DNA甲基化和组蛋白乙酰化在脑出血发病过程的研究进展
Progress of DNA Methylation and Histone Acetylation in the Pathogenesis of Cerebral Hemorrhage
DOI: 10.12677/acm.2025.1541324, PDF, HTML, XML,   
作者: 刘学进, 卜 磐, 陈天予:赣南医科大学康复学院,江西 赣州;钟文镇:赣南医科大学第三临床学院,江西 赣州;王 丹:赣南医科大学第一临床医学院,江西 赣州
关键词: 表观遗传学DNA甲基化组蛋白乙酰化脑出血Epigenetics DNA Methylation Histone Acetylation Cerebral Hemorrhage
摘要: 脑出血是由于血管破裂引起脑实质出血的一类脑卒中类型,该疾病具有亚州人群高发、发病突然以及较高的致死率、致残率的特点。尽管过去几十年来报道了许多涉及脑出血的信号通路,但由于脑出血的发病机制复杂使得临床上仍缺乏有效的治疗手段。目前,针对脑出血分子机制的前沿进展现已拓展到表观基因组学水平。越来越多的研究表明,DNA甲基化和组蛋白乙酰化在脑出血的病理生理过程中发挥着重要作用,上述两种表观遗传修饰类型可通过参与血管细胞响应环境应激而改变表型和功能。本文主要探讨DNA甲基化和组蛋白乙酰化改变与脑出血发病过程之间的联系,试图通过总结以往的研究进展的方式进一步明确其对脑出血的发生、发展与损伤修复的影响,从而为脑出血的临床治疗提供理论基础和一些新的思路。
Abstract: Cerebral hemorrhage is a type of stroke in which the brain parenchyma bleeds due to rupture of a blood vessel, and the disease is characterized by a high prevalence in subnational populations, sudden onset, and high rates of mortality and disability. Although many signaling pathways involved in cerebral hemorrhage have been reported in the past decades, the complexity of the pathogenesis of cerebral hemorrhage has led to a lack of effective therapeutic tools in clinical practice. Currently, cutting-edge advances in the molecular mechanisms of cerebral hemorrhage have now expanded to the epigenomic level. More and more studies have shown that DNA methylation and histone acetylation play important roles in the pathophysiology of cerebral hemorrhage, and that these two types of epigenetic modifications can alter the phenotype and function of vascular cells in response to environmental stresses. In this paper, we focus on the connection between DNA methylation and histone acetylation and the pathogenesis of cerebral hemorrhage, and try to further clarify their effects on the occurrence, development and damage repair of cerebral hemorrhage by summarizing the progress of previous studies, so as to provide a theoretical basis and some new ideas for the clinical treatment of cerebral hemorrhage.
文章引用:刘学进, 钟文镇, 王丹, 卜磐, 陈天予. DNA甲基化和组蛋白乙酰化在脑出血发病过程的研究进展[J]. 临床医学进展, 2025, 15(4): 3509-3518. https://doi.org/10.12677/acm.2025.1541324

1. 前言

出血性脑卒中是因脑部血管突然破裂,血液流向不同的脑区,导致脑组织受损的急性脑血管疾病[1]。受到脑内血管分布特点的影响,该疾病在基底节和丘脑发病率较高,此外,鉴于上述脑区含有较多的白质纤维,故出血带来的危害比较大[2]。研究报道,脑出血在总的卒中类型中发病率仅为10%~30%,然而其在整个脑卒中的死亡率却高达50% [3] [4]。目前,除了众所周知的降压治疗、支持性治疗和预防并发症外,出血性卒中的主要治疗方案有药物治疗和手术治疗等,然而,现有的治疗方案疗效并不显著[5]。因此寻求更为安全有效的治疗手段具有十分重要的临床意义。最近一些研究显示,脑出血与表观遗传学改变之间存在密切的联系,特别是DNA甲基化与组蛋白乙酰化的调控作用。上述两种表观修饰类型在脑出血的病理发展过程中发挥重大作用[6]

表观遗传学是指在不改变DNA序列的前提下,改变个体遗传表达的一种机制[7]。虽然表观遗传学的概念最初是通过DNA甲基化来描述的,但随着对表观遗传学研究的不断深入,发现还包括组蛋白乙酰化等其他修饰方式。DNA甲基化是基因组DNA的共价复制后修饰,起抑制基因表达的效用,在多种生物学过程中发挥极其重要的作用,例如发育和肿瘤抑制等[8] [9]。研究表明,表观遗传学参与了神经发育的若干过程,如神经干细胞的维持、神经生长和神经系统相关疾病等[10]。因此,本综述探讨表观遗传学改变与脑出血之间的联系,以明确其对脑出血这一疾病的发生、发展与恢复的影响。主要归纳DNA甲基化、组蛋白乙酰化在脑出血中的作用机制,以便进一步明确脑出血的治疗靶点,从而为脑出血的治疗提供一种新的思路与契机。

2. DNA甲基化的概述

DNA甲基化作为一种非常稳定的修饰,当胞嘧啶(C)与鸟嘌呤(G)相邻时,甲基化是指在胞嘧啶(C)的五号位上添加一个甲基基团。因为C与G相连具有特殊的生物学意义,故特将相邻的C与G命名为CpG,而p代表两个碱基之间夹着的磷酸基[11] [12]。以往研究表明参与DNA甲基化维持机制的酶主要是DNA甲基转移酶(DNA Methyltransferase, DNMT),即DNMT家族,该家族主要包含三个成员——DNMT1,DNMT2,DNMT3,如图1图2所示,上述成员主要负责将甲基基团添加到DNA分子中的胞嘧啶(C)碱基上形成甲基化C (5mC)。5mC可以被一类称为甲基化转移酶的TET氧化酶转化成5hmC,而5hmC的存在被认为在基因表达的调控中扮演着重要的角色[13]

Figure 1. Mechanism of action of DNMT1 and DNMT2 for DNA methylation

1. DNMT1、DNMT2进行DNA甲基化的作用机制

Figure 2. Mechanism of action of DNMT3a and DNMT3b for DNA methylation

2. DNMT3a、DNMT3b进行DNA甲基化的作用机制

3. DNA甲基化与脑出血的联系

3.1. DNA甲基化在脑出血发生中的作用

脑出血的发生与血管壁的结构稳定性密切相关。近期研究表明,DNA甲基化在血管病理重塑和血栓形成中发挥关键作用,其异常可能通过多途径增加脑出血风险[13]。据报道,血管平滑肌细胞(vascular smooth muscle cells, VSMCs)的收缩、增殖及细胞外基质(extracellular matrix, ECM)合成能力是维持血管壁弹性、机械稳定性和抗破裂性的关键生物学基础[14]。研究表明,DNA甲基化作为重要的表观遗传调控机制,通过修饰特定基因启动子区域的CpG岛甲基化状态,可显著影响VSMCs的功能表型。关键功能基因的甲基化模式发生异常时(如病理性的高甲基化或低甲基化),可能通过以下途径导致血管壁稳态失衡[15]。Liu等人报道了新内膜或冠状动脉粥样硬化斑块内TET2表达的显著降低。这种减少导致5-hmC富集减少,并导致MYH11、SRF和MYOCD高甲基化,随后影响VSMC分化的结果,并最终导致血管重塑恶化[16]。此外,胶原蛋白(如COL3A1)和弹性蛋白合成基因的异常高甲基化会减少ECM分泌,降低血管壁机械强度[17]。综上,DNA甲基化通过调控VSMCs收缩相关基因(如MYH11)及ECM合成基因(如COL3A1)的表观遗传沉默,直接削弱血管壁的机械稳定性;而TET2介导的主动去甲基化通路失调(如斑块内TET2表达降低)可进一步加剧血管病理性重塑。这些机制共同揭示了表观遗传失衡在脑出血发生中的核心作用,为靶向DNA甲基化修饰的干预策略提供了理论依据。

3.2. DNA甲基化在脑出血发展过程中的作用

脑出血发病后会引发剧烈炎症反应,炎症细胞浸润、炎症因子释放加重脑组织损伤,影响患者预后。从分子机制看,DNA甲基化精细调控炎症相关基因表达,部分促炎因子基因(如IL-6、TNF-α)低甲基化会使其表达上调,增加促炎因子合成与释放。增多的促炎因子破坏血脑屏障,引发脑水肿,加重病情[18] [19]。Omaleki等人的研究详细阐述了在脑出血后炎症反应进程中,DNA甲基化在基因表达调控方面的动态变化[20]。Cuschieri等人则通过动物实验和临床样本分析,进一步验证了促炎因子基因低甲基化与炎症反应加剧、病情恶化之间的密切联系[21]。研究显示,5hmC在诸如阿尔兹海默病,脑出血等神经系统和非神经系统类的多种疾病中发挥关键作用[22]。Tang等人最主要的发现是脑出血后24~72 h之间,5hmC的整体水平呈下降趋势[23]。Gao等人的研究指出,脑出血(ICH)后由于DOCK1的DNA甲基化抑制促使DOCK1表达量增多,从而加重了神经系统的恶化、功能减退等不良结果[24]。Zhang等人研究首次报道ICH患者全血中DNA甲基化会发生改变,ICH患者相比正常人而会呈现出一个DNA甲基化增高的趋势,而这种DNA甲基化增高似乎与炎症通路相关,但是该研究具体机制不清楚[25]。基于现有的研究,证据指示ICH损伤后5hmC的整体水平呈现迅速下降的趋势。从基因表达的角度考虑,ICH后Bdnf和Tgf-β1等关键基因表达下调,符合5hmC修饰可以调控基因转录这一事实。进而说明5hmC在脑卒中的发生机制中发挥的关键作用[26]。现有研究表明,ICH损伤后5hmC整体水平迅速下降,但各项研究存在差异。样本来源不同(脑组织或全血样本)、研究方法(检测技术和实验条件)不同,以及患者个体差异(年龄、基础疾病、出血部位和出血量等),都可能影响5hmC水平检测结果和变化趋势[27]-[29]。未来研究应考虑这些因素,深入探究5hmC在脑出血后下降的原因、机制及研究结果差异的来源,以全面揭示其在脑出血病理过程中的作用。这些研究成果为深入理解脑出血的病理生理机制提供了重要依据,也为开发针对脑出血的新型治疗策略指明了方向。如表1总结了DNA甲基化调控脑出血的分子机制。

Table 1. Mechanisms by which DNA methylation regulates cerebral hemorrhage

1. DNA甲基化调控脑出血的机制

研究对象

5mC表达

5hmC表达

相关机制分子

DNA甲基化

参考文献

C57雄性

上调

下调

Akt2、Pdpk、Vegf

DNA低甲基化

[23]

ICH患者

/

/

DOCK1

DOCK1 DNA低甲基化

[24]

ICH患者

/

/

炎症因子

DNA甲基化增高

[25]

3.3. DNA甲基化与脑出血预后的关系

多项研究显示,一些基因高甲基化与脑出血患者较大血肿体积相关。血肿体积影响患者预后,大血肿压迫脑组织引发继发性损伤。比如,MMPs基因甲基化受关注,MMPs能降解细胞外基质,脑出血后其异常表达破坏血脑屏障、加重脑水肿。MMPs基因启动子高甲基化抑制其表达,却会使细胞外基质代谢失衡,加重脑损伤,进而关联大血肿体积[30]。此外,特定基因高甲基化和神经功能缺损严重程度有关。神经功能缺损影响患者生活质量和康复,以Bax基因举例,其启动子高甲基化抑制表达,在脑出血后打破细胞内凋亡信号平衡,增加神经细胞凋亡,加重神经功能缺损[31]。基于这些发现,特定基因的甲基化水平有望成为评估脑出血患者病情的潜在生物标志物。通过检测患者血液或脑组织中相关基因的甲基化状态,能够更准确地判断病情严重程度,为制定更为合理的治疗策略提供重要依据。

脑出血后神经功能恢复对患者康复至关重要,DNA甲基化在此过程中起重要调控作用。研究表明,与神经再生、修复相关基因的甲基化状态影响脑出血后的神经功能恢复。脑源性神经营养因子(BDNF)对神经细胞的存活、生长等意义重大。BDNF基因低甲基化利于其表达,能促进神经细胞存活与再生。脑出血后,低甲基化使BDNF基因表达增加,激活PI3K/Akt通路,抑制神经细胞凋亡,还促进轴突生长和突触形成,助力神经功能恢复。所以,检测BDNF基因甲基化水平可预测患者神经功能恢复情况。BDNF基因低甲基化的患者,神经功能恢复可能较好,康复训练可更有强度和复杂性;高甲基化的患者,则需积极干预,如调节DNA甲基化水平或补充外源性BDNF,改善预后[32]。除BDNF外,神经生长因子(NGF)、胶质细胞源性神经营养因子(GDNF)等基因的甲基化状态也可能影响脑出血后的神经功能恢复[33]。深入研究这些基因的甲基化调控机制,有助于更精准地预测神经功能恢复情况,制定个性化康复方案。

4. 组蛋白乙酰化概述

核小体作为染色质的基本单位,主要由DNA和组蛋白八聚体构成。其中组蛋白是一种富含赖氨酸和精氨酸残基的带正电荷的碱性蛋白质,包含5种类型(H1、H2A、H2B、H3、H4),它主要的功能就是将带负电荷的DNA高度螺旋[34]。组蛋白乙酰化作为一种高度动态的修饰类型,主要受组蛋白乙酰转移酶(HATs)和组蛋白去乙酰转移酶(HDACs)两种酶的调节。有研究表明,在基因表达中发挥关键作用的是表观遗传学当中的赖氨酸残基的组蛋白乙酰化[35]。组蛋白乙酰化在H2A、H2B、H3以及H4上均可发生,但是在大脑中,研究者对于H3的乙酰化描述的最为详细。组蛋白乙酰化最有可能发生于N端尾部的9、14、18和23位点的赖氨酸残基上,以及H4的5、8、12和16位点的赖氨酸残基[36]。如图3所示。

Figure 3. Mechanism of action of HAT and HDAC undergoing acetylation and deacetylation

3. HAT、HDAC进行乙酰化和去乙酰化的作用机制

5. 组蛋白乙酰化与脑出血之间的联系

近几年,研究者开始关注组蛋白乙酰化在脑出血中的调控作用,Nishio等研究者通过构建大鼠脑出血模型,在造模成功2周后对脑出血模型组进行观察,并分析大鼠双侧感觉运动皮层中乙酰化组蛋白的数量以及神经可塑性关键神经营养因子的mRNA表达。结果显示,脑出血组的感觉运动功能在出血后2周内低于假手术组,并发现其主要的机制是脑出血后上调了对侧和逆侧皮层中组蛋白H3和H4的乙酰化水平。该研究一定程度上呈现了脑出血与神经可塑性相关的基因表达改变的表观遗传平台[37]

5.1. NgBR与脑出血

浆膜蛋白-4B受体(Nogo-breceptor, NgBR)是神经轴突生长抑制因子B (neurite outgrowth in hibitor, Nogo-B)的受体。相关研究表明,NgBR在小鼠和斑马鱼的胚胎和血管发育发挥重要的作用[38]。Rana等人通过敲除小鼠NgBR受体,发现Nogo-B和VEGF刺激内皮细胞迁移显著下降,同时CCM1和CCM2蛋白的表达水平也有所降低。此外,该研究人员将人类大脑海绵状血管畸形患者组织切片进行了免疫荧光染色,患者组织切片中CD31阳性内皮细胞NgBR表达水平显著降低。NgBR缺失会减弱丝/苏氨酸蛋白激酶的磷酸化水平,从而降低Nogo-B和VEGF刺激的内皮细胞的迁移[39]。Park等人的研究表明,当内皮细胞中缺失NgBR受体时会导致小鼠胚胎致死,其机制是通过抑制关键内皮蛋白(包括VEGFR2,VE-cadherin和CD31)的糖基化以减少细胞增殖并促进细胞死[40]。Fang等研究者报道NgBR的缺失导致脑血管病变与其调控CCM1/2表达密切相关,NgBR缺失会下调乙酰转移酶HBO1的表达水平以及组蛋白乙酰化[41]。如图4所示。

Figure 4. NgBR signaling pathway. Note: Drawn by Figdraw

4. NgBR信号通路。注:由Figdraw绘制

5.2. HDAC与脑出血

组蛋白去乙酰化酶(HDACs)在组蛋白乙酰化的稳态以及调节基本细胞活动(如转录)中发挥关键作用。Maejima等研究者测试了HDAC抑制剂对HDAC的活性,结果显示HDAC抑制剂可以降低HDAC总体的活性,增强组蛋白(特别是组蛋白H4)乙酰化水平,使得运动皮质中对神经可塑性至关重要的IEGs(c-fos和Arc)和神经营养因子(BDNF和NT-4)的转录水平上调。故HDAC抑制剂的表观遗传调控可作为治疗中枢神经系统疾病的手段[42]

HDAC6可以同HSP90、NF-κB、乙酰化微管蛋白(α-Ac-Tub)等蛋白相互作用,进而调控这些蛋白的乙酰化水平,然而这些蛋白在细胞迁移、存活、氧化应激和炎症等过程中发挥关键作用[43]。脑出血后伴随轴突损伤,微管作为细胞骨架的组成部分,参与轴突运输、修复等多种途径。轴突变性的重要因素包括微管解体,α-Ac-Tub作为微管的稳定性物质,在促进轴突生长、再生和运动中扮演着极其重要的作用[44]。HDAC6和α-微管蛋白乙酰转移酶-1 (MEC17;乙酰化作用)具有调控α-蛋白的乙酰化的功能。Peng等研究者发现在脑出血的早期阶段HDAC6表达上调,而乙酰化α-微管明显减少。使用HDCA6抑制剂可以使得乙酰化α-微管蛋白表达上调,从而有效改善神经功能障碍、组织学损伤和体内同侧脑水肿。该研究结果表明HDAC6的药物抑制可能作为脑出血治疗的一种新颖且有前途的治疗靶点[45]。另外,有研究发现HDAC6也调控脑出血后血脑屏障破坏[46]。此外,组蛋白去乙酰化酶6 (HDAC6,乙酰化)在氧化应激中扮演极其重要的角色,使用HDAC6抑制剂可以改善脑卒中小鼠模型的脑损伤,主要是通过减轻氧化应激、抗凋亡等发挥神经保护性作用的[47]。在Wang等人的研究中,报道了HDAC6敲除小鼠可以通过抗氧化应激和神经元凋亡来发挥神经保护性作用,减轻了脑出血后的脑损伤。随后研究者对其机制进行了探究,发现HDAC6改善脑出血后脑损伤的方式是HDAC6结合并介导苹果酸脱氢酶1(MDH1)在赖氨酸残基121和298位上的乙酰化,使得MDH1乙酰化增强[48]。这些研究均显示出HDAC在脑出血中发挥的关键作用,这可能为组蛋白乙酰化调控脑出血的凋亡、自噬、线粒体功能障碍以及血脑屏障等提供新的实验方向和理论依据。

6. 总结

探索脑出血后DNA甲基化以及组蛋白乙酰化水平的变化,是否可以作为脑出血损伤分子标志物,对临床神经病学和神经外科学具有重要意义,并且能为创建急性血管性脑损伤的诊断和预后监测技术奠定基础。但是目前的研究也存在一些局限性:首先当前的认识与研究仅限于其影响水平,需要进一步的探索其产生机制。其次,关于表观遗传学表达脑出血发生、发展以及恢复的研究比较少,后期还需要进行高质量大规模的研究,以便进一步明确其机制。最后,目前的研究只停留于基础研究,还需要将现有的研究与临床结合起来。虽然目前的研究仍有诸多不足,但表观遗传学的靶向治疗在脑出血的治疗的潜力和意义不容忽视。预计在该领域开发的新策略和治疗方法具有巨大的前景,并有可能显著改善患者的生存率和功能障碍状况。因此,深入研究表观遗传学的产生、储存、作用机制等显得十分必要,值得广大学者深入探索,并有望在未来做出重要贡献。

参考文献

[1] Fang, Y., Gao, S., Wang, X., Cao, Y., Lu, J., Chen, S., et al. (2020) Programmed Cell Deaths and Potential Crosstalk with Blood-Brain Barrier Dysfunction after Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 14, Article 68.
https://doi.org/10.3389/fncel.2020.00068
[2] Kang, M. and Yao, Y. (2019) Oligodendrocytes in Intracerebral Hemorrhage. CNS Neuroscience & Therapeutics, 25, 1075-1084.
https://doi.org/10.1111/cns.13193
[3] Shen, D., Wu, W., Liu, J., Lan, T., Xiao, Z., Gai, K., et al. (2022) Ferroptosis in Oligodendrocyte Progenitor Cells Mediates White Matter Injury after Hemorrhagic Stroke. Cell Death & Disease, 13, Article No. 259.
https://doi.org/10.1038/s41419-022-04712-0
[4] Schrag, M. and Kirshner, H. (2020) Management of Intracerebral Hemorrhage. Journal of the American College of Cardiology, 75, 1819-1831.
https://doi.org/10.1016/j.jacc.2019.10.066
[5] Pan, F., Xu, W., Ding, J. and Wang, C. (2023) Elucidating the Progress and Impact of Ferroptosis in Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 16, Article 1067570.
https://doi.org/10.3389/fncel.2022.1067570
[6] Morris-Blanco, K.C., Chokkalla, A.K., Arruri, V., Jeong, S., Probelsky, S.M. and Vemuganti, R. (2022) Epigenetic Mechanisms and Potential Therapeutic Targets in Stroke. Journal of Cerebral Blood Flow & Metabolism, 42, 2000-2016.
https://doi.org/10.1177/0271678x221116192
[7] Feinberg, A.P. (2008) Epigenetics at the Epicenter of Modern Medicine. JAMA, 299, 1345-1350.
https://doi.org/10.1001/jama.299.11.1345
[8] Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46.
https://doi.org/10.1158/2159-8290.cd-21-1059
[9] Moise-Silverman, J. and Silverman, L.A. (2022) A Review of the Genetics and Epigenetics of Central Precocious Puberty. Frontiers in Endocrinology, 13, Article 1029137.
https://doi.org/10.3389/fendo.2022.1029137
[10] Waddington, C.H. (2011) The Epigenotype. International Journal of Epidemiology, 41, 10-13.
https://doi.org/10.1093/ije/dyr184
[11] Moore, L.D., Le, T. and Fan, G. (2012) DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38, 23-38.
https://doi.org/10.1038/npp.2012.112
[12] 张淼 杨, 贾岩龙, 等. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30.
[13] Zhao, M., Xu, T., Lei, J., Ji, B. and Gao, Q. (2022) Unveiling the Role of DNA Methylation in Vascular CACNA1C Tissue-Specific Expression. Frontiers in Cardiovascular Medicine, 9, Article 872977.
https://doi.org/10.3389/fcvm.2022.872977
[14] Wang, Z., Ma, J., Yue, H., Zhang, Z., Fang, F., Wang, G., et al. (2023) Vascular Smooth Muscle Cells in Intracranial Aneurysms. Microvascular Research, 149, Article ID: 104554.
https://doi.org/10.1016/j.mvr.2023.104554
[15] Gurung, R., Choong, A.M., Woo, C.C., Foo, R. and Sorokin, V. (2020) Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. International Journal of Molecular Sciences, 21, Article 6334.
https://doi.org/10.3390/ijms21176334
[16] Liu, R., Leslie, K.L. and Martin, K.A. (2015) Epigenetic Regulation of Smooth Muscle Cell Plasticity. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1849, 448-453.
https://doi.org/10.1016/j.bbagrm.2014.06.004
[17] Krishna, S.M., Trollope, A.F. and Golledge, J. (2015) The Relevance of Epigenetics to Occlusive Cerebral and Peripheral Arterial Disease. Clinical Science, 128, 537-558.
https://doi.org/10.1042/cs20140491
[18] Chaurey, V., Block, F., Su, Y., Chiang, P., Botchwey, E., Chou, C., et al. (2012) Nanofiber Size-Dependent Sensitivity of Fibroblast Directionality to the Methodology for Scaffold Alignment. Acta Biomaterialia, 8, 3982-3990.
https://doi.org/10.1016/j.actbio.2012.06.041
[19] Franco, O.E., Arima, K., Yanagawa, M. and Kawamura, J. (2000) The Usefulness of Power Doppler Ultrasonography for Diagnosing Prostate Cancer: Histological Correlation of Each Biopsy Site. BJU International, 85, 1049-1052.
https://doi.org/10.1046/j.1464-410x.2000.00669.x
[20] Omaleki, L., Beatson, S.A., Thomrongsuwannakij, T., Blackall, P.J., Buller, N.B., Hair, S.D., et al. (2020) Phase Variation in LatB Associated with a Fatal Pasteurella Multocida Outbreak in Captive Squirrel Gliders. Veterinary Microbiology, 243, Article ID: 108612.
https://doi.org/10.1016/j.vetmic.2020.108612
[21] Cuschieri, S. and Grech, S. (2021) At-Risk Population for COVID-19: Multimorbidity Characteristics of a European Small Island State. Public Health, 192, 33-36.
https://doi.org/10.1016/j.puhe.2020.12.012
[22] Kuehner, J.N., Chen, J., Bruggeman, E.C., Wang, F., Li, Y., Xu, C., et al. (2021) 5-Hydroxymethylcytosine Is Dynamically Regulated during Forebrain Organoid Development and Aberrantly Altered in Alzheimer’s Disease. Cell Reports, 35, Article ID: 109042.
https://doi.org/10.1016/j.celrep.2021.109042
[23] Tang, Y., Han, S., Asakawa, T., Luo, Y., Han, X., Xiao, B., et al. (2016) Effects of Intracerebral Hemorrhage on 5-Hydroxymethylcytosine Modification in Mouse Brains. Neuropsychiatric Disease and Treatment, 12, 617-624.
https://doi.org/10.2147/ndt.s97456
[24] Gao, Y., Fu, X., Yu, L., Zhang, D., Lu, Z., Cui, K., et al. (2021) DNA Hypomethylation of DOCK1 Leading to High Expression Correlates with Neurologic Deterioration and Poor Function Outcomes after Spontaneous Intracerebral Hemorrhage. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 1186458.
https://doi.org/10.1155/2021/1186458
[25] Zhang, Y., Long, H., Wang, S., Xiao, W., Xiong, M., Liu, J., et al. (2021) Genome-wide DNA Methylation Pattern in Whole Blood Associated with Primary Intracerebral Hemorrhage. Frontiers in Immunology, 12, Article 702244.
https://doi.org/10.3389/fimmu.2021.702244
[26] Zhu, J., Wu, D., Zhao, C., Luo, M., Hamdy, R.C., Chua, B.H.L., et al. (2017) Exogenous Adipokine Peptide Resistin Protects against Focal Cerebral Ischemia/reperfusion Injury in Mice. Neurochemical Research, 42, 2949-2957.
https://doi.org/10.1007/s11064-017-2326-5
[27] Foquet, L., Schafer, C., Minkah, N.K., Alanine, D.G.W., Flannery, E.L., Steel, R.W.J., et al. (2018) Plasmodium Falciparum Liver Stage Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) in Vivo. Frontiers in Immunology, 9, Article 524.
https://doi.org/10.3389/fimmu.2018.00524
[28] Dulyayangkul, P., Charoenlap, N., Srijaruskul, K., Mongkolsuk, S. and Vattanaviboon, P. (2016) Major Facilitator Superfamily MfsA Contributes to Multidrug Resistance in Emerging Nosocomial Pathogen Stenotrophomonas maltophilia: Table 1. Journal of Antimicrobial Chemotherapy, 71, 2990-2991.
https://doi.org/10.1093/jac/dkw233
[29] Abid, N., Embola, J., Tryfonos, Z., Bercher, J., Ashton, S.V., Khalil, A., et al. (2020) Regulation of Stanniocalcin‐1 Secretion by BeWo Cells and First Trimester Human Placental Tissue from Normal Pregnancies and Those at Increased Risk of Developing Preeclampsia. The FASEB Journal, 34, 6086-6098.
https://doi.org/10.1096/fj.201902426r
[30] Lucidarme, J., Comanducci, M., Findlow, J., Gray, S.J., Kaczmarski, E.B., Guiver, M., et al. (2010) Characterization of fHbp, nhba (gna2132), nadA, porA, and Sequence Type in Group B Meningococcal Case Isolates Collected in England and Wales during January 2008 and Potential Coverage of an Investigational Group B Meningococcal Vaccine. Clinical and Vaccine Immunology, 17, 919-929.
https://doi.org/10.1128/cvi.00027-10
[31] El-Mowafi, D., Facharzt, W.M., Lall, C. and Wenger, J. (2004) Laparoscopic Supracervical Hysterectomy versus Laparoscopic-Assisted Vaginal Hysterectomy. The Journal of the American Association of Gynecologic Laparoscopists, 11, 175-180.
https://doi.org/10.1016/s1074-3804(05)60194-6
[32] Atik, Y.T., Cimen, H.I., Gul, D., Arslan, S., Kose, O. and Halis, F. (2020) Are the Preoperative Neutrophil/Lymphocyte Ratio and Platelet/Lymphocyte Ratio Predictive for Lamina Propria Invasion in Aging Patients? The Aging Male, 23, 1528-1532.
https://doi.org/10.1080/13685538.2020.1847068
[33] Wahl, M. (1985) The Recolonization Potential of Metridium Senile in an Area Previously Depopulated by Oxygen Deficiency. Oecologia, 67, 255-259.
https://doi.org/10.1007/bf00384295
[34] Tropberger, P. and Schneider, R. (2013) Scratching the (Lateral) Surface of Chromatin Regulation by Histone Modifications. Nature Structural & Molecular Biology, 20, 657-661.
https://doi.org/10.1038/nsmb.2581
[35] Li, D., Yang, Y., Wang, S., He, X., Liu, M., Bai, B., et al. (2021) Role of Acetylation in Doxorubicin-Induced Cardiotoxicity. Redox Biology, 46, Article ID: 102089.
https://doi.org/10.1016/j.redox.2021.102089
[36] Li, X., Zhang, J., Li, D., He, C., He, K., Xue, T., et al. (2021) Astrocytic ApoE Reprograms Neuronal Cholesterol Metabolism and Histone-Acetylation-Mediated Memory. Neuron, 109, 957-970.e8.
https://doi.org/10.1016/j.neuron.2021.01.005
[37] Nishio, T., Inoue, T., Takamatsu, Y., Mishima, T., Takamura, H., Soma, K., et al. (2024) Epigenetic Modification of Histone Acetylation in the Sensorimotor Cortex after Intracerebral Hemorrhage. Biomedical Research, 45, 1-11.
https://doi.org/10.2220/biomedres.45.1
[38] St. Pierre, R., Collings, C.K., Samé Guerra, D.D., Widmer, C.J., Bolonduro, O., Mashtalir, N., et al. (2022) SMARCE1 Deficiency Generates a Targetable mSWI/SNF Dependency in Clear Cell Meningioma. Nature Genetics, 54, 861-873.
https://doi.org/10.1038/s41588-022-01077-0
[39] Rana, U., Liu, Z., Kumar, S.N., Zhao, B., Hu, W., Bordas, M., et al. (2016) Nogo-B Receptor Deficiency Causes Cerebral Vasculature Defects during Embryonic Development in Mice. Developmental Biology, 410, 190-201.
https://doi.org/10.1016/j.ydbio.2015.12.023
[40] Park, E.J., Grabińska, K.A., Guan, Z. and Sessa, W.C. (2016) NgBR Is Essential for Endothelial Cell Glycosylation and Vascular Development. EMBO Reports, 17, 167-177.
https://doi.org/10.15252/embr.201540789
[41] Fang, Z., Sun, X., Wang, X., Ma, J., Palaia, T., Rana, U., et al. (2022) NOGOB Receptor Deficiency Increases Cerebrovascular Permeability and Hemorrhage via Impairing Histone Acetylation-Mediated CCM1/2 Expression. Journal of Clinical Investigation, 132, e151382.
https://doi.org/10.1172/jci151382
[42] Maejima, H., Kitahara, M., Takamatsu, Y., Mani, H. and Inoue, T. (2021) Effects of Exercise and Pharmacological Inhibition of Histone Deacetylases (HDACs) on Epigenetic Regulations and Gene Expressions Crucial for Neuronal Plasticity in the Motor Cortex. Brain Research, 1751, Article ID: 147191.
https://doi.org/10.1016/j.brainres.2020.147191
[43] Seidel, C., Schnekenburger, M., Dicato, M. and Diederich, M. (2015) Histone Deacetylase 6 in Health and Disease. Epigenomics, 7, 103-118.
https://doi.org/10.2217/epi.14.69
[44] Dan Wei,, Gao, N., Li, L., Zhu, J., Diao, L., Huang, J., et al. (2017) Α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons. Cerebral Cortex, 28, 3332-3346.
https://doi.org/10.1093/cercor/bhx225
[45] Peng, C., Gong, X., Hu, Z., Chen, C. and Jiang, Z. (2023) Selective HDAC6 Inhibitor Tuba Offers Neuroprotection after Intracerebral Hemorrhage via Inhibiting Neuronal Apoptosis. PeerJ, 11, e15293.
https://doi.org/10.7717/peerj.15293
[46] Peng, C., Wang, Y., Hu, Z. and Chen, C. (2023) Selective hdac6 Inhibition Protects against Blood-Brain Barrier Dysfunction after Intracerebral Hemorrhage. CNS Neuroscience & Therapeutics, 30, e14429.
https://doi.org/10.1111/cns.14429
[47] Yang, Q., Li, S., Zhou, Z., Fu, M., Yang, X., Hao, K., et al. (2020) HDAC6 Inhibitor Cay10603 Inhibits High Glucose-Induced Oxidative Stress, Inflammation and Apoptosis in Retinal Pigment Epithelial Cells via Regulating NF-κB and NLRP3 Inflammasome Pathway. General physiology and biophysics, 39, 169-177.
https://doi.org/10.4149/gpb_2019058
[48] Wang, M., Zhou, C., Yu, L., Kong, D., Ma, W., Lv, B., et al. (2022) Upregulation of MDH1 Acetylation by HDAC6 Inhibition Protects against Oxidative Stress-Derived Neuronal Apoptosis Following Intracerebral Hemorrhage. Cellular and Molecular Life Sciences, 79, Article No. 356.
https://doi.org/10.1007/s00018-022-04341-y