[1]
|
Fang, Y., Gao, S., Wang, X., Cao, Y., Lu, J., Chen, S., et al. (2020) Programmed Cell Deaths and Potential Crosstalk with Blood-Brain Barrier Dysfunction after Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 14, Article 68. https://doi.org/10.3389/fncel.2020.00068
|
[2]
|
Kang, M. and Yao, Y. (2019) Oligodendrocytes in Intracerebral Hemorrhage. CNS Neuroscience & Therapeutics, 25, 1075-1084. https://doi.org/10.1111/cns.13193
|
[3]
|
Shen, D., Wu, W., Liu, J., Lan, T., Xiao, Z., Gai, K., et al. (2022) Ferroptosis in Oligodendrocyte Progenitor Cells Mediates White Matter Injury after Hemorrhagic Stroke. Cell Death & Disease, 13, Article No. 259. https://doi.org/10.1038/s41419-022-04712-0
|
[4]
|
Schrag, M. and Kirshner, H. (2020) Management of Intracerebral Hemorrhage. Journal of the American College of Cardiology, 75, 1819-1831. https://doi.org/10.1016/j.jacc.2019.10.066
|
[5]
|
Pan, F., Xu, W., Ding, J. and Wang, C. (2023) Elucidating the Progress and Impact of Ferroptosis in Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 16, Article 1067570. https://doi.org/10.3389/fncel.2022.1067570
|
[6]
|
Morris-Blanco, K.C., Chokkalla, A.K., Arruri, V., Jeong, S., Probelsky, S.M. and Vemuganti, R. (2022) Epigenetic Mechanisms and Potential Therapeutic Targets in Stroke. Journal of Cerebral Blood Flow & Metabolism, 42, 2000-2016. https://doi.org/10.1177/0271678x221116192
|
[7]
|
Feinberg, A.P. (2008) Epigenetics at the Epicenter of Modern Medicine. JAMA, 299, 1345-1350. https://doi.org/10.1001/jama.299.11.1345
|
[8]
|
Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.cd-21-1059
|
[9]
|
Moise-Silverman, J. and Silverman, L.A. (2022) A Review of the Genetics and Epigenetics of Central Precocious Puberty. Frontiers in Endocrinology, 13, Article 1029137. https://doi.org/10.3389/fendo.2022.1029137
|
[10]
|
Waddington, C.H. (2011) The Epigenotype. International Journal of Epidemiology, 41, 10-13. https://doi.org/10.1093/ije/dyr184
|
[11]
|
Moore, L.D., Le, T. and Fan, G. (2012) DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38, 23-38. https://doi.org/10.1038/npp.2012.112
|
[12]
|
张淼 杨, 贾岩龙, 等. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30.
|
[13]
|
Zhao, M., Xu, T., Lei, J., Ji, B. and Gao, Q. (2022) Unveiling the Role of DNA Methylation in Vascular CACNA1C Tissue-Specific Expression. Frontiers in Cardiovascular Medicine, 9, Article 872977. https://doi.org/10.3389/fcvm.2022.872977
|
[14]
|
Wang, Z., Ma, J., Yue, H., Zhang, Z., Fang, F., Wang, G., et al. (2023) Vascular Smooth Muscle Cells in Intracranial Aneurysms. Microvascular Research, 149, Article ID: 104554. https://doi.org/10.1016/j.mvr.2023.104554
|
[15]
|
Gurung, R., Choong, A.M., Woo, C.C., Foo, R. and Sorokin, V. (2020) Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. International Journal of Molecular Sciences, 21, Article 6334. https://doi.org/10.3390/ijms21176334
|
[16]
|
Liu, R., Leslie, K.L. and Martin, K.A. (2015) Epigenetic Regulation of Smooth Muscle Cell Plasticity. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1849, 448-453. https://doi.org/10.1016/j.bbagrm.2014.06.004
|
[17]
|
Krishna, S.M., Trollope, A.F. and Golledge, J. (2015) The Relevance of Epigenetics to Occlusive Cerebral and Peripheral Arterial Disease. Clinical Science, 128, 537-558. https://doi.org/10.1042/cs20140491
|
[18]
|
Chaurey, V., Block, F., Su, Y., Chiang, P., Botchwey, E., Chou, C., et al. (2012) Nanofiber Size-Dependent Sensitivity of Fibroblast Directionality to the Methodology for Scaffold Alignment. Acta Biomaterialia, 8, 3982-3990. https://doi.org/10.1016/j.actbio.2012.06.041
|
[19]
|
Franco, O.E., Arima, K., Yanagawa, M. and Kawamura, J. (2000) The Usefulness of Power Doppler Ultrasonography for Diagnosing Prostate Cancer: Histological Correlation of Each Biopsy Site. BJU International, 85, 1049-1052. https://doi.org/10.1046/j.1464-410x.2000.00669.x
|
[20]
|
Omaleki, L., Beatson, S.A., Thomrongsuwannakij, T., Blackall, P.J., Buller, N.B., Hair, S.D., et al. (2020) Phase Variation in LatB Associated with a Fatal Pasteurella Multocida Outbreak in Captive Squirrel Gliders. Veterinary Microbiology, 243, Article ID: 108612. https://doi.org/10.1016/j.vetmic.2020.108612
|
[21]
|
Cuschieri, S. and Grech, S. (2021) At-Risk Population for COVID-19: Multimorbidity Characteristics of a European Small Island State. Public Health, 192, 33-36. https://doi.org/10.1016/j.puhe.2020.12.012
|
[22]
|
Kuehner, J.N., Chen, J., Bruggeman, E.C., Wang, F., Li, Y., Xu, C., et al. (2021) 5-Hydroxymethylcytosine Is Dynamically Regulated during Forebrain Organoid Development and Aberrantly Altered in Alzheimer’s Disease. Cell Reports, 35, Article ID: 109042. https://doi.org/10.1016/j.celrep.2021.109042
|
[23]
|
Tang, Y., Han, S., Asakawa, T., Luo, Y., Han, X., Xiao, B., et al. (2016) Effects of Intracerebral Hemorrhage on 5-Hydroxymethylcytosine Modification in Mouse Brains. Neuropsychiatric Disease and Treatment, 12, 617-624. https://doi.org/10.2147/ndt.s97456
|
[24]
|
Gao, Y., Fu, X., Yu, L., Zhang, D., Lu, Z., Cui, K., et al. (2021) DNA Hypomethylation of DOCK1 Leading to High Expression Correlates with Neurologic Deterioration and Poor Function Outcomes after Spontaneous Intracerebral Hemorrhage. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 1186458. https://doi.org/10.1155/2021/1186458
|
[25]
|
Zhang, Y., Long, H., Wang, S., Xiao, W., Xiong, M., Liu, J., et al. (2021) Genome-wide DNA Methylation Pattern in Whole Blood Associated with Primary Intracerebral Hemorrhage. Frontiers in Immunology, 12, Article 702244. https://doi.org/10.3389/fimmu.2021.702244
|
[26]
|
Zhu, J., Wu, D., Zhao, C., Luo, M., Hamdy, R.C., Chua, B.H.L., et al. (2017) Exogenous Adipokine Peptide Resistin Protects against Focal Cerebral Ischemia/reperfusion Injury in Mice. Neurochemical Research, 42, 2949-2957. https://doi.org/10.1007/s11064-017-2326-5
|
[27]
|
Foquet, L., Schafer, C., Minkah, N.K., Alanine, D.G.W., Flannery, E.L., Steel, R.W.J., et al. (2018) Plasmodium Falciparum Liver Stage Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) in Vivo. Frontiers in Immunology, 9, Article 524. https://doi.org/10.3389/fimmu.2018.00524
|
[28]
|
Dulyayangkul, P., Charoenlap, N., Srijaruskul, K., Mongkolsuk, S. and Vattanaviboon, P. (2016) Major Facilitator Superfamily MfsA Contributes to Multidrug Resistance in Emerging Nosocomial Pathogen Stenotrophomonas maltophilia: Table 1. Journal of Antimicrobial Chemotherapy, 71, 2990-2991. https://doi.org/10.1093/jac/dkw233
|
[29]
|
Abid, N., Embola, J., Tryfonos, Z., Bercher, J., Ashton, S.V., Khalil, A., et al. (2020) Regulation of Stanniocalcin‐1 Secretion by BeWo Cells and First Trimester Human Placental Tissue from Normal Pregnancies and Those at Increased Risk of Developing Preeclampsia. The FASEB Journal, 34, 6086-6098. https://doi.org/10.1096/fj.201902426r
|
[30]
|
Lucidarme, J., Comanducci, M., Findlow, J., Gray, S.J., Kaczmarski, E.B., Guiver, M., et al. (2010) Characterization of fHbp, nhba (gna2132), nadA, porA, and Sequence Type in Group B Meningococcal Case Isolates Collected in England and Wales during January 2008 and Potential Coverage of an Investigational Group B Meningococcal Vaccine. Clinical and Vaccine Immunology, 17, 919-929. https://doi.org/10.1128/cvi.00027-10
|
[31]
|
El-Mowafi, D., Facharzt, W.M., Lall, C. and Wenger, J. (2004) Laparoscopic Supracervical Hysterectomy versus Laparoscopic-Assisted Vaginal Hysterectomy. The Journal of the American Association of Gynecologic Laparoscopists, 11, 175-180. https://doi.org/10.1016/s1074-3804(05)60194-6
|
[32]
|
Atik, Y.T., Cimen, H.I., Gul, D., Arslan, S., Kose, O. and Halis, F. (2020) Are the Preoperative Neutrophil/Lymphocyte Ratio and Platelet/Lymphocyte Ratio Predictive for Lamina Propria Invasion in Aging Patients? The Aging Male, 23, 1528-1532. https://doi.org/10.1080/13685538.2020.1847068
|
[33]
|
Wahl, M. (1985) The Recolonization Potential of Metridium Senile in an Area Previously Depopulated by Oxygen Deficiency. Oecologia, 67, 255-259. https://doi.org/10.1007/bf00384295
|
[34]
|
Tropberger, P. and Schneider, R. (2013) Scratching the (Lateral) Surface of Chromatin Regulation by Histone Modifications. Nature Structural & Molecular Biology, 20, 657-661. https://doi.org/10.1038/nsmb.2581
|
[35]
|
Li, D., Yang, Y., Wang, S., He, X., Liu, M., Bai, B., et al. (2021) Role of Acetylation in Doxorubicin-Induced Cardiotoxicity. Redox Biology, 46, Article ID: 102089. https://doi.org/10.1016/j.redox.2021.102089
|
[36]
|
Li, X., Zhang, J., Li, D., He, C., He, K., Xue, T., et al. (2021) Astrocytic ApoE Reprograms Neuronal Cholesterol Metabolism and Histone-Acetylation-Mediated Memory. Neuron, 109, 957-970.e8. https://doi.org/10.1016/j.neuron.2021.01.005
|
[37]
|
Nishio, T., Inoue, T., Takamatsu, Y., Mishima, T., Takamura, H., Soma, K., et al. (2024) Epigenetic Modification of Histone Acetylation in the Sensorimotor Cortex after Intracerebral Hemorrhage. Biomedical Research, 45, 1-11. https://doi.org/10.2220/biomedres.45.1
|
[38]
|
St. Pierre, R., Collings, C.K., Samé Guerra, D.D., Widmer, C.J., Bolonduro, O., Mashtalir, N., et al. (2022) SMARCE1 Deficiency Generates a Targetable mSWI/SNF Dependency in Clear Cell Meningioma. Nature Genetics, 54, 861-873. https://doi.org/10.1038/s41588-022-01077-0
|
[39]
|
Rana, U., Liu, Z., Kumar, S.N., Zhao, B., Hu, W., Bordas, M., et al. (2016) Nogo-B Receptor Deficiency Causes Cerebral Vasculature Defects during Embryonic Development in Mice. Developmental Biology, 410, 190-201. https://doi.org/10.1016/j.ydbio.2015.12.023
|
[40]
|
Park, E.J., Grabińska, K.A., Guan, Z. and Sessa, W.C. (2016) NgBR Is Essential for Endothelial Cell Glycosylation and Vascular Development. EMBO Reports, 17, 167-177. https://doi.org/10.15252/embr.201540789
|
[41]
|
Fang, Z., Sun, X., Wang, X., Ma, J., Palaia, T., Rana, U., et al. (2022) NOGOB Receptor Deficiency Increases Cerebrovascular Permeability and Hemorrhage via Impairing Histone Acetylation-Mediated CCM1/2 Expression. Journal of Clinical Investigation, 132, e151382. https://doi.org/10.1172/jci151382
|
[42]
|
Maejima, H., Kitahara, M., Takamatsu, Y., Mani, H. and Inoue, T. (2021) Effects of Exercise and Pharmacological Inhibition of Histone Deacetylases (HDACs) on Epigenetic Regulations and Gene Expressions Crucial for Neuronal Plasticity in the Motor Cortex. Brain Research, 1751, Article ID: 147191. https://doi.org/10.1016/j.brainres.2020.147191
|
[43]
|
Seidel, C., Schnekenburger, M., Dicato, M. and Diederich, M. (2015) Histone Deacetylase 6 in Health and Disease. Epigenomics, 7, 103-118. https://doi.org/10.2217/epi.14.69
|
[44]
|
Dan Wei,, Gao, N., Li, L., Zhu, J., Diao, L., Huang, J., et al. (2017) Α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons. Cerebral Cortex, 28, 3332-3346. https://doi.org/10.1093/cercor/bhx225
|
[45]
|
Peng, C., Gong, X., Hu, Z., Chen, C. and Jiang, Z. (2023) Selective HDAC6 Inhibitor Tuba Offers Neuroprotection after Intracerebral Hemorrhage via Inhibiting Neuronal Apoptosis. PeerJ, 11, e15293. https://doi.org/10.7717/peerj.15293
|
[46]
|
Peng, C., Wang, Y., Hu, Z. and Chen, C. (2023) Selective hdac6 Inhibition Protects against Blood-Brain Barrier Dysfunction after Intracerebral Hemorrhage. CNS Neuroscience & Therapeutics, 30, e14429. https://doi.org/10.1111/cns.14429
|
[47]
|
Yang, Q., Li, S., Zhou, Z., Fu, M., Yang, X., Hao, K., et al. (2020) HDAC6 Inhibitor Cay10603 Inhibits High Glucose-Induced Oxidative Stress, Inflammation and Apoptosis in Retinal Pigment Epithelial Cells via Regulating NF-κB and NLRP3 Inflammasome Pathway. General physiology and biophysics, 39, 169-177. https://doi.org/10.4149/gpb_2019058
|
[48]
|
Wang, M., Zhou, C., Yu, L., Kong, D., Ma, W., Lv, B., et al. (2022) Upregulation of MDH1 Acetylation by HDAC6 Inhibition Protects against Oxidative Stress-Derived Neuronal Apoptosis Following Intracerebral Hemorrhage. Cellular and Molecular Life Sciences, 79, Article No. 356. https://doi.org/10.1007/s00018-022-04341-y
|