹症之一。需引起注意的是,AP的发病率逐年上升[1]。2012年修订的亚特兰大分类标准,将AP分为轻症急性胰腺炎(Mild Acute Pancreatitis, MAP)、中度重症急性胰腺炎(Moderately Severe Acute Pancreatitis, MSAP)和重症急性胰腺炎(Severe Acute Pancreatitis, SAP) [2]。其中,MAP多是自限性的,MSAP表现为一过性器官衰竭或并发症,SAP则表现为超过48小时的持续性器官衰竭[2]。数据统计,SAP死亡率高达20%~40% [3]

呼吸衰竭是AP最常见的器官衰竭,轻者可仅表现为低氧血症,严重可进展为急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS),危及生命[4]。全球新定义指出[5]:ARDS是一种可由各种肺内或肺外致病因素诱发的急性、弥漫性、炎症性肺损伤,引起肺血管和上皮通透性增加,进而导致肺水肿、透明膜形成和肺不张。临床特征为动脉性低氧血症和弥漫性肺部影像学改变(放射学或超声检查),伴有分流增加、肺泡死腔增大和肺顺应性降低。研究表明,ARDS通常发生在胰腺炎症发作后2至7天之间,其1周内病死率可达60% [6]

近年来随着相关研究的不断进展,AP的诊断及治疗水平不断提升,但AP临床发病率、病死率仍居高不下,尤其是合并器官衰竭患者,预后不容乐观。ARDS显著增加了AP患者的病死率,了解其发病机制有助于疾病的治疗和管理。目前,关于AP及AP相关ARDS发病机制的研究多且广,但尚未有统一定论。本文就AP和AP相关ARDS的发病机制方面的研究进展进行综述,旨在增加对疾病的认识。

2. AP的发病机制

以往的观点多主张以胰蛋白酶为中心的胰腺自我损伤机制,但后来研究发现,在缺乏胰蛋白酶原的情况下,胰腺的损伤仍然存在,提示可能存在其他的平行机制导致AP期间的胰腺损伤。胰蛋白酶原-7基因敲除(T7−/−)小鼠体内缺乏胰蛋白酶原的激活,与野生型小鼠相比,腺泡细胞坏死减少50%,但体内炎症以及腺泡细胞内核因子κB (Nuclear factor-kappa B, NF-κB)的激活并未明显减少[7]。这一结果表明NF-κB通路的激活也可诱发AP,并且两种机制相互独立。另外,线粒体功能障碍、内质网应激等机制也参与损伤腺泡细胞。

2.1. 胰蛋白酶原激活的机制

生理情况下,胰酶多是以无活性的酶原形式被腺泡细胞分泌,只有到达肠道时才被肠激酶激活。当胰蛋白酶原过早地在腺泡细胞内被激活时,生成的胰蛋白酶具有较强的水解能力,会水解自身胰腺组织,由此引发AP。在T7−/−小鼠及组织蛋白酶B敲除(CTSB−/−)小鼠研究中发现,敲除小鼠体内缺乏胰蛋白酶原激活,胰腺损伤明显减轻,直接证实了胰蛋白酶原激活可导致腺泡细胞损伤[8]。关于胰蛋白酶原激活的机制尚在研究中,下面主要简述其中两个机制。

2.1.1. 钙信号传导异常

AP时,胆汁酸、乙醇等毒素及胰管内压力升高可诱发内质网Ca2+储存库释放Ca2+,或细胞外Ca2+经Orai1钙通道、Piezo1及TRPV通道内流增多,导致胞质Ca2+浓度持续升高,即“钙超载”[9]。持续的钙超载可引起线粒体通透性转换孔(mitochondrial permeability transition pore, MPTP)开放和线粒体膜电位丢失,从而导致线粒体功能障碍[10]。胞质Ca2+的清除是个耗能过程。而线粒体是合成ATP的主要场所,因此线粒体功能障碍会导致ATP合成障碍,没有足够的ATP来驱动Ca2+的转运和清除,从而维持了胞质内高浓度Ca2+水平[11]。持续升高的Ca2+不仅导致胰蛋白酶原水平升高并促进其过早激活,还可导致钙调神经磷酸酶的激活,钙调神经磷酸酶已被证明可介导胰蛋白酶原及NF-κB的激活[8]。此外,Ca2+信号异常还可发生在胰腺导管细胞中,参与下调碳酸氢盐的分泌,为胰蛋白酶原的过早激活创造了酸性环境[10] [12],而酸性环境可加速酶原的激活。基于钙信号通路在AP发病机制中的作用,关于钙通道和MPTP的抑制剂被开发研究,这有望成为日后AP潜在的治疗靶点[13]-[15]

2.1.2. 酶原–溶酶体共定位

在腺泡细胞内,胰蛋白酶原以酶原颗粒的形式运输至胞质,并与溶酶体共定位形成特殊的细胞器结构。胰蛋白酶原在共定位细胞器中在酸性条件下被组织蛋白酶B (Cathepsin B, CTSB)激活。CTSB是一种溶酶体酶,其活性在酸性pH值下达到最大。细胞内还存在组织蛋白酶L (CTSL),可降解过早活化的胰蛋白酶原。CTSB和CTSL之间的失衡会促进病理激活的胰蛋白酶原的积累。相关CTSB−/−敲除动物实验,证实了CTSB在实验性胰腺炎中作为酶原激活关键酶,对胰蛋白酶原激活的重要作用[16] [17]。研究发现,这种共定位诱导的胰蛋白酶原激活不仅发生在腺泡细胞中,还可发生在浸润到胰腺坏死区域的巨噬细胞中[18],从而加重炎症反应。

2.1.3. 胰蛋白酶原异常激活后损伤腺泡细胞的机制

钙超载和共定位学说被认为是胰蛋白酶原过早激活的主要机制,除此之外,细胞器功能障碍、自噬受损等也参与酶原激活。胰蛋白酶原激活后损伤细胞的两种可能机制:其一,胰蛋白酶原激活后,活性胰蛋白酶被释放到细胞质中,直接损害细胞,并激活其他消化蛋白酶,导致腺泡细胞自我消化。其二,CTSB激活胰蛋白酶原后,活性胰蛋白酶增加共定位细胞器的通透性,导致CTSB等内容物泄漏到胞质中,促使腺泡细胞死亡[19]。同时,腺泡细胞内有几种保护其自身免受胰蛋白酶原活化影响的机制,例如丝氨酸蛋白酶抑制剂因子Kazal 1型、CTSL和自噬等[20]。当这些保护机制受抑制时,会促进腺泡内胰蛋白酶的积累和上调胰蛋白酶活性,从而加重胰腺损伤。

2.2. NF-κB激活与免疫反应

2.2.1. NF-κB的激活

通常认为炎症时细胞因子和炎症介质是由浸润的免疫细胞释放的,但研究证实,AP时腺泡细胞也可以分泌多种炎症细胞因子,这是腺泡细胞的炎症特性。其中研究最多的炎症信号通路是NF-κB通路。AP时,NF-κB被激活,调控肿瘤坏死因子-α (TNF-α)、白细胞介素(IL)-6等多种炎症介质的表达和释放,启动炎症反应,同时募集免疫细胞到胰腺及周围组织,造成组织损伤并驱动全身炎症反应综合征(Systemic Inflammatory Response Syndrome, SIRS) [21] [22]。NF-κB不仅通过增加炎性细胞因子、趋化因子和粘附分子的表达,还通过调节细胞增殖、凋亡、形态发生和分化来控制炎症[23]。在大鼠SAP模型中,给予IL-6抑制剂(托珠单抗)的大鼠,其胰腺NF-κB信号通路失活,胰腺和肺组织病理学评分降低,相关严重程度参数均显著减轻,且未观察到明显不良反应和毒性,说明托珠单抗能安全有效得减轻大鼠胰腺和肺组织损伤[24]。TNF-α抑制剂(英夫利西单抗)在AP患者中的IIb期试验正在进行中,关于炎症介质抑制剂的研究,有望减轻胰腺炎免疫反应,从而缓解病情。但研究也发现NF-κB对胰腺炎可能还具有保护意义。白细胞介素-1受体相关激酶3 (IRAK3)抑制NF-κB活化,从而减轻炎症反应。在Irak3−/−小鼠研究中,轻症AP模型中增强的促炎反应反而导致胰腺损伤减少,而在重症AP模型中,促炎反应增加导致严重的SIRS [22]。这表明只有当炎症反应超过一定的水平时,它才会促进SIRS的发生,增加疾病的严重程度,因此对于NF-κB在胰腺炎中的作用仍需进一步探究[22]

2.2.2. 免疫细胞在急性胰腺炎中的作用

受损的腺泡细胞通过NF-κB通路上调并释放各种免疫介质,吸引免疫细胞浸润至损伤部位。动物研究表明,固有免疫细胞,如中性粒细胞和巨噬细胞,是发病后最先募集到胰腺的免疫细胞[25];而特异性免疫细胞,如T淋巴细胞,迁移的时间相对较晚[26]。一旦免疫细胞迁移至胰腺,会被坏死细胞释放的细胞因子和损伤相关分子模式等进一步激活,参与胰腺损伤及SIRS。

中性粒细胞主要通过活性氧(reactive oxygen species, ROS)和中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)的释放来损伤细胞和介导炎症。中性粒细胞可通过NADPH氧化酶诱导产生的ROS来促进胰蛋白酶的激活[27]。除直接吞噬、生成ROS及脱颗粒外,中性粒细胞还有另一种防御机制:形成NETs。NETs是由DNA、组蛋白和多种抗菌蛋白,如弹性蛋白酶(NE)、髓过氧化物酶(MPO)等,组成的网状结构。NETs可通过STAT3、MMP-9等途径诱导胰蛋白酶原激活[28];同时NETs的积累会引起胰管阻塞,胰管内压力升高促进Ca2+内流,也会导致胰蛋白酶原过早激活[29]。组蛋白是NETs的组成成分之一,其特殊的细胞毒作用会对腺泡细胞膜造成损伤,导致细胞质渗漏,并最终导致细胞死亡[30]。此外,NETs还能正反馈介导中性粒细胞的募集[28],促进血栓形成[30],从而加重AP病程。

巨噬细胞有2种表型:具有促炎作用的M1型和具有抗炎作用的M2型。巨噬细胞通过改变其M1或M2的极性来应对组织微环境的变化。坏死的腺泡细胞会释放损伤相关分子模式(damage-associated molecular patterns, DAMPs),包括高迁移率族蛋白B1 (high mobility group box-1, HMGB1)、热休克蛋白(heat shock proteins, HSP)、S100蛋白、游离DNA (包括细胞核和线粒体来源)和ATP等。这种由损伤、坏死细胞过度释放DAMPs来激活信号传导和介导炎症的免疫反应与病原体无关,因此胰腺炎尤其是早期主要是一种无菌性炎症反应。DAMPs通过多种途径参与AP:与免疫细胞上的不同受体结合而调节免疫反应,如HMGB1、HSP和双链DNA通过Toll样受体(TLRs)激活NF-κB通路;参与NETs的形成;诱导固有免疫细胞的激活和募集;通过参与自噬、坏死、凋亡等途径影响炎症过程[31]。上文提及,巨噬细胞内也可发生胰蛋白酶原的激活。巨噬细胞在坏死腺泡细胞释放的DAMPs和自身细胞内酶原激活作用下,向促炎M1型极化[18]。M1型巨噬细胞会吞噬胰腺中的坏死区域,同时分泌大量的炎性细胞因子,如TNF-α、IL-6、IL-1β等,从而增强炎症反应[32]。随着疾病的进展,巨噬细胞分化为M2型巨噬细胞,释放IL-10和TGF-β等细胞因子减轻炎症[30]。由于M1型和M2型巨噬细胞相互制衡,因此维持其平衡有助于预防AP进展及下游器官损伤[30]

目前研究较多的特异性免疫细胞是T淋巴细胞(简称T细胞)。按其功能可分为三个亚群:细胞毒性T细胞(Tc细胞/CD8+ T细胞)、辅助性T细胞(Th细胞/CD4+ T细胞)和调节性T细胞(Tregs)。研究发现,AP早期阶段,外周血T细胞(特别是CD4+ T细胞)的数量显著下降,且与疾病严重程度[33]和器官衰竭[34]有关。CD4+ T细胞被激活后可分化为不同的效应T细胞亚群,包括Th1、Th2、Th17等,并呈动态变化。AP的发生发展受Th1/Th2和Th17/Treg平衡的影响[30]。Th1和Th17细胞通常被认为是炎症性T细胞,Th1细胞通过分泌干扰素-γ (Interferon-γ, IFN-γ)促进炎症反应。IFN-γ激活巨噬细胞并诱导其向M1表型分化,还可促进CD4+ T细胞向Th1极化从而形成正反馈[35]。Th17细胞分泌IL-17。IL-17是一种促炎细胞因子,与疾病严重程度呈正相关,可有效评估AP患者的预后。IL-17可直接与胰腺上的IL-17A受体结合,或募集中性粒细胞来加重胰腺损伤;此外,IL-17还可促进IL-6的产生和释放,或通过损伤肠粘膜导致细菌移位,进而加重AP的炎症级联反应和器官损伤[30] [36]。而Th2细胞和Tregs通常驱动抗炎反应。Th2细胞释放IL-4、IL-5、IL-10和IL-13等细胞因子,还能促进Th1/Th2平衡向Th2状态转化而抑制Th1细胞优势表达。Tregs通过分泌抗炎细胞因子如IL-10和TGF-β,抑制过度的炎症反应。Th1/Th2失衡,Th17细胞分泌增加与Tregs数量减少或功能受损一起促进了AP的免疫反应。

2.3. 细胞器功能障碍

前文提到,钙超载可引起MPTP开放,这一步是线粒体膜电位丧失和线粒体膜通透性增加的始动步骤,进而导致线粒体肿胀、坏死及功能受损。线粒体因此破裂并释放其内容物(包括细胞色素c和其他促凋亡因子),激活细胞凋亡途径。线粒体还是细胞内产生ROS的主要场所,线粒体功能障碍时ROS生成增多,启动氧化应激机制。受损的线粒体也会释放DAMPs,称为线粒体DAMPs (mtDAMPs),包括ATP、细胞色素c、线粒体转录因子A及线粒体DNA等,mtDAMPs也会通过DAMPs的不同途径参与组织损伤和炎症进展[37]。此外,ATP耗竭还会导致依赖ATP的细胞保护机制受损,如自噬和未折叠蛋白反应(UPR)。细胞通过自噬可以清除受损的细胞器以维持正常的细胞功能。自噬受损时无法降解含胰蛋白酶的细胞器、功能失调的线粒体或错误折叠的蛋白质,导致胰蛋白酶原积累和激活、线粒体功能障碍和内质网应激,加重AP严重程度[11] [20]。研究发现,海藻糖(trehalose)能诱导自噬恢复,增强自噬活性,显著改善胰腺炎病理学变化,减轻胰腺炎损伤[38]

内质网应激(ER stress, ERS)是指内质网中错误折叠和/或未折叠蛋白质的积累。腺泡细胞需合成和分泌大量消化酶,因而具有丰富的内质网,使其极易受到内质网应激的影响。在ERS早期阶段,细胞会启动UPR以恢复内质网稳态[11];但当ERS持续激活时,细胞通过多种途径启动细胞程序性死亡[39] [40],导致腺泡细胞损伤。靶向ERS治疗有望成为未来胰腺炎的一种治疗手段[41]

2.4. 微循环障碍

微循环障碍是促使胰腺组织由水肿向坏死转变的重要机制,和SAP的组织病理学改变和严重程度相关[42]。构成胰腺微循环结构和功能的基本单位是胰腺小叶,其供血动脉属终末动脉,因此对缺血极为敏感,一旦受压、痉挛或栓塞,即可造成所支配的胰腺小叶缺血、坏死[43]。AP时胰腺微循环障碍主要病理生理机制为短暂或持续的微血管痉挛、胰腺小叶局部缺血、微血管内皮细胞损伤、血管通透性增加、微血栓形成等,最终导致缺血坏死[44]。AP过程中,随着炎症级联反应的持续,大量炎症介质释放入血,损伤血管内皮细胞,引起血管内皮功能障碍及血流动力学改变,进一步加剧微循环障碍。缺血再灌注损伤及ROS的过量产生亦会加速AP的进程。随着病程进展,微循环障碍可累及胰腺外器官(如肺、肠道、肾脏等),继而引发多器官功能障碍综合征。

3. AP相关ARDS的发病机制

SAP时,胰腺局部炎症和肠道屏障功能衰竭启动并放大SIRS,免疫细胞、炎症介质及肠道来源的细菌内毒素在肺部积聚,损伤肺血管内皮细胞和肺泡上皮细胞,破坏肺泡–毛细血管屏障,引起肺水肿及弥漫性肺泡损伤,最终导致ARDS [45]

3.1. 酶的作用

胰蛋白酶经激活释放后,除损害胰腺自身外,还可进入血液循环,直接损伤内皮细胞和上皮细胞,破坏血气屏障。同时,胰蛋白酶可激活其他介质,如磷脂酶A2 (phospholipase A2, PLA2)和多种补体。肺表面活性物质(PS)是PLA2的主要底物之一,具有降低肺泡气液界面表面张力的作用,能阻止肺泡毛细血管中液体进入肺泡。研究表明,PLA2可损伤PS磷脂成分,引起肺水肿及肺泡塌陷;且血清PLA2水平与肺损伤程度存在相关性,在AP患者中血清活性PLA2浓度升高[46]

3.2. 炎症反应

NF-κB通路激活后促进炎症介质释放,募集免疫细胞浸润胰腺及胰腺外器官,进而释放更多炎症介质,形成恶性循环。免疫细胞充当着SAP和ARDS之间的“桥梁”。中性粒细胞和单核细胞响应炎症信号传导并定向迁移到肺组织。NETs的过度产生和沉积增加了气道黏稠度并干扰粘膜纤毛的清除,导致气道阻塞和感染[30]。NE是NETs中含量最丰富、作用最强的蛋白水解酶,能水解血管内皮钙粘蛋白,破坏细胞间连接,诱导肺微血管损伤,增加肺泡毛细血管通透性,破坏内皮屏障功能[47]。NETs还可以通过促进巨噬细胞向M1表型极化,促进肺泡巨噬细胞焦亡(一种高度促炎的细胞死亡方式),促进微血栓形成,及破坏肠道屏障等机制来加剧SAP和肺部损伤[47]。循环中的单核细胞,迁移至组织后形成组织驻留巨噬细胞,如肺脏中的肺泡巨噬细胞(Alveolar macrophages, AM)和肝脏中的库普弗细胞(kupffer cell)。在ARDS渗出期阶段,AM在炎症介质的刺激下极化为M1表型,不断分泌促炎介质,并促进免疫细胞向肺部迁移。肝脏kupffer细胞和肝细胞都是SAP中循环HMGB1的重要来源,Luan等[48]发现下调HMGB1的表达可以抑制NF-κB的激活,并下调下游炎性细胞因子水平,从而减轻SAP大鼠相关ALI。

除胰腺外,许多器官(包括肠道和肺)都含有IL-17A受体,Th17细胞通过分泌IL-17导致这些器官的损伤。Th17/Treg失衡多提示ARDS患者预后不佳[49]。Th22细胞主要释放IL-22。IL-22是一种抗炎因子,对SAP起保护作用,不仅减轻腺泡细胞损伤,还减轻SAP诱导的多器官损伤[50]。研究发现,肺中IL-22水平上调时,肺组织损伤显着减少[51],IL-22的升高可能是机体应对损伤的一种防御机制。

3.3. 肠肺轴

肠上皮细胞、免疫细胞及其分泌的化学物质以及肠道微生物群组成肠道的多种屏障,其中肠道菌群在维持免疫稳态、调节炎症反应等方面发挥重要作用。研究指出,SAP期间肠道菌群的丰度和多样性发生了显著变化(肠杆菌或肠球菌增加,而双歧杆菌等益生菌减少) [52],肠道菌群的失调与AP严重程度相关[53],并增加了感染和MODS的风险。肠道菌群失调会破坏肠道屏障完整性,增加肠黏膜通透性,细菌及其产物从而转移到肺部[54]。肠道细菌移位主要通过肠系膜淋巴和血行途径进入肺部。移位细菌及其毒素成分随后被肺部免疫系统识别,引发免疫反应,加重SIRS和肺损伤。靶向肠道菌群治疗为AP及其相关并发症提供了一种有前景的新治疗策略[55]。肠道微循环障碍也进一步加重了肠道屏障的功能衰竭。Th17/Treg平衡对于维持肠道屏障功能至关重要,尤其是Tregs。研究发现,Tregs的免疫抑制功能会损害肠道免疫屏障功能,Tregs的耗竭减少了细菌移位,能有效预防AP期间感染性坏死的发生[56]

3.4. SIRS/CARS平衡

AP最初表现为无菌性局部炎症,免疫介导诱发SIRS,还会出现代偿性抗炎反应综合征(compensatory anti-inflammatory response syndrome, CARS)。CARS是一种限制过度炎症反应的内源性抗炎反应,主要由Tregs/Th2和M2型巨噬细胞介导[57]。在这阶段,机体免疫系统遭受过度刺激后受抑制,导致对感染的易感性增加,同时移位细菌无法被充分消除,这可能导致继发感染和胰腺外并发症[32]。早期研究认为,SIRS先于CARS发生,现在研究认为,SIRS和CARS同时出现,没有特定的顺序[57] [58]。SIRS/CARS失衡时表现出SIRS和CARS两个极端,当两者同时存在并相互加强时,会导致炎症反应和免疫功能更为紊乱,称为混合拮抗反应综合征(Mixed antagonism response syndrome, MARS),对机体产生更强的损伤,但目前临床上缺乏严格区分各个阶段的客观指标。因此,平衡免疫应答的诱导强度和顺序可能是治疗AP的有效方法。

4. 小结与展望

AP是一种常见的消化系统急症,一旦出现ARDS,其治疗效果往往不佳,是导致SAP患者救治困难和病死率居高不下的重要原因之一。关于AP及相关ARDS发病机制的研究方向广泛,涉及多种细胞因子和信号通路,机制复杂,尚未有一致定论。目前临床上针对AP及相关ARDS的治疗仍以内科规范化治疗及肺保护性通气策略为主,更加深入了解疾病背后的发病机制,有助于临床工作人员及科研人员找到更有效的预防和治疗方法,提高AP患者的预后。

基金项目

承德市应用技术研究与开发暨可持续发展议程创新示范区专项科技计划项目,编号:202305B077。

声 明

该病例报道已获得病人的知情同意。

NOTES

*通讯作者。

参考文献

[1] Iannuzzi, J.P., King, J.A., Leong, J.H., Quan, J., Windsor, J.W., Tanyingoh, D., et al. (2022) Global Incidence of Acute Pancreatitis Is Increasing over Time: A Systematic Review and Meta-Analysis. Gastroenterology, 162, 122-134.
https://doi.org/10.1053/j.gastro.2021.09.043
[2] 中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021) [J]. 中华外科杂志, 2021, 59(7): 578-587.
[3] Boxhoorn, L., Voermans, R.P., Bouwense, S.A., Bruno, M.J., Verdonk, R.C., Boermeester, M.A., et al. (2020) Acute pancreatitis. The Lancet, 396, 726-734.
https://doi.org/10.1016/s0140-6736(20)31310-6
[4] Schepers, N.J., Bakker, O.J., Besselink, M.G., Ahmed Ali, U., Bollen, T.L., Gooszen, H.G., et al. (2018) Impact of Characteristics of Organ Failure and Infected Necrosis on Mortality in Necrotising Pancreatitis. Gut, 68, 1044-1051.
https://doi.org/10.1136/gutjnl-2017-314657
[5] Matthay, M.A., Arabi, Y., Arroliga, A.C., Bernard, G., Bersten, A.D., Brochard, L.J., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47.
https://doi.org/10.1164/rccm.202303-0558ws
[6] Fei, Y., Gao, K. and Li, W. (2018) Artificial Neural Network Algorithm Model as Powerful Tool to Predict Acute Lung Injury Following to Severe Acute Pancreatitis. Pancreatology, 18, 892-899.
https://doi.org/10.1016/j.pan.2018.09.007
[7] Dawra, R., Sah, R.P., Dudeja, V., Rishi, L., Talukdar, R., Garg, P., et al. (2011) Intra-Acinar Trypsinogen Activation Mediates Early Stages of Pancreatic Injury but Not Inflammation in Mice with Acute Pancreatitis. Gastroenterology, 141, 2210-2217.e2.
https://doi.org/10.1053/j.gastro.2011.08.033
[8] Saluja, A., Dudeja, V., Dawra, R. and Sah, R.P. (2019) Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology, 156, 1979-1993.
https://doi.org/10.1053/j.gastro.2019.01.268
[9] Zaman, S. and Gorelick, F. (2024) Acute Pancreatitis: Pathogenesis and Emerging Therapies. Journal of Pancreatology, 7, 10-20.
https://doi.org/10.1097/jp9.0000000000000168
[10] Pallagi, P., Madácsy, T., Varga, Á. and Maléth, J. (2020) Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. International Journal of Molecular Sciences, 21, Article 4005.
https://doi.org/10.3390/ijms21114005
[11] Lee, P.J. and Papachristou, G.I. (2019) New Insights into Acute Pancreatitis. Nature Reviews Gastroenterology & Hepatology, 16, 479-496.
https://doi.org/10.1038/s41575-019-0158-2
[12] Petersen, O.H., Gerasimenko, J.V., Gerasimenko, O.V., Gryshchenko, O. and Peng, S. (2021) The Roles of Calcium and ATP in the Physiology and Pathology of the Exocrine Pancreas. Physiological Reviews, 101, 1691-1744.
https://doi.org/10.1152/physrev.00003.2021
[13] Wen, L., Voronina, S., Javed, M.A., Awais, M., Szatmary, P., Latawiec, D., et al. (2015) Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology, 149, 481-492.e7.
https://doi.org/10.1053/j.gastro.2015.04.015
[14] Romac, J.M., Shahid, R.A., Swain, S.M., Vigna, S.R. and Liddle, R.A. (2018) Piezo1 Is a Mechanically Activated Ion Channel and Mediates Pressure Induced Pancreatitis. Nature Communications, 9, Article No. 1715.
https://doi.org/10.1038/s41467-018-04194-9
[15] Tóth, E., Maléth, J., Závogyán, N., Fanczal, J., Grassalkovich, A., Erdős, R., et al. (2019) Novel Mitochondrial Transition Pore Inhibitor n‐Methyl‐4‐Isoleucine Cyclosporin Is a New Therapeutic Option in Acute Pancreatitis. The Journal of Physiology, 597, 5879-5898.
https://doi.org/10.1113/jp278517
[16] Halangk, W., Lerch, M.M., Brandt-Nedelev, B., Roth, W., Ruthenbuerger, M., Reinheckel, T., et al. (2000) Role of Cathepsin B in Intracellular Trypsinogen Activation and the Onset of Acute Pancreatitis. Journal of Clinical Investigation, 106, 773-781.
https://doi.org/10.1172/jci9411
[17] Sendler, M., Maertin, S., John, D., Persike, M., Weiss, F.U., Krüger, B., et al. (2016) Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. Journal of Biological Chemistry, 291, 14717-14731.
https://doi.org/10.1074/jbc.m116.718999
[18] Sendler, M., Weiss, F., Golchert, J., Homuth, G., van den Brandt, C., Mahajan, U.M., et al. (2018) Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology, 154, 704-718.e10.
https://doi.org/10.1053/j.gastro.2017.10.018
[19] Talukdar, R., Sareen, A., Zhu, H., Yuan, Z., Dixit, A., Cheema, H., et al. (2016) Release of Cathepsin B in Cytosol Causes Cell Death in Acute Pancreatitis. Gastroenterology, 151, 747-758.e5.
https://doi.org/10.1053/j.gastro.2016.06.042
[20] Gukovskaya, A.S., Lerch, M.M., Mayerle, J., Sendler, M., Ji, B., Saluja, A.K., et al. (2024) Trypsin in Pancreatitis: The Culprit, a Mediator, or Epiphenomenon? World Journal of Gastroenterology, 30, 4417-4438.
https://doi.org/10.3748/wjg.v30.i41.4417
[21] Huang, H., Liu, Y., Daniluk, J., Gaiser, S., Chu, J., Wang, H., et al. (2013) Activation of Nuclear Factor-κB in Acinar Cells Increases the Severity of Pancreatitis in Mice. Gastroenterology, 144, 202-210.
https://doi.org/10.1053/j.gastro.2012.09.059
[22] Thiel, F.G., Asgarbeik, S., Glaubitz, J., Wilden, A., Lerch, M.M., Weiss, F.U., et al. (2023) IRAK3-Mediated Suppression of Pro-Inflammatory Myd88/IRAK Signaling Affects Disease Severity in Acute Pancreatitis. Scientific Reports, 13, Article No. 10833.
https://doi.org/10.1038/s41598-023-37930-3
[23] Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB Signaling in Inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 17023.
https://doi.org/10.1038/sigtrans.2017.23
[24] Chen, K., Lv, Z., Yang, H., Liu, Y., Long, F., Zhou, B., et al. (2016) Effects of Tocilizumab on Experimental Severe Acute Pancreatitis and Associated Acute Lung Injury. Critical Care Medicine, 44, e664-e677.
https://doi.org/10.1097/ccm.0000000000001639
[25] Sendler, M., Dummer, A., Weiss, F.U., Krüger, B., Wartmann, T., Scharffetter-Kochanek, K., et al. (2012) Tumour Necrosis Factor Α Secretion Induces Protease Activation and Acinar Cell Necrosis in Acute Experimental Pancreatitis in Mice. Gut, 62, 430-439.
https://doi.org/10.1136/gutjnl-2011-300771
[26] Glaubitz, J., Wilden, A., van den Brandt, C., Weiss, F.U., Bröker, B.M., Mayerle, J., et al. (2020) Experimental Pancreatitis Is Characterized by Rapid T Cell Activation, Th2 Differentiation That Parallels Disease Severity, and Improvement after CD4+ T Cell Depletion. Pancreatology, 20, 1637-1647.
https://doi.org/10.1016/j.pan.2020.10.044
[27] Gukovskaya, A.S., Vaquero, E., Zaninovic, V., Gorelick, F.S., Lusis, A.J., Brennan, M., et al. (2002) Neutrophils and NADPH Oxidase Mediate Intrapancreatic Trypsin Activation in Murine Experimental Acute Pancreatitis. Gastroenterology, 122, 974-984.
https://doi.org/10.1053/gast.2002.32409
[28] Merza, M., Hartman, H., Rahman, M., Hwaiz, R., Zhang, E., Renström, E., et al. (2015) Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice with Severe Acute Pancreatitis. Gastroenterology, 149, 1920-1931.e8.
https://doi.org/10.1053/j.gastro.2015.08.026
[29] Leppkes, M., Maueröder, C., Hirth, S., Nowecki, S., Günther, C., Billmeier, U., et al. (2016) Externalized Decondensed Neutrophil Chromatin Occludes Pancreatic Ducts and Drives Pancreatitis. Nature Communications, 7, Article No. 10973.
https://doi.org/10.1038/ncomms10973
[30] Liu, Q., Zhu, X. and Guo, S. (2024) From Pancreas to Lungs: The Role of Immune Cells in Severe Acute Pancreatitis and Acute Lung Injury. Immunity, Inflammation and Disease, 12, e1351.
https://doi.org/10.1002/iid3.1351
[31] Zhou, X., Jin, S., Pan, J., Lin, Q., Yang, S., Ambe, P.C., et al. (2022) Damage Associated Molecular Patterns and Neutrophil Extracellular Traps in Acute Pancreatitis. Frontiers in Cellular and Infection Microbiology, 12, Article 927193.
https://doi.org/10.3389/fcimb.2022.927193
[32] Sendler, M. and Algül, H. (2022) Pathogenese der akuten Pankreatitis. Wiener klinisches Magazin, 25, 210-217.
https://doi.org/10.1007/s00740-022-00460-1
[33] Pietruczuk, M. (2006) Alteration of Peripheral Blood Lymphocyte Subsets in Acute Pancreatitis. World Journal of Gastroenterology, 12, 5344-5351.
https://doi.org/10.3748/wjg.v12.i33.5344
[34] Yang, Z., Zhang, Y., Dong, L., Yang, C., Gou, S., Yin, T., et al. (2015) The Reduction of Peripheral Blood CD4+ T Cell Indicates Persistent Organ Failure in Acute Pancreatitis. PLOS ONE, 10, e0125529.
https://doi.org/10.1371/journal.pone.0125529
[35] Alspach, E., Lussier, D.M. and Schreiber, R.D. (2018) Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harbor Perspectives in Biology, 11, a028480.
https://doi.org/10.1101/cshperspect.a028480
[36] Li, G., Chen, H., Liu, L., Xiao, P., Xie, Y., Geng, X., et al. (2021) Role of Interleukin-17 in Acute Pancreatitis. Frontiers in Immunology, 12, Article 674803.
https://doi.org/10.3389/fimmu.2021.674803
[37] Zhou, Y., Huang, X., Jin, Y., Qiu, M., Ambe, P.C., Basharat, Z., et al. (2024) The Role of Mitochondrial Damage-Associated Molecular Patterns in Acute Pancreatitis. Biomedicine & Pharmacotherapy, 175, Article ID: 116690.
https://doi.org/10.1016/j.biopha.2024.116690
[38] Biczo, G., Vegh, E.T., Shalbueva, N., Mareninova, O.A., Elperin, J., Lotshaw, E., et al. (2018) Mitochondrial Dysfunction, through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 154, 689-703.
https://doi.org/10.1053/j.gastro.2017.10.012
[39] Han, X., Li, B., Bao, J., Wu, Z., Chen, C., Ni, J., et al. (2022) Endoplasmic Reticulum Stress Promoted Acinar Cell Necroptosis in Acute Pancreatitis through Cathepsinb-Mediated AP-1 Activation. Frontiers in Immunology, 13, Article 968639.
https://doi.org/10.3389/fimmu.2022.968639
[40] Yan, C., Ma, Y., Li, H., Cui, J., Guo, X., Wang, G., et al. (2023) Endoplasmic Reticulum Stress Promotes Caspase-1-Dependent Acinar Cell Pyroptosis through the PERK Pathway to Aggravate Acute Pancreatitis. International Immunopharmacology, 120, Article ID: 110293.
https://doi.org/10.1016/j.intimp.2023.110293
[41] Li, H., Wen, W. and Luo, J. (2022) Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines, 10, Article 108.
https://doi.org/10.3390/biomedicines10010108
[42] Tomkötter, L., Erbes, J., Trepte, C., Hinsch, A., Dupree, A., Bockhorn, M., et al. (2016) The Effects of Pancreatic Microcirculatory Disturbances on Histopathologic Tissue Damage and the Outcome in Severe Acute Pancreatitis. Pancreas, 45, 248-253.
https://doi.org/10.1097/mpa.0000000000000440
[43] 胥文瀚, 夏志杨, 张小明. 急性胰腺炎微循环障碍发生机制相关研究进展[J]. 中华胰腺病杂志, 2023, 23(2): 146-149.
[44] 周瑜, 王卫星. 急性胰腺炎中微循环障碍相关研究进展[J]. 中华全科医学, 2017, 15(9): 1559-1562.
[45] Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article ID: 110770.
https://doi.org/10.1016/j.biopha.2020.110770
[46] Shah, J. and Rana, S.S. (2020) Acute Respiratory Distress Syndrome in Acute Pancreatitis. Indian Journal of Gastroenterology, 39, 123-132.
https://doi.org/10.1007/s12664-020-01016-z
[47] Kang, H., Yang, Y., Zhu, L., et al. (2022) Role of Neutrophil Extracellular Traps in Inflammatory Evolution in Severe Acute Pancreatitis. Chinese Medical Journal, 135, 2773-2784.
[48] Luan, Z., Zhang, X., Yin, X., Ma, X., Zhang, H., Zhang, C., et al. (2013) Downregulation of HMGB1 Protects against the Development of Acute Lung Injury after Severe Acute Pancreatitis. Immunobiology, 218, 1261-1270.
https://doi.org/10.1016/j.imbio.2013.04.013
[49] Yu, Z., Ji, M., Yan, J., Cai, Y., Liu, J., Yang, H., et al. (2015) The Ratio of Th17/Treg Cells as a Risk Indicator in Early Acute Respiratory Distress Syndrome. Critical Care, 19, Article No. 82.
https://doi.org/10.1186/s13054-015-0811-2
[50] Yang, H., Cao, R., Zhou, F., Wang, B., Xu, Q., Li, R., et al. (2024) The Role of Interleukin-22 in Severe Acute Pancreatitis. Molecular Medicine, 30, Article No. 60.
https://doi.org/10.1186/s10020-024-00826-7
[51] Huai, J. (2012) Melatonin Attenuates Acute Pancreatitis-Associated Lung Injury in Rats by Modulating Interleukin 22. World Journal of Gastroenterology, 18, 5122-5128.
https://doi.org/10.3748/wjg.v18.i36.5122
[52] Hu, X., Han, Z., Zhou, R., Su, W., Gong, L., Yang, Z., et al. (2023) Altered Gut Microbiota in the Early Stage of Acute Pancreatitis Were Related to the Occurrence of Acute Respiratory Distress Syndrome. Frontiers in Cellular and Infection Microbiology, 13, Article 1127369.
https://doi.org/10.3389/fcimb.2023.1127369
[53] Zhu, Y., He, C., Li, X., Cai, Y., Hu, J., Liao, Y., et al. (2018) Gut Microbiota Dysbiosis Worsens the Severity of Acute Pancreatitis in Patients and Mice. Journal of Gastroenterology, 54, 347-358.
https://doi.org/10.1007/s00535-018-1529-0
[54] Wang, Z., Li, F., Liu, J., Luo, Y., Guo, H., Yang, Q., et al. (2022) Intestinal Microbiota—An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Frontiers in Immunology, 13, Article 913178.
https://doi.org/10.3389/fimmu.2022.913178
[55] Li, Y., Li, J., Li, S., Zhou, S., Yang, J., Xu, K., et al. (2024) Exploring the Gut Microbiota’s Crucial Role in Acute Pancreatitis and the Novel Therapeutic Potential of Derived Extracellular Vesicles. Frontiers in Pharmacology, 15, Article 1437894.
https://doi.org/10.3389/fphar.2024.1437894
[56] Glaubitz, J., Wilden, A., Frost, F., Ameling, S., Homuth, G., Mazloum, H., et al. (2023) Activated Regulatory T-Cells Promote Duodenal Bacterial Translocation into Necrotic Areas in Severe Acute Pancreatitis. Gut, 72, 1355-1369.
https://doi.org/10.1136/gutjnl-2022-327448
[57] Sendler, M., van den Brandt, C., Glaubitz, J., Wilden, A., Golchert, J., Weiss, F.U., et al. (2020) NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice with Acute Pancreatitis. Gastroenterology, 158, 253-269.e14.
https://doi.org/10.1053/j.gastro.2019.09.040
[58] Glaubitz, J., Asgarbeik, S., Lange, R., Mazloum, H., Elsheikh, H., Weiss, F.U., et al. (2023) Immune Response Mechanisms in Acute and Chronic Pancreatitis: Strategies for Therapeutic Intervention. Frontiers in Immunology, 14, Article 1279539.
https://doi.org/10.3389/fimmu.2023.1279539