视网膜静脉阻塞继发黄斑水肿的治疗进展
Progress in Treatment of Macular Edema Secondary to Retinal Vein Occlusion
DOI: 10.12677/acm.2025.1541321, PDF, HTML, XML,   
作者: 李 超:吉首大学医学院,湖南 吉首;吉首大学第四临床学院,湖南 怀化;史 萍*:吉首大学第四临床学院,湖南 怀化
关键词: 视网膜静脉阻塞黄斑水肿抗VEGF药糖皮质激素激光治疗Retinal Vein Occlusion Macular Edema Anti-VEGF Drugs Glucocorticoids Laser Therapy
摘要: 视网膜静脉阻塞(RVO)是临床常见的视网膜血管性疾病,引起的并发症中以黄斑水肿(ME)最为常见。持续的ME可导致视功能的不可逆性损害,故针对ME的治疗是RVO治疗中的重点。随着医学的进展,也出现越来越多的新型药物与治疗手段,如玻璃体腔注射抗VEGF或糖皮质激素等药物、激光治疗、口服药物等。本文将对近年来RVO-ME中的这些治疗措施的进展进行综述,为临床诊疗提供参考。
Abstract: Retinal vein occlusion (RVO) is a clinically common retinal vascular disease, among its complications, macular edema (ME) is the most prevalent. Persistent ME can lead to irreversible damage to visual function. With advancements in medical science, an increasing number of novel drugs and therapeutic approaches have emerged, including intravitreal injection of anti-VEGF drugs or glucocorticoids, laser therapy, and oral medications. This article reviews recent advancements in these treatment modalities for RVO-ME, providing references for clinical diagnosis and management.
文章引用:李超, 史萍. 视网膜静脉阻塞继发黄斑水肿的治疗进展[J]. 临床医学进展, 2025, 15(4): 3482-3490. https://doi.org/10.12677/acm.2025.1541321

1. 引言

视网膜静脉阻塞(RVO)是一种常见的可严重影响视功能的视网膜血管性疾病[1]。根据血管阻塞部位可分为视网膜中央静脉阻塞(CRVO)、视网膜分支静脉阻塞(BRVO)。RVO可引起黄斑水肿(ME)、新生血管性青光眼、玻璃体积血等多种并发症,其中以ME最为常见,持续的ME以及引起的视网膜解剖结构的破坏是导致RVO患者视功能不可逆性损害的主要原因,故目前国内外对于视网膜静脉阻塞性黄斑水肿(RVO-ME)的治疗以控制ME、改善视功能为主要目的。本文主要总结对RVO-ME各种治疗措施的进展,为临床治疗方案的选择提供依据。

2. 玻璃体腔内药物注射治疗

2.1. 抗血管内皮生长因子(VEGF)药物

2.1.1. 融合蛋白类抗VEGF药物

阿柏西普是一种可溶性的受体融合蛋白,包含VEGF受体(VEGFR) 1、2的结构域和免疫球蛋白G1的FC部分[2]。作用途径通过结合人VEGF-A、VEGF-B和胎盘生长因子(PIGF)的多种亚型抑制VEGF受体,干扰VEGF的信号转导,从而减少视网膜新生血管的形成[3]。Korobelnik [4]等人的四期临床试验证明阿柏西普能显著提升最佳矫正视力(BCVA)和减少视网膜中央厚度(CMT),实现了功能和解剖学结局的临床意义改善,大多数患者的末次实际治疗间隔与末次预期治疗间隔均达到≥8周。目前我国已有多款阿柏西普生物类似药已获批上市及临床试验中。

康柏西普是我国一种新型的抗VEGF受体重组融合蛋白,通过在阿柏西普的基础上增加了第四VEGFR-2结合结构域,该结构域能够增强受体二聚化和VEGF和VEGFR的结合,更有效抑制新生血管的形成[5]。Sun等人的研究对60例RVO-ME患者进行了一项前瞻性II期临床试验患者实行3 + PRN的康柏西普药物注射方案,在前3月内患者最佳矫正视力的改善较为明显,且BRVO与CRVO两组之间的变化没有统计学差异,后续的PRN给药后,这些改善在很大程度上得以维持且有所增加[6]。国内目前大部分采用3 + PRN方案,与雷珠单抗相比,多项回顾性研究显示两者药物的临床疗效及安全性无明显差距[7] [8],但目前仅在国内广泛使用,暂未进入其他国家,仍需进行多国、大样本、多中心的临床试验对其安全性与有效性进行检验。

2.1.2. 单克隆抗体类抗VEGF药物

雷珠单抗是人源化重组单克隆抗体Fab片段,通过结合所有形式的人VEGF-A并阻止其结合相应受体,抑制VEGF对新生血管形成和血管通透性的影响[9]。雷珠单抗相较于其他抗VEGF药物,分子量较小,且与大分子融合蛋白类药物相比,由于不含FC片段,全身暴露率低,心脑血管事件和非感染性眼内炎发生率更低。Avery [10]的临床研究中也表明雷珠单抗可显著提高患者的BCVA、恢复黄斑中心区域各层的解剖结构,较于贝伐单抗和阿柏西普的全身暴露更小。多项研究表示雷珠单抗与阿柏西普在治疗RVO时的黄斑水肿控制效果相近,相对于贝伐珠单抗更强[10]-[12]

布西珠单抗是一种新型人源化单链抗体片段,主要结合并抑制VEGF-A的三个主要亚型(VEGF110、VEGF121和VEGF165) [1],布西珠单抗是目前最小分子量的抗体。与全尺寸抗体相比,它具有较高的组织渗透性和较低的全身暴露量,药物清除的速度低,作用时间更长,这使其在视网膜和脉络膜中的药效更为显著[13]。除此之外,VEGF-A的亲和力对比研究显示布西珠单抗的结合力高于雷珠单抗[14]。在III期Hawk和Harrier试验[15]中,布西珠单抗与视力的提高呈正相关,BCVA优于阿柏西普[16]。目前国外批准的适应症为湿性年龄相关性黄斑变性(nAMD)与糖尿病黄斑水肿(DME),治疗视网膜静脉阻塞的疗效和安全性仍在评估中,但值得注意的是,与阿柏西普相比,布西珠单抗的眼内炎症发生频率更高[17],这可能是由于单链结构缺乏完整的抗体Fc段,导致稳定性下降和聚集倾向,更易触发免疫反应。

贝伐珠单抗是一种重组的人源化单克隆免疫球蛋白IgG1抗体,可以竞争性结合VEGF-A的各种亚型,防止VEGF与VEGFR-1和VEGFR-2相互作用[18]。虽然贝伐珠单抗的国内外研究已证明对于ME消退的有效性[12] [19] [20],但目前由于其国内的眼科适应症未获批、医保报销限制以及新型药物的冲击等原因,贝伐珠单抗在国内不常用于RVO的治疗。

2.1.3. 双特异性抗体药物

法瑞西单抗是一种新型的人源化双特异性抗体,由抗Ang-2 (血管生成素-2)抗原结合片段(Fab)、抗VEGF-AFab和经修饰的片段结晶区(FC区)组成,在RVO病程中,Ang-2与VEGF共同促使血管渗漏、炎症反应以及新生血管形成[21]。作为一种双特异性抗体,法瑞西单抗可以同时靶向作用于VEGF和Ang-2两条信号通路,对视网膜血管的稳定性和减轻炎症反应的效果更好[22]。在Tadayoni为期24周的临床试验中,法瑞西单抗组结局中BCVA增益、CMT较基线减少量、耐受性、安全性、眼部不良事件发生率与阿柏西普组相当,且在BALATON和COMINO研究中,法瑞西单抗组与阿柏西普组在第24周相比时,没有基于荧光素血管造影的黄斑渗漏[23]

2.2. 皮质类固醇药物

地塞米松(DEX)是一种强效皮质类固醇,作用机制主要为增强血管内皮细胞间的紧密连接、抑制炎症介质释放和炎性因子的表达等来减轻黄斑水肿,但由于糖皮质激素会诱导小梁网细胞外基质发生改变导致房水外流减少,以及干扰晶状体上皮细胞功能与代谢,引起眼内压升高和白内障发生的风险[24],目前是临床中的二线选择,常用于慢性或复发性黄斑水肿。目前使用多为缓释制剂,通过DEX植入物注射至玻璃体持续释放DEX。相较于抗VEGF药物具有药效维持时间较长(通常3~6个月),减少了频繁注射带来的风险[25]。临床研究表明注射1月后所有患眼BCVA、CMT明显下降,但眼压明显提高,差异有统计学意义,于注射后2个月时各指标变化最为明显[26]

曲安奈德(TA)是一种长效糖皮质激素,作用机制与DEX类似。早期曾广泛用于黄斑水肿的治疗[27],但由于可能引发眼压升高、白内障等并发症,目前用于炎性黄斑水肿或对抗VEGF药物反应不佳的患者。在SCORE的研究中2 mg与4 mg在治疗效果方面未观察到明显差异,但2 mg的TA药物较4 mg吸收更快,能够明显降低并发症[28],如一过性高眼压、继发青光眼及并发白内障等的发生。国内研究也表明1 mg与4 mg在12个月时的视力没有差异,但是不良事件发生率(特别是眼压升高和白内障)在4 mg组更高[29]。目前临床推荐频率为每3~4个月1次,每次1~2 mg。部分研究[30] [31]也表明与TA联合抗VEGF的短期疗法在6月内的随访中效果显著,且并发症多数可控,但仍需更为长期、大量的病例回顾及前瞻性研究。

醋酸氟轻松(FA)是一种中效氟化糖皮质激素受体激动剂,是目前亲脂性最强的皮质类固醇,优先蓄积于视网膜而非玻璃体液,在视网膜药物浓度达到地塞米松的10倍以上。这种靶向分布特性使其能以更低剂量实现更强的抗炎效果,效力为地塞米松的7.5~10倍[32]。目前氟轻松植入剂采用创新缓释技术,单次注射后持续释放药物可达36个月,超长期缓释效果显著优于传统激素药物,可显著减少患者就诊频率,但需手术取出缓释装置[33]。一项为期12个月的研究表明,在疗效方面,FA植入2个月后中位基线矫正视力由黄斑中心凹厚度可见明显好转,但值得注意的是,至12月时,绝大部分患眼均出现眼压升高以及有晶体眼的白内障进展[34],故病情随访仍然关键。且目前临床中主要用于非感染性葡萄膜炎以及糖尿病性黄斑水肿(DME),在RVO-ME的使用属于超说明书治疗[35],临床中较少使用。

2.3. 酪氨酸激酶抑制剂

舒尼替尼(SUN)是一种酪氨酸激酶抑制剂,可阻断VEGFR1-3、PDGFR-(α and β)、肝细胞生长因子(HGF)受体,从而阻断受体与VEGF-a、VEGF-b、VEGF-c和VEGF-d、PIGF、HGF结合[36]。在抗VEGF药物疗效不佳患者的房水检测出HGF的升高,因此阻断HGF或许是SUN可能的优势[37]。同时SUN作为一种双亮氨酸激酶(DLK)抑制剂,可以延长视网膜神经节细胞的生存时间,减少光感受器死亡[38]。舒尼替尼长效制剂的动物实验中,可维持治疗浓度超过六个月,有效降低VEGF诱导的白细胞停滞/无灌注[39],且未观察到眼内炎症或视网膜毒性。注射后玻璃体中白蛋白平均浓度明显降低,提示血管渗漏减少。已有证据表明SUN可以持续抑制VEGF信号传导并改善视网膜血管疾病患者的预后[40],目前国外仍处于临床试验中。

3. 激光治疗

激光视网膜光凝治疗RVO-ME机理是利用激光凝固效应破坏缺血区视网膜使其形成瘢痕,抑制新生血管的生成并减少氧供应,促使新生血管的消退,改善无灌注区的供氧状态[41]。激光治疗主要有传统黄斑区激光光凝术(CMLP)、轻度黄斑区格栅样激光(MMG)以及、阈值下微脉冲激光(SMLP)等形式。其中微脉冲激光通过短重复脉冲的方式,避免传统激光治疗可能引起的热性视网膜损伤,还降低了视网膜新生血管和纤维增生的风险,从而减少并发症的发生[42],在安全性、疗效和减少并发症等方面具有优势。RVO早期激光光凝治疗,可以促进网膜出血、黄斑水肿的吸收,有效保护患者现有视力、促进远期视力提高[43],多项研究表明激光联合抗VEGF药物治疗对于视力改善和黄斑厚度有明显改善,能减少玻璃体注射的次数[44] [45],减轻患者经济负担,提高患者的依从性。

4. 手术治疗

4.1. 视网膜血管内纤溶术

溶栓类药物血管内纤溶术是一种治疗RVO新型的有效方法,主要适应症为血栓形成引起的RVO。目前临床最常用溶栓类药物为尿激酶,通过激活纤维蛋白酶原提高内纤溶活性,促进血栓纤维蛋白溶解来达到血管再通,恢复视网膜微循环等促进黄斑水肿的消退[46],可缩短病程,减少永久并发症发生的可能性。

4.2. 玻璃体切割术

玻璃体切割术(PPV)通过手术方式切除眼内容物减少玻璃体内已存在的VEGF及其他各种炎性因子,同时减轻对视网膜的压力进而恢复部分视网膜供氧状态[47],以此减轻ME。Shirakata等对抗VEGF药物注射后复发性ME患者的研究表明,对于抗VEGF治疗后复发的ME,特别是伴有视网膜前膜的ME,玻璃体切除联合内界膜剥离是一种可行的治疗方案[47],也有助于帮助减轻黄斑区的内牵引力。

4.3. 动静脉交叉鞘膜切开术

动静脉交叉鞘膜切开术是通过切开视网膜动静脉交叉处的血管鞘,减轻静脉压力,改善视网膜内出血与ME [48]。此手术可显著减轻缺血型RVO-ME,解剖结果明显改善,但对患者视功能改善仍需更大样本量的研究[49],且手术难度较大,视神经损伤、视网膜脱离和视网膜中央动、静脉穿孔等严重并发症风险高,故临床上未能广泛应用。

5. 中医疗法

5.1. 活血化瘀类药物

中医中,RVO按症状应归于“暴盲”“络瘀暴盲”等范畴,其中大部分患者病程中贯穿气机郁滞,瘀血阻络之症[50],故以剔络化瘀、活血利水为该病的治则,方药以活血化瘀药为主[51]。目前临床上有多种不同的类型,有单味中药为主的红花注射液、樟柳碱注射液[52] [53],有如大黄牡丹汤、血府逐瘀汤等各种中药汤剂,临床常用的中成胶囊及片剂,如和血明目片、复方血栓通胶囊/滴丸等药物[54]

5.2. 益气健脾类药物

中医认为黄斑属脾,ME常表现为视物模糊、变形,可归为“视瞻昏渺”“视直如曲”的范畴,主要病机为脾虚不能运化,眼底水液循环欠通,水湿内停,引起水肿,故辨证为脾虚湿困,采用从脾而治、标本兼顾的治疗方法。目前多采用参苓白术散、参苓白术散等药物行健脾益气、利水渗湿之效,如脾气健运,水行通畅,水肿自消。

5.3. 针灸治疗

也有部分学者认为RVO-ME是由于多种原因引起脏腑功能失调,导致全身气血和津液运行受阻,水湿痰饮上犯于目,凝聚黄斑[55]。故有使用脐针治疗促使血脉和利、滋补脾气,消散水肿[56]。也有以温通针法以调畅气机,驱散痰浊、瘀血,达到温阳扶正、利水化浊的治疗目的。

6. 其他药物

6.1. 卵磷脂络合碘胶囊

卵磷脂络合碘胶囊是大豆卵磷脂碘化物质,在RVO-ME的治疗中,通过在患者体内持续释放碘离子,促进甲状腺合成甲状腺素,从而促进炎症产物吸收,加速网膜下液排出,恢复网膜色素上皮功能,同时碘离子也可以直接作用于网膜色素上皮细胞促进其新陈代谢。

6.2. 京都大学物质(KUS)

京都大学物质(KUS),是由京都大学开发的一种新型含缬氨酸蛋白质调节剂,在缺血性视网膜病变中,细胞内三磷酸腺苷(ATP)耗竭和随后诱导的内质网(ER)应激被认为是细胞死亡的潜在机制[57]。KUS不仅可以抑制细胞内ATP耗竭,还可以改善ER应激[58],在实验中可显着抑制视网膜内薄化和视网膜细胞死亡,并维持视觉功能,所以KUS可能为缺血条件下的细胞保护提供一种新的策略。

7. 展望

RVO是临床上常见的视网膜血管病变,常继发ME引起视功能损伤,目前玻璃体腔注射抗VEGF药物已成为治疗RVO-ME的主流方法,但也存在多次注射导致的操作相关并发症、患者的经济负担重、随访次数多、依从性差等问题,且选择1 + PRN与3 + PRN方案哪种也仍存争议,研究表明两种方案在3~6个月内均能显著改善最佳矫正视力(BCVA)和降低中心视网膜厚度(CMT),但3 + PRN可能通过更密集的初始治疗减少后续水肿波动,故国内外指南普遍倾向于3 + PRN以平衡疗效与复发风险,但不能否认1 + PRN方案注射次数较少,降低治疗成本及注射相关并发症风险的优势,可能更适合基线视力较好、黄斑结构损伤较轻(如外膜层/光感受器层完整性较好)的RVO患者,但需更频繁的随访监测,目前也在研究玻璃体腔注射中联合–转换药物等新型治疗方案。作为二线用药选择,糖皮质激素类药物的缓释剂型虽然相对抗VEGF药物来说能减少玻璃体腔注射的次数,减轻患者经济与心理负担,以及更为长期、稳定的治疗效果,但导致的眼压升高、白内障等并发症也同时不可忽视。实际临床中,联合激光光凝、口服药物以及手术治疗等方案对于病情的帮助也不可或缺,临床中应基于患者的病情不同,制定个性化的治疗与随访方案,达到更好的治疗效果。也期待有更多新型的抗VEGF药物的研发,帮助改善患者的预后以及预防ME的复发。

NOTES

*通讯作者。

参考文献

[1] Romano, F., Lamanna, F., Gabrielle, P.H., Teo, K.Y.C., Battaglia Parodi, M., Iacono, P., et al. (2023) Update on Retinal Vein Occlusion. Asia-Pacific Journal of Ophthalmology, 12, 196-210.
https://doi.org/10.1097/apo.0000000000000598
[2] Korobelnik, J., Holz, F.G., Roider, J., Ogura, Y., Simader, C., Schmidt-Erfurth, U., et al. (2014) Intravitreal Aflibercept Injection for Macular Edema Resulting from Central Retinal Vein Occlusion: One-Year Results of the Phase 3 GALILEO Study. Ophthalmology, 121, 202-208.
https://doi.org/10.1016/j.ophtha.2013.08.012
[3] 孔帆, 师燕芸. 视网膜静脉阻塞继发黄斑水肿的玻璃体内药物注射治疗方案研究进展[J]. 眼科新进展, 2024, 44(11): 920-924.
[4] Korobelnik, J., Larsen, M., Eter, N., Bailey, C., Wolf, S., Schmelter, T., et al. (2021) Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend for Macular Edema in Central Retinal Vein Occlusion: The CENTERA Study. American Journal of Ophthalmology, 227, 106-115.
https://doi.org/10.1016/j.ajo.2021.01.027
[5] de Oliveira Dias, J.R., de Andrade, G.C., Novais, E.A., Farah, M.E. and Rodrigues, E.B. (2016) Fusion Proteins for Treatment of Retinal Diseases: Aflibercept, Ziv-Aflibercept, and Conbercept. International Journal of Retina and Vitreous, 2, Article No. 3.
https://doi.org/10.1186/s40942-016-0026-y
[6] Sun, Z., Zhou, H., Lin, B., Jiao, X., Luo, Y., Zhang, F., et al. (2017) Efficacy and Safety of Intravitreal Conbercept Injections in Macular Edema Secondary to Retinal Vein Occlusion. Retina, 37, 1723-1730.
https://doi.org/10.1097/iae.0000000000001404
[7] Stewart, M. (2018) Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities. Pharmaceutics, 10, Article No. 21.
https://doi.org/10.3390/pharmaceutics10010021
[8] 赵洁, 张俊兰, 陈文静. 康柏西普与雷珠单抗治疗视网膜分支静脉阻塞继发黄斑水肿的效果[J]. 吉林医学, 2024, 45(7): 1661-1663.
[9] Gerding, H., Monés, J., Tadayoni, R., Boscia, F., Pearce, I. and Priglinger, S. (2014) Ranibizumab in Retinal Vein Occlusion: Treatment Recommendations by an Expert Panel. British Journal of Ophthalmology, 99, 297-304.
https://doi.org/10.1136/bjophthalmol-2014-305041
[10] Avery, R.L., Castellarin, A.A., Steinle, N.C., Dhoot, D.S., Pieramici, D.J., See, R., et al. (2017) Systemic Pharmacokinetics and Pharmacodynamics of Intravitreal Aflibercept, Bevacizumab, and Ranibizumab. Retina, 37, 1847-1858.
https://doi.org/10.1097/iae.0000000000001493
[11] Qian, T., Zhao, M., Wan, Y., Li, M. and Xu, X. (2018) Comparison of the Efficacy and Safety of Drug Therapies for Macular Edema Secondary to Central Retinal Vein Occlusion. BMJ Open, 8, e022700.
https://doi.org/10.1136/bmjopen-2018-022700
[12] Sangroongruangsri, S., Ratanapakorn, T., Wu, O., Anothaisintawee, T. and Chaikledkaew, U. (2018) Comparative Efficacy of Bevacizumab, Ranibizumab, and Aflibercept for Treatment of Macular Edema Secondary to Retinal Vein Occlusion: A Systematic Review and Network Meta-Analysis. Expert Review of Clinical Pharmacology, 11, 903-916.
https://doi.org/10.1080/17512433.2018.1507735
[13] Campochiaro, P.A. and Akhlaq, A. (2021) Sustained Suppression of VEGF for Treatment of Retinal/Choroidal Vascular Diseases. Progress in Retinal and Eye Research, 83, Article ID: 100921.
https://doi.org/10.1016/j.preteyeres.2020.100921
[14] Tadayoni, R., Sararols, L., Weissgerber, G., Verma, R., Clemens, A. and Holz, F.G. (2020) Brolucizumab: A Newly Developed Anti-Vegf Molecule for the Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmologica, 244, 93-101.
https://doi.org/10.1159/000513048
[15] Singer, M., Albini, T.A., Seres, A., Baumal, C.R., Parikh, S., Gale, R., et al. (2022) Clinical Characteristics and Outcomes of Eyes with Intraocular Inflammation after Brolucizumab: Post Hoc Analysis of HAWK and Harrier. Ophthalmology Retina, 6, 97-108.
https://doi.org/10.1016/j.oret.2021.05.003
[16] Khanani, A.M., Sadda, S.R., Sarraf, D., Tadayoni, R., Wong, D.T., Kempf, A., et al. (2025) Effect of Brolucizumab and Aflibercept on the Maximum Thickness of Pigment Epithelial Detachments and Sub-Retinal Pigment Epithelium Fluid in HAWK and Harrier. Ophthalmology Retina, 9, 13-21.
https://doi.org/10.1016/j.oret.2024.07.012
[17] Monés, J., Srivastava, S.K., Jaffe, G.J., Tadayoni, R., Albini, T.A., Kaiser, P.K., et al. (2021) Risk of Inflammation, Retinal Vasculitis, and Retinal Occlusion-Related Events with Brolucizumab. Ophthalmology, 128, 1050-1059.
https://doi.org/10.1016/j.ophtha.2020.11.011
[18] Ford, J.A., Clar, C., Lois, N., Barton, S., Thomas, S., Court, R., et al. (2014) Treatments for Macular Oedema Following Central Retinal Vein Occlusion: Systematic Review. BMJ Open, 4, e004120.
https://doi.org/10.1136/bmjopen-2013-004120
[19] 段直光, 贾云琴, 莫逆, 等. Bevacizumab治疗视网膜静脉阻塞继发黄斑水肿的临床观察[J]. 国际眼科杂志, 2014, 14(9): 1594-1598.
[20] Sen, P., Gurudas, S., Ramu, J., Patrao, N., Chandra, S., Rasheed, R., et al. (2021) Predictors of Visual Acuity Outcomes after Anti-Vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Central Retinal Vein Occlusion. Ophthalmology Retina, 5, 1115-1124.
https://doi.org/10.1016/j.oret.2021.02.008
[21] Sahni, J., Patel, S.S., Dugel, P.U., Khanani, A.M., Jhaveri, C.D., Wykoff, C.C., et al. (2019) Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in Diabetic Macular Edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology, 126, 1155-1170.
https://doi.org/10.1016/j.ophtha.2019.03.023
[22] 牛浩宇, 余萍. Faricimab玻璃体腔内注射治疗视网膜静脉阻塞的研究进展[J]. 眼科学报, 2024, 39(11): 586-592.
[23] Tadayoni, R., Paris, L.P., Danzig, C.J., Abreu, F., Khanani, A.M., Brittain, C., et al. (2024) Efficacy and Safety of Faricimab for Macular Edema Due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials. Ophthalmology, 131, 950-960.
https://doi.org/10.1016/j.ophtha.2024.01.029
[24] Feltgen, N., Hattenbach, L., Bertelmann, T., Callizo, J., Rehak, M., Wolf, A., et al. (2018) Comparison of Ranibizumab versus Dexamethasone for Macular Oedema Following Retinal Vein Occlusion: 1‐year Results of the COMRADE Extension Study. Acta Ophthalmologica, 96, e933-e41.
https://doi.org/10.1111/aos.13770
[25] Korobelnik, J., Kodjikian, L., Delcourt, C., Gualino, V., Leaback, R., Pinchinat, S., et al. (2016) Two-Year, Prospective, Multicenter Study of the Use of Dexamethasone Intravitreal Implant for Treatment of Macular Edema Secondary to Retinal Vein Occlusion in the Clinical Setting in France. Graefes Archive for Clinical and Experimental Ophthalmology, 254, 2307-2318.
https://doi.org/10.1007/s00417-016-3394-y
[26] Li, X., Wang, N., Liang, X., Xu, G., Li, X., Jiao, J., et al. (2017) Safety and Efficacy of Dexamethasone Intravitreal Implant for Treatment of Macular Edema Secondary to Retinal Vein Occlusion in Chinese Patients: Randomized, Sham-Controlled, Multicenter Study. Graefes Archive for Clinical and Experimental Ophthalmology, 256, 59-69.
https://doi.org/10.1007/s00417-017-3831-6
[27] Karacorlu, M., Senturk, F., Ozdemir, H., Karacorlu, S. and Uysal, O. (2013) Retinal Sensitivity Improvement after Intravitreal Triamcinolone Acetonide Injection for Macular Edema Secondary to Branch Retinal Vein Occlusion. Indian Journal of Ophthalmology, 61, 3-7.
https://doi.org/10.4103/0301-4738.105048
[28] Scott, I.U., et al. (2009) A Randomized Trial Comparing the Efficacy and Safety of Intravitreal Triamcinolone with Standard Care to Treat Vision Loss Associated with Macular Edema Secondary to Branch Retinal Vein Occlusion: The Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) Study Report 6. Archives of Ophthalmology (Chicago, Ill: 1960), 127, 1115-1128.
[29] 曹婷婷, 刘逾, 高瑞新, 等. 不同剂量的曲安奈德玻璃体腔注射联合光凝治疗视网膜分支静脉阻塞合并黄斑水肿的疗效观察[J]. 实用老年医学, 2016, 30(4): 299-301.
[30] Moon, J., Kim, M. and Sagong, M. (2016) Combination Therapy of Intravitreal Bevacizumab with Single Simultaneous Posterior Subtenon Triamcinolone Acetonide for Macular Edema Due to Branch Retinal Vein Occlusion. Eye, 30, 1084-1090.
https://doi.org/10.1038/eye.2016.96
[31] 谢佩玲, 张俐娜, 何佳玲, 等. 玻璃体腔注射雷珠单抗联合曲安奈德治疗视网膜静脉阻塞继发黄斑水肿对黄斑区视网膜微循环的影响[J]. 中国药物与临床, 2024, 24(19): 1247-1251.
[32] Tomkins-Netzer, O., Lightman, S.L., Burke, A.E., Sugar, E.A., Lim, L.L., Jaffe, G.J., et al. (2021) Seven-Year Outcomes of Uveitic Macular Edema: The Multicenter Uveitis Steroid Treatment Trial and Follow-Up Study Results. Ophthalmology, 128, 719-728.
https://doi.org/10.1016/j.ophtha.2020.08.035
[33] Kim, H.M. and Woo, S.J. (2021) Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics, 13, Article No. 108.
https://doi.org/10.3390/pharmaceutics13010108
[34] Ramchandran, R.S., Fekrat, S., Stinnett, S.S. and Jaffe, G.J. (2008) Fluocinolone Acetonide Sustained Drug Delivery Device for Chronic Central Retinal Vein Occlusion: 12-Month Results. American Journal of Ophthalmology, 146, 285-291.e1.
https://doi.org/10.1016/j.ajo.2008.03.025
[35] Ribeiro, F. and Falcão, M.S. (2021) Off-Label Use of 0.19 mg Fluocinolone Acetonide Intravitreal Implant: A Systematic Review. Journal of Ophthalmology, 2021, Article ID: 6678364.
https://doi.org/10.1155/2021/6678364
[36] O’Farrell, A., Abrams, T.J., Yuen, H.A., Ngai, T.J., Louie, S.G., Yee, K.W.H., et al. (2003) SU11248 Is a Novel FLT3 Tyrosine Kinase Inhibitor with Potent Activity in Vitro and in Vivo. Blood, 101, 3597-3605.
https://doi.org/10.1182/blood-2002-07-2307
[37] Campochiaro, P.A., Hafiz, G., Mir, T.A., Scott, A.W., Zimmer-Galler, I., Shah, S.M., et al. (2016) Pro-Permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated with Ozurdex Trial. American Journal of Ophthalmology, 168, 13-23.
https://doi.org/10.1016/j.ajo.2016.04.017
[38] Welsbie, D.S., Yang, Z., Ge, Y., Mitchell, K.L., Zhou, X., Martin, S.E., et al. (2013) Functional Genomic Screening Identifies Dual Leucine Zipper Kinase as a Key Mediator of Retinal Ganglion Cell Death. Proceedings of the National Academy of Sciences, 110, 4045-4050.
https://doi.org/10.1073/pnas.1211284110
[39] Vinores, S.A., Xiao, W., Shen, J. and Campochiaro, P.A. (2007) TNF-α Is Critical for Ischemia-Induced Leukostasis, but Not Retinal Neovascularization nor Vegf-Induced Leakage. Journal of Neuroimmunology, 182, 73-79.
https://doi.org/10.1016/j.jneuroim.2006.09.015
[40] Tsujinaka, H., Fu, J., Shen, J., Yu, Y., Hafiz, Z., Kays, J., et al. (2020) Sustained Treatment of Retinal Vascular Diseases with Self-Aggregating Sunitinib Microparticles. Nature Communications, 11, Article No. 694.
https://doi.org/10.1038/s41467-020-14340-x
[41] Riazi-Esfahani, H., Ahmadi, A., Sadeghi, R., Mirghorbani, M., Ghassemi, F., Zarei, M., et al. (2024) Evaluation of Foveal Vasculature by Optical Coherence Tomography Angiography after Pan-Retinal Photocoagulation versus Intravitreal Anti-Vegf Injections. Journal of Ophthalmic and Vision Research, 19, 313-323.
https://doi.org/10.18502/jovr.v19i3.13622
[42] Scholz, P., Altay, L. and Fauser, S. (2017) A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders. Advances in Therapy, 34, 1528-1555.
https://doi.org/10.1007/s12325-017-0559-y
[43] Gawęcki, M. (2021) Subthreshold Diode Micropulse Laser Combined with Intravitreal Therapy for Macular Edema—A Systematized Review and Critical Approach. Journal of Clinical Medicine, 10, Article No. 1394.
https://doi.org/10.3390/jcm10071394
[44] Zhao, H., Yu, M., Zhou, L., Li, C., Lu, L. and Jin, C. (2021) Comparison of the Effect of Pan-Retinal Photocoagulation and Intravitreal Conbercept Treatment on the Change of Retinal Vessel Density Monitored by Optical Coherence Tomography Angiography in Patients with Proliferative Diabetic Retinopathy. Journal of Clinical Medicine, 10, Article No. 4484.
https://doi.org/10.3390/jcm10194484
[45] Grzybowski, A., Markeviciute, A. and Zemaitiene, R. (2021) Treatment of Macular Edema in Vascular Retinal Diseases: A 2021 Update. Journal of Clinical Medicine, 10, Article No. 5300.
https://doi.org/10.3390/jcm10225300
[46] van Overdam, K.A., Missotten, T. and Spielberg, L.H. (2015) Updated Cannulation Technique for Tissue Plasminogen Activator Injection into Peripapillary Retinal Vein for Central Retinal Vein Occlusion. Acta Ophthalmologica, 93, 739-744.
https://doi.org/10.1111/aos.12830
[47] Shirakata, Y., Fukuda, K., Fujita, T., Nakano, Y., Nomoto, H., Yamaji, H., et al. (2016) Pars Plana Vitrectomy Combined with Internal Limiting Membrane Peeling for Recurrent Macular Edema Due to Branch Retinal Vein Occlusion after Antivascular Endothelial Growth Factor Treatments. Clinical Ophthalmology, 10, 277-283.
https://doi.org/10.2147/opth.s85751
[48] 李林, 郭疆, 司马晶, 等. 动静脉鞘膜切开治疗视网膜分支静脉阻塞[J]. 临床眼科杂志, 2012, 20(5): 426-427.
[49] Shah, G.K., Sharma, S., Fineman, M.S., Federman, J., Brown, M.M. and Brown, G.C. (2000) Arteriovenous Adventitial Sheathotomy for the Treatment of Macular Edema Associated with Branch Retinal Vein Occlusion. American Journal of Ophthalmology, 129, 104-106.
https://doi.org/10.1016/s0002-9394(99)00287-1
[50] 吴紫琼, 辛瑞. 活血化瘀法治疗视网膜静脉阻塞性黄斑水肿的研究简况[J]. 中医临床研究, 2024, 16(30): 35-39.
[51] 邵霖霖, 冯俊. 中医药治疗视网膜静脉阻塞研究进展[J]. 中国中医基础医学杂志, 2020, 26(12): 1909-1911.
[52] 高辉, 李焕丽, 庞荣. 复方樟柳碱联合抗VEGF药物治疗视网膜分支静脉阻塞黄斑水肿[J]. 国际眼科杂志, 2019, 19(2): 323-325.
[53] 李婧, 刘素勤, 谢爱宏, 等. 红花注射液穴位离子导入联合康柏西普治疗视网膜静脉阻塞并黄斑水肿的临床效果[J]. 中国当代医药, 2023, 30(5): 126-129+133.
[54] 吴美初, 邢尧, 丁珊, 等. 复方血栓通联合复方樟柳碱注射液治疗视网膜静脉阻塞有效性Meta分析[J]. 中药与临床, 2024, 15(2): 61-66.
[55] 张孟姣, 郝晓凤, 谢立科, 等. 从肝脾论治视网膜静脉阻塞继发黄斑水肿[J]. 世界中西医结合杂志, 2024, 19(9): 1872-1875.
[56] 张琪. 脐针联合中药治疗视网膜静脉阻塞性黄斑水肿的临床观察[D]: [硕士学位论文]. 济南: 山东中医药大学, 2021.
[57] Ikeda, H. and Hata, M. (2017) Modulation of Valosin-Containing Protein by Kyoto University Substances (KUS) as a Novel Therapeutic Strategy for Ischemic Neuronal Diseases. Neural Regeneration Research, 12, 1252-1255.
https://doi.org/10.4103/1673-5374.213540
[58] Hata, M., Ikeda, H.O., Kikkawa, C., Iwai, S., Muraoka, Y., Hasegawa, T., et al. (2017) KUS121, a VCP Modulator, Attenuates Ischemic Retinal Cell Death via Suppressing Endoplasmic Reticulum Stress. Scientific Reports, 7, Article No. 44873.
https://doi.org/10.1038/srep44873