[1]
|
Sukpaita, T., Chirachanchai, S., Pimkhaokham, A. and Ampornaramveth, R.S. (2021) Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Marine Drugs, 19, Article 551. https://doi.org/10.3390/md19100551
|
[2]
|
廖欣宇, 王福科, 王国梁. 骨组织工程支架的进展与挑战[J]. 中国组织工程研究, 2021, 25(28): 4553-4560.
|
[3]
|
Burg, K.J.L., Porter, S. and Kellam, J.F. (2000) Biomaterial Developments for Bone Tissue Engineering. Biomaterials, 21, 2347-2359. https://doi.org/10.1016/s0142-9612(00)00102-2
|
[4]
|
Iijima, K. and Otsuka, H. (2020) Cell Scaffolds for Bone Tissue Engineering. Bioengineering, 7, Article 119. https://doi.org/10.3390/bioengineering7040119
|
[5]
|
Liu, Y., Lim, J. and Teoh, S. (2013) Review: Development of Clinically Relevant Scaffolds for Vascularised Bone Tissue Engineering. Biotechnology Advances, 31, 688-705. https://doi.org/10.1016/j.biotechadv.2012.10.003
|
[6]
|
Bao, W., Li, M., Yang, Y., Wan, Y., Wang, X., Bi, N., et al. (2020) Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Frontiers in Chemistry, 8, Article 53. https://doi.org/10.3389/fchem.2020.00053
|
[7]
|
Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A. and Cesàro, A. (2016) “The Good, the Bad and the Ugly” of Chitosans. Marine Drugs, 14, Article 99. https://doi.org/10.3390/md14050099
|
[8]
|
Saravanan, S., Vimalraj, S., Lakshmanan, G., Jindal, A., Sundaramurthi, D. and Bhattacharya, J. (2019) Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. In: Choi, A. and Ben-Nissan, B., Eds., Marine-Derived Biomaterials for Tissue Engineering Applications, Springer, 413-442. https://doi.org/10.1007/978-981-13-8855-2_18
|
[9]
|
Sergi, R., Bellucci, D. and Cannillo, V. (2020) A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials, 13, Article 5560. https://doi.org/10.3390/ma13235560
|
[10]
|
Nunes, C.R., Simske, S.J., Sachdeva, R. and Wolford, L.M. (1997) Long-Term Ingrowth and Apposition of Porous Hydroxylapatite Implants. Journal of Biomedical Materials Research, 36, 560-563. https://doi.org/10.1002/(sici)1097-4636(19970915)36:4<560::aid-jbm15>3.0.co;2-e
|
[11]
|
Joseph Nathanael, A., Mangalaraj, D., Chi Chen, P. and Ponpandian, N. (2010) Enhanced Mechanical Strength of Hydroxyapatite Nanorods Reinforced with Polyethylene. Journal of Nanoparticle Research, 13, 1841-1853. https://doi.org/10.1007/s11051-010-9932-3
|
[12]
|
Thanigaiarul, K., Elayaraja, K., Magudapathy, P., Mudali, U.K., Nair, K.G.M., Sudarshan, M., et al. (2013) Surface Modification of Nanocrystalline Calcium Phosphate Bioceramic by Low Energy Nitrogen Ion Implantation. Ceramics International, 39, 3027-3034. https://doi.org/10.1016/j.ceramint.2012.09.081
|
[13]
|
Nathanael, A.J., Hong, S.I., Mangalaraj, D., Ponpandian, N. and Chen, P.C. (2012) Template-Free Growth of Novel Hydroxyapatite Nanorings: Formation Mechanism and Their Enhanced Functional Properties. Crystal Growth & Design, 12, 3565-3574. https://doi.org/10.1021/cg3003959
|
[14]
|
Lee, J.S., Baek, S.D., Venkatesan, J., Bhatnagar, I., Chang, H.K., Kim, H.T., et al. (2014) In Vivo Study of Chitosan-Natural Nano Hydroxyapatite Scaffolds for Bone Tissue Regeneration. International Journal of Biological Macromolecules, 67, 360-366. https://doi.org/10.1016/j.ijbiomac.2014.03.053
|
[15]
|
Ge, Z. (2004) Hydroxyapatite-Chitin Materials as Potential Tissue Engineered Bone Substitutes. Biomaterials, 25, 1049-1058. https://doi.org/10.1016/s0142-9612(03)00612-4
|
[16]
|
Chen, F., Wang, Z. and Lin, C. (2002) Preparation and Characterization of Nano-Sized Hydroxyapatite Particles and Hydroxyapatite/Chitosan Nano-Composite for Use in Biomedical Materials. Materials Letters, 57, 858-861. https://doi.org/10.1016/s0167-577x(02)00885-6
|
[17]
|
Wang, H., Sun, R., Huang, S., Wu, H. and Zhang, D. (2024) Fabrication and Properties of Hydroxyapatite/Chitosan Composite Scaffolds Loaded with Periostin for Bone Regeneration. Heliyon, 10, e25832. https://doi.org/10.1016/j.heliyon.2024.e25832
|
[18]
|
Xu, H.H.K. and Simon, C.G. (2005) Fast Setting Calcium Phosphate-Chitosan Scaffold: Mechanical Properties and Biocompatibility. Biomaterials, 26, 1337-1348. https://doi.org/10.1016/j.biomaterials.2004.04.043
|
[19]
|
夏轶超, 澈力格尔, 李宝印, 等. 壳聚糖膜覆盖3D打印双相磷酸钙骨组织工程支架的制备和性能[J]. 吉林大学学报(医学版), 2018, 44(4): 770-775, 893.
|
[20]
|
Correia, C.O., Leite, Á.J. and Mano, J.F. (2015) Chitosan/Bioactive Glass Nanoparticles Scaffolds with Shape Memory Properties. Carbohydrate Polymers, 123, 39-45. https://doi.org/10.1016/j.carbpol.2014.12.076
|
[21]
|
Faqhiri, H., Hannula, M., Kellomäki, M., Calejo, M.T. and Massera, J. (2019) Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. Journal of Functional Biomaterials, 10, Article 38. https://doi.org/10.3390/jfb10030038
|
[22]
|
Yang, J., Long, T., He, N., Guo, Y., Zhu, Z. and Ke, Q. (2014) Fabrication of a Chitosan/Bioglass Three-Dimensional Porous Scaffold for Bone Tissue Engineering Applications. Journal of Materials Chemistry B, 2, 6611-6618. https://doi.org/10.1039/c4tb00940a
|
[23]
|
Valerio, P., Pereira, M.M., Goes, A.M. and Leite, M.F. (2004) The Effect of Ionic Products from Bioactive Glass Dissolution on Osteoblast Proliferation and Collagen Production. Biomaterials, 25, 2941-2948. https://doi.org/10.1016/j.biomaterials.2003.09.086
|
[24]
|
Silver, I.A., Deas, J. and Erecińska, M. (2001) Interactions of Bioactive Glasses with Osteoblasts in Vitro: Effects of 45S5 Bioglass®, and 58S and 77S Bioactive Glasses on Metabolism, Intracellular Ion Concentrations and Cell Viability. Biomaterials, 22, 175-185. https://doi.org/10.1016/s0142-9612(00)00173-3
|
[25]
|
Luz, G.M. and Mano, J.F. (2012) Chitosan/bioactive Glass Nanoparticles Composites for Biomedical Applications. Biomedical Materials, 7, Article ID: 054104. https://doi.org/10.1088/1748-6041/7/5/054104
|
[26]
|
Sergi, R., Bellucci, D., Salvatori, R. and Cannillo, V. (2020) Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, in Vitro Bioactivity, and Biological Tests. Materials, 13, Article 2819. https://doi.org/10.3390/ma13122819
|
[27]
|
Zhang, X., Liu, Y., Wang, J., et al. (2023) Mismatched Degradation Kinetics of Chitosan/Calcium Phosphate Composites Compromises Bone Regeneration in Critical-Sized Defects. Nature Communications, 14, Article No. 2156.
|
[28]
|
Li, N., Zhou, L., Xie, W., Zeng, D., Cai, D., Wang, H., et al. (2019) Alkaline Phosphatase Enzyme-Induced Biomineralization of Chitosan Scaffolds with Enhanced Osteogenesis for Bone Tissue Engineering. Chemical Engineering Journal, 371, 618-630. https://doi.org/10.1016/j.cej.2019.04.017
|
[29]
|
Zhu, Y., Zhang, Y. and Zhou, Y. (2022) Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences, 23, Article 6574. https://doi.org/10.3390/ijms23126574
|
[30]
|
Wang, L. and Stegemann, J.P. (2010) Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with β-Glycerophosphate for Bone Tissue Engineering. Biomaterials, 31, 3976-3985. https://doi.org/10.1016/j.biomaterials.2010.01.131
|
[31]
|
Tangsadthakun, C., Kanokpanont, S., Sanchavanakit, N., Pichyangkura, R., Banaprasert, T., Tabata, Y., et al. (2007) The Influence of Molecular Weight of Chitosan on the Physical and Biological Properties of Collagen/Chitosan Scaffolds. Journal of Biomaterials Science, Polymer Edition, 18, 147-163. https://doi.org/10.1163/156856207779116694
|
[32]
|
Wang, L. and Stegemann, J.P. (2011) Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration. Acta Biomaterialia, 7, 2410-2417. https://doi.org/10.1016/j.actbio.2011.02.029
|
[33]
|
史新宇, 李晓红, 叶益超, 等. 3D打印胶原/壳聚糖支架改善大鼠脊髓损伤后神经功能恢复[J]. 中国组织工程研究, 2020, 24(22): 3474-3479.
|
[34]
|
卢志华. 羟基磷灰石/羧甲基壳聚糖/明胶复合支架的制备及表征[J]. 中国陶瓷, 2019, 55(1): 26-30.
|
[35]
|
Han, F., Zhou, F., Yang, X., Zhao, J., Zhao, Y. and Yuan, X. (2014) A Pilot Study of Conically Graded Chitosan-Gelatin Hydrogel/PLGA Scaffold with Dual‐Delivery of TGF‐β1 and BMP‐2 for Regeneration of Cartilage-Bone Interface. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103, 1344-1353. https://doi.org/10.1002/jbm.b.33314
|
[36]
|
胡雪岩, 宋克东, 卢延国, 等. 体外构建壳聚糖/β-甘油磷酸钠/明胶仿生梯度支架[J]. 高校化学工程学报, 2019, 33(5): 1133-1140.
|
[37]
|
Vishwanath, V., Pramanik, K. and Biswas, A. (2016) Development of a Novel Glucosamine/Silk Fibroin-Chitosan Blend Porous Scaffold for Cartilage Tissue Engineering Applications. Iranian Polymer Journal, 26, 11-19. https://doi.org/10.1007/s13726-016-0492-y
|
[38]
|
叶鹏, 骆付丽, 刘安平, 等. 缓释左氧氟沙星三维丝素蛋白/壳聚糖/纳米羟基磷灰石复合骨组织工程支架材料的制备与表征[J]. 中国组织工程研究, 2019, 23(14): 2147-2155.
|
[39]
|
Suo, H., Zhang, J., Xu, M. and Wang, L. (2021) Low-Temperature 3D Printing of Collagen and Chitosan Composite for Tissue Engineering. Materials Science and Engineering: C, 123, Article ID: 111963. https://doi.org/10.1016/j.msec.2021.111963
|
[40]
|
Collins, M.N. and Birkinshaw, C. (2013) Hyaluronic Acid Based Scaffolds for Tissue Engineering—A Review. Carbohydrate Polymers, 92, 1262-1279. https://doi.org/10.1016/j.carbpol.2012.10.028
|
[41]
|
Kaczmarek, B., Sionkowska, A. and Osyczka, A.M. (2018) The Application of Chitosan/Collagen/Hyaluronic Acid Sponge Cross-Linked by Dialdehyde Starch Addition as a Matrix for Calcium Phosphate in Situ Precipitation. International Journal of Biological Macromolecules, 107, 470-477. https://doi.org/10.1016/j.ijbiomac.2017.09.017
|
[42]
|
Liao, H.T., Tsai, M., Brahmayya, M. and Chen, J. (2018) Bone Regeneration Using Adipose-Derived Stem Cells in Injectable Thermo-Gelling Hydrogel Scaffold Containing Platelet-Rich Plasma and Biphasic Calcium Phosphate. International Journal of Molecular Sciences, 19, Article 2537. https://doi.org/10.3390/ijms19092537
|
[43]
|
Tentor, F.R., de Oliveira, J.H., Scariot, D.B., Lazarin-Bidóia, D., Bonafé, E.G., Nakamura, C.V., et al. (2017) Scaffolds Based on Chitosan/Pectin Thermosensitive Hydrogels Containing Gold Nanoparticles. International Journal of Biological Macromolecules, 102, 1186-1194. https://doi.org/10.1016/j.ijbiomac.2017.04.106
|
[44]
|
Faikrua, A., Wittaya-areekul, S., Oonkhanond, B. and Viyoch, J. (2012) In Vivo Chondrocyte and Transforming Growth Factor-β1 Delivery Using the Thermosensitive Chitosan/Starch/β-Glycerol Phosphate Hydrogel. Journal of Biomaterials Applications, 28, 175-186. https://doi.org/10.1177/0885328212441847
|
[45]
|
Cordero-Arias, L. and Boccaccini, A.R. (2017) Electrophoretic Deposition of Chondroitin Sulfate-Chitosan/Bioactive Glass Composite Coatings with Multilayer Design. Surface and Coatings Technology, 315, 417-425. https://doi.org/10.1016/j.surfcoat.2017.02.037
|
[46]
|
Martins, A.F., Vlcek, J., Wigmosta, T., Hedayati, M., Reynolds, M.M., Popat, K.C., et al. (2020) Chitosan/Iota-Carrageenan and Chitosan/Pectin Polyelectrolyte Multilayer Scaffolds with Antiadhesive and Bactericidal Properties. Applied Surface Science, 502, Article ID: 144282. https://doi.org/10.1016/j.apsusc.2019.144282
|
[47]
|
Patel, D.K., Dutta, S.D., Hexiu, J., Ganguly, K. and Lim, K. (2022) 3D-Printable Chitosan/Silk Fibroin/Cellulose Nanoparticle Scaffolds for Bone Regeneration via M2 Macrophage Polarization. Carbohydrate Polymers, 281, Article ID: 119077. https://doi.org/10.1016/j.carbpol.2021.119077
|
[48]
|
徐飞. 壳聚糖微球支架用于骨组织工程的基础研究[D]: [博士学位论文]. 武汉: 武汉大学, 2014.
|
[49]
|
麦展华. 负载TGF-β1和BMP-2壳聚糖微球复合生物材料颌骨支架的构建[D]: [硕士学位论文]. 深圳: 深圳大学, 2019.
|
[50]
|
刘其凤, 任慧霞. 壳聚糖膜特性及其应用[J]. 中国现代应用药学, 2004, 21(S2): 23-25.
|
[51]
|
Acevedo, C.A., Olguín, Y., Briceño, M., Forero, J.C., Osses, N., Díaz-Calderón, P., et al. (2019) Design of a Biodegradable UV-Irradiated Gelatin-Chitosan/Nanocomposed Membrane with Osteogenic Ability for Application in Bone Regeneration. Materials Science and Engineering: C, 99, 875-886. https://doi.org/10.1016/j.msec.2019.01.135
|
[52]
|
Jayash, S.N., Hashim, N.M., Misran, M., Ibrahim, N., AL-Namnam, N.M. and Baharuddin, N.A. (2021) Analysis on Efficacy of Chitosan-Based Gel on Bone Quality and Quantity. Frontiers in Materials, 8, Article 640950. https://doi.org/10.3389/fmats.2021.640950
|
[53]
|
Bakopoulou, A., Georgopoulou, Α., Grivas, I., Bekiari, C., Prymak, O., Loza, Κ., et al. (2019) Dental Pulp Stem Cells in Chitosan/Gelatin Scaffolds for Enhanced Orofacial Bone Regeneration. Dental Materials, 35, 310-327. https://doi.org/10.1016/j.dental.2018.11.025
|
[54]
|
Tao, O., Wu, D.T., Pham, H.M., Pandey, N. and Tran, S.D. (2019) Nanomaterials in Craniofacial Tissue Regeneration: A Review. Applied Sciences, 9, Article 317. https://doi.org/10.3390/app9020317
|
[55]
|
Zhou, T., Sui, B., Mo, X. and Sun, J. (2017) Multifunctional and Biomimetic Fish Collagen/Bioactive Glass Nanofibers: Fabrication, Antibacterial Activity and Inducing Skin Regeneration in Vitro and in Vivo. International Journal of Nanomedicine, 12, 3495-3507. https://doi.org/10.2147/ijn.s132459
|
[56]
|
Wang, J., Wang, L., Zhou, Z., Lai, H., Xu, P., Liao, L., et al. (2016) Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers, 8, Article 115. https://doi.org/10.3390/polym8040115
|
[57]
|
Barreras, U.S., Méndez, F.T., Martínez, R.E.M., Valencia, C.S., Rodríguez, P.R.M. and Rodríguez, J.P.L. (2016) Chitosan Nanoparticles Enhance the Antibacterial Activity of Chlorhexidine in Collagen Membranes Used for Periapical Guided Tissue Regeneration. Materials Science and Engineering: C, 58, 1182-1187. https://doi.org/10.1016/j.msec.2015.09.085
|