[1]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article 109119. https://doi.org/10.1016/j.diabres.2021.109119
|
[2]
|
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
|
[3]
|
Chandel, N.S. (2021) Glycolysis. Cold Spring Harbor Perspectives in Biology, 13, a040535. https://doi.org/10.1101/cshperspect.a040535
|
[4]
|
Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annual Review of Cell and Developmental Biology, 27, 441-464. https://doi.org/10.1146/annurev-cellbio-092910-154237
|
[5]
|
Cordani, M., Michetti, F., Zarrabi, A., Zarepour, A., Rumio, C., Strippoli, R., et al. (2024) The Role of Glycolysis in Tumorigenesis: From Biological Aspects to Therapeutic Opportunities. Neoplasia, 58, Article 101076. https://doi.org/10.1016/j.neo.2024.101076
|
[6]
|
Pelicano, H., Martin, D.S., Xu, R. and Huang, P. (2006) Glycolysis Inhibition for Anticancer Treatment. Oncogene, 25, 4633-4646. https://doi.org/10.1038/sj.onc.1209597
|
[7]
|
Liu, Y., Xu, R., Gu, H., Zhang, E., Qu, J., Cao, W., et al. (2021) Metabolic Reprogramming in Macrophage Responses. Biomarker Research, 9, Article No. 1. https://doi.org/10.1186/s40364-020-00251-y
|
[8]
|
Jing, C., Castro-Dopico, T., Richoz, N., Tuong, Z.K., Ferdinand, J.R., Lok, L.S.C., et al. (2020) Macrophage Metabolic Reprogramming Presents a Therapeutic Target in Lupus Nephritis. Proceedings of the National Academy of Sciences, 117, 15160-15171. https://doi.org/10.1073/pnas.2000943117
|
[9]
|
Madai, S., Kilic, P., Schmidt, R.M., Bas-Orth, C., Korff, T., Büttner, M., et al. (2024) Activation of the Hypoxia-Inducible Factor Pathway Protects against Acute Ischemic Stroke by Reprogramming Central Carbon Metabolism. Theranostics, 14, 2856-2880. https://doi.org/10.7150/thno.88223
|
[10]
|
Adler, A., Bennett, P., Chair, S.C., Gregg, E., Venkat Narayan, K.M., Schmidt, M.I., et al. (2021) WITHDRAWN: Reprint of: Classification of Diabetes Mellitus. Diabetes Research and Clinical Practice, Article 108972. https://doi.org/10.1016/j.diabres.2021.108972
|
[11]
|
Rabbani, N., Xue, M. and Thornalley, P.J. (2022) Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis—Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. International Journal of Molecular Sciences, 23, Article 2165. https://doi.org/10.3390/ijms23042165
|
[12]
|
Haythorne, E., Lloyd, M., Walsby-Tickle, J., Tarasov, A.I., Sandbrink, J., Portillo, I., et al. (2022) Altered Glycolysis Triggers Impaired Mitochondrial Metabolism and Mtorc1 Activation in Diabetic β-Cells. Nature Communications, 13, Article No. 6754. https://doi.org/10.1038/s41467-022-34095-x
|
[13]
|
Nichols, C.G. and Remedi, M.S. (2012) The Diabetic β-Cell: Hyperstimulated Vs. Hyperexcited. Diabetes, Obesity and Metabolism, 14, 129-135. https://doi.org/10.1111/j.1463-1326.2012.01655.x
|
[14]
|
Mäkinen, S., Sree, S., Ala-Nisula, T., Kultalahti, H., Koivunen, P. and Koistinen, H.A. (2024) Activation of the Hypoxia-Inducible Factor Pathway by Roxadustat Improves Glucose Metabolism in Human Primary Myotubes from Men. Diabetologia, 67, 1943-1954. https://doi.org/10.1007/s00125-024-06185-6
|
[15]
|
Murao, N., Yokoi, N., Takahashi, H., Hayami, T., Minami, Y. and Seino, S. (2022) Increased Glycolysis Affects β-Cell Function and Identity in Aging and Diabetes. Molecular Metabolism, 55, Article 101414. https://doi.org/10.1016/j.molmet.2021.101414
|
[16]
|
Harold, K.M., Matsuzaki, S., Pranay, A., Loveland, B.L., Batushansky, A., Mendez Garcia, M.F., et al. (2024) Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. Journal of the American Heart Association, 13, e033676. https://doi.org/10.1161/jaha.123.033676
|
[17]
|
Wang, Y., Fan, M., Qian, H., Ying, H., Li, Y. and Wang, L. (2023) Whole Grains-Derived Functional Ingredients against Hyperglycemia: Targeting Hepatic Glucose Metabolism. Critical Reviews in Food Science and Nutrition, 64, 7268-7289. https://doi.org/10.1080/10408398.2023.2183382
|
[18]
|
Posa, D.K. and Baba, S.P. (2020) Intracellular Ph Regulation of Skeletal Muscle in the Milieu of Insulin Signaling. Nutrients, 12, Article 2910. https://doi.org/10.3390/nu12102910
|
[19]
|
Umanath, K. and Lewis, J.B. (2018) Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases, 71, 884-895. https://doi.org/10.1053/j.ajkd.2017.10.026
|
[20]
|
Fan, C., Yang, G., Li, C., Cheng, J., Chen, S. and Mi, H. (2025) Uncovering Glycolysis-Driven Molecular Subtypes in Diabetic Nephropathy: A WGCNA and Machine Learning Approach for Diagnostic Precision. Biology Direct, 20, Article No. 10. https://doi.org/10.1186/s13062-025-00601-6
|
[21]
|
Luo, Q., Liang, W., Zhang, Z., Zhu, Z., Chen, Z., Hu, J., et al. (2022) Compromised Glycolysis Contributes to Foot Process Fusion of Podocytes in Diabetic Kidney Disease: Role of Ornithine Catabolism. Metabolism, 134, Article 155245. https://doi.org/10.1016/j.metabol.2022.155245
|
[22]
|
Yu, B., Shen, K., Li, T., Li, J., Meng, M., Liu, W., et al. (2023) Glycolytic Enzyme PFKFB3 Regulates Sphingosine 1-Phosphate Receptor 1 in Proangiogenic Glomerular Endothelial Cells under Diabetic Condition. American Journal of Physiology-Cell Physiology, 325, C1354-C1368. https://doi.org/10.1152/ajpcell.00261.2023
|
[23]
|
Qi, W., Keenan, H.A., Li, Q., Ishikado, A., Kannt, A., Sadowski, T., et al. (2017) Pyruvate Kinase M2 Activation May Protect against the Progression of Diabetic Glomerular Pathology and Mitochondrial Dysfunction. Nature Medicine, 23, 753-762. https://doi.org/10.1038/nm.4328
|
[24]
|
Chen, Z., Zhu, Z., Liang, W., Luo, Z., Hu, J., Feng, J., et al. (2023) Reduction of Anaerobic Glycolysis Contributes to Angiotensin II-Induced Podocyte Injury with Foot Process Effacement. Kidney International, 103, 735-748. https://doi.org/10.1016/j.kint.2023.01.007
|
[25]
|
Shopit, A., Niu, M., Wang, H., Tang, Z., Li, X., Tesfaldet, T., et al. (2020) Protection of Diabetes-Induced Kidney Injury by Phosphocreatine via the Regulation of ERK/NrF2/HO-1 Signaling Pathway. Life Sciences, 242, Article 117248. https://doi.org/10.1016/j.lfs.2019.117248
|
[26]
|
Dillmann, W.H. (2019) Diabetic Cardiomyopathy: What Is It and Can It Be Fixed? Circulation Research, 124, 1160-1162. https://doi.org/10.1161/circresaha.118.314665
|
[27]
|
Sun, Q., Karwi, Q.G., Wong, N. and Lopaschuk, G.D. (2024) Advances in Myocardial Energy Metabolism: Metabolic Remodeling in Heart Failure and beyond. Cardiovascular Research, 120, 1996-2016. https://doi.org/10.1093/cvr/cvae231
|
[28]
|
Da Silva, D., Ausina, P., Alencar, E.M., Coelho, W.S., Zancan, P. and Sola-Penna, M. (2012) Metformin Reverses Hexokinase and Phosphofructokinase Downregulation and Intracellular Distribution in the Heart of Diabetic Mice. IUBMB Life, 64, 766-774. https://doi.org/10.1002/iub.1063
|
[29]
|
Bockus, L.B., Matsuzaki, S., Vadvalkar, S.S., Young, Z.T., Giorgione, J.R., Newhardt, M.F., et al. (2017) Cardiac Insulin Signaling Regulates Glycolysis through Phosphofructokinase 2 Content and Activity. Journal of the American Heart Association, 6, e007159. https://doi.org/10.1161/jaha.117.007159
|
[30]
|
Donthi, R.V., Ye, G., Wu, C., McClain, D.A., Lange, A.J. and Epstein, P.N. (2004) Cardiac Expression of Kinase-Deficient 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase Inhibits Glycolysis, Promotes Hypertrophy, Impairs Myocyte Function, and Reduces Insulin Sensitivity. Journal of Biological Chemistry, 279, 48085-48090. https://doi.org/10.1074/jbc.m405510200
|
[31]
|
Mansor, L.S., Mehta, K., Aksentijevic, D., Carr, C.A., Lund, T., Cole, M.A., et al. (2015) Increased Oxidative Metabolism Following Hypoxia in the Type 2 Diabetic Heart, Despite Normal Hypoxia Signalling and Metabolic Adaptation. The Journal of Physiology, 594, 307-320. https://doi.org/10.1113/jp271242
|
[32]
|
Feuvray, D. (1997) Controversies on the Sensitivity of the Diabetic Heart to Ischemic Injury: The Sensitivity of the Diabetic Heart to Ischemic Injury Is Decreased. Cardiovascular Research, 34, 113-120. https://doi.org/10.1016/s0008-6363(97)00037-0
|
[33]
|
Tate, M., Higgins, G.C., De Blasio, M.J., Lindblom, R., Prakoso, D., Deo, M., et al. (2019) The Mitochondria-Targeted Methylglyoxal Sequestering Compound, Mitogamide, Is Cardioprotective in the Diabetic Heart. Cardiovascular Drugs and Therapy, 33, 669-674. https://doi.org/10.1007/s10557-019-06914-9
|
[34]
|
Xu, G., Zhang, J. and Tang, L. (2023) Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regeneration Research, 18, 976-982. https://doi.org/10.4103/1673-5374.355743
|
[35]
|
Sabanayagam, C., Banu, R., Chee, M.L., Lee, R., Wang, Y.X., Tan, G., et al. (2019) Incidence and Progression of Diabetic Retinopathy: A Systematic Review. The Lancet Diabetes & Endocrinology, 7, 140-149. https://doi.org/10.1016/s2213-8587(18)30128-1
|
[36]
|
Liu, S., Ju, Y. and Gu, P. (2022) Experiment-Based Interventions to Diabetic Retinopathy: Present and Advances. International Journal of Molecular Sciences, 23, Article 7005. https://doi.org/10.3390/ijms23137005
|
[37]
|
Zhang, C., Gu, L., Xie, H., Liu, Y., Huang, P., Zhang, J., et al. (2024) Glucose Transport, Transporters and Metabolism in Diabetic Retinopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1870, Article 166995. https://doi.org/10.1016/j.bbadis.2023.166995
|
[38]
|
Selva, M.L., Beltramo, E., Pagnozzi, F., Bena, E., Molinatti, P.A., Molinatti, G.M., et al. (1996) Thiamine Corrects Delayed Replication and Decreases Production of Lactate and Advanced Glycation End-Products in Bovine Retinal and Human Umbilical Vein Endothelial Cells Cultured under High Glucose Conditions. Diabetologia, 39, 1263-1268. https://doi.org/10.1007/s001250050568
|
[39]
|
Cai, L., Xia, M. and Zhang, F. (2024) Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants, 13, Article 423. https://doi.org/10.3390/antiox13040423
|
[40]
|
Rajala, A., Soni, K. and Rajala, R.V.S. (2020) Metabolic and Non-Metabolic Roles of Pyruvate Kinase M2 Isoform in Diabetic Retinopathy. Scientific Reports, 10, Article No. 7456. https://doi.org/10.1038/s41598-020-64487-2
|
[41]
|
Tomita, Y., Cagnone, G., Fu, Z., Cakir, B., Kotoda, Y., Asakage, M., et al. (2021) Vitreous Metabolomics Profiling of Proliferative Diabetic Retinopathy. Diabetologia, 64, 70-82. https://doi.org/10.1007/s00125-020-05309-y
|
[42]
|
(2019) Diabetic Neuropathy. Nature Reviews Disease Primers, 5, 42. https://doi.org/10.1038/s41572-019-0097-9
|
[43]
|
Fernyhough, P. (2015) Mitochondrial Dysfunction in Diabetic Neuropathy: A Series of Unfortunate Metabolic Events. Current Diabetes Reports, 15, Article No. 89. https://doi.org/10.1007/s11892-015-0671-9
|
[44]
|
Eid, S.A., Rumora, A.E., Beirowski, B., Bennett, D.L., Hur, J., Savelieff, M.G., et al. (2023) New Perspectives in Diabetic Neuropathy. Neuron, 111, 2623-2641. https://doi.org/10.1016/j.neuron.2023.05.003
|
[45]
|
Cheng, R., Feng, Y., Liu, D., Wang, Z., Zhang, J., Chen, L., et al. (2019) The Role of Nav1.7 and Methylglyoxal-Mediated Activation of TRPA1 in Itch and Hypoalgesia in a Murine Model of Type 1 Diabetes. Theranostics, 9, 4287-4307. https://doi.org/10.7150/thno.36077
|
[46]
|
Rojas, D.R., Kuner, R. and Agarwal, N. (2019) Metabolomic Signature of Type 1 Diabetes-Induced Sensory Loss and Nerve Damage in Diabetic Neuropathy. Journal of Molecular Medicine, 97, 845-854. https://doi.org/10.1007/s00109-019-01781-1
|
[47]
|
Chandrasekaran, K., Najimi, N., Sagi, A.R., Yarlagadda, S., Salimian, M., Arvas, M.I., et al. (2022) NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. International Journal of Molecular Sciences, 23, Article 4887. https://doi.org/10.3390/ijms23094887
|
[48]
|
Mizukami, H. and Osonoi, S. (2020) Collateral Glucose-Utlizing Pathwaya in Diabetic Polyneuropathy. International Journal of Molecular Sciences, 22, Article 94. https://doi.org/10.3390/ijms22010094
|
[49]
|
Aghanoori, M., Margulets, V., Smith, D.R., Kirshenbaum, L.A., Gitler, D. and Fernyhough, P. (2021) Sensory Neurons Derived from Diabetic Rats Exhibit Deficits in Functional Glycolysis and ATP That Are Ameliorated by IGF-1. Molecular Metabolism, 49, Article 101191. https://doi.org/10.1016/j.molmet.2021.101191
|
[50]
|
Dal Canto, E., Ceriello, A., Rydén, L., Ferrini, M., Hansen, T.B., Schnell, O., et al. (2019) Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. European Journal of Preventive Cardiology, 26, 25-32. https://doi.org/10.1177/2047487319878371
|
[51]
|
Li, W., Xu, H., Hu, Y., He, P., Ni, Z., Xu, H., et al. (2013) Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress. PLOS ONE, 8, e76025. https://doi.org/10.1371/journal.pone.0076025
|
[52]
|
Kırça, M. and Yeşilkaya, A. (2021) Methylglyoxal Stimulates Endoplasmic Reticulum Stress in Vascular Smooth Muscle Cells. Journal of Receptors and Signal Transduction, 42, 279-284. https://doi.org/10.1080/10799893.2021.1918167
|
[53]
|
Vannucci, S.J., Willing, L.B., Goto, S., Alkayed, N.J., Brucklacher, R.M., Wood, T.L., et al. (2001) Experimental Stroke in the Female Diabetic, db/db, Mouse. Journal of Cerebral Blood Flow & Metabolism, 21, 52-60. https://doi.org/10.1097/00004647-200101000-00007
|
[54]
|
Yadav, D., Yadav, A., Bhattacharya, S., Dagar, A., Kumar, V. and Rani, R. (2024) GLUT and HK: Two Primary and Essential Key Players in Tumor Glycolysis. Seminars in Cancer Biology, 100, 17-27. https://doi.org/10.1016/j.semcancer.2024.03.001
|
[55]
|
Vogt, B., Mühlbacher, C., Carrascosa, J., Obermaier-Kusser, B., Seffer, E., Mushack, J., et al. (1992) Subcellular Distribution of GLUT 4 in the Skeletal Muscle of Lean Type 2 (Non-Insulin-Dependent) Diabetic Patients in the Basal State. Diabetologia, 35, 456-463. https://doi.org/10.1007/bf02342444
|
[56]
|
Gaudreault, N., Scriven, D.R.L. and Moore, E.D.W. (2004) Characterisation of Glucose Transporters in the Intact Coronary Artery Endothelium in Rats: GLUT-2 Upregulated by Long-Term Hyperglycaemia. Diabetologia, 47, 2081-2092. https://doi.org/10.1007/s00125-004-1583-4
|
[57]
|
Rashid, K., Das, J. and Sil, P.C. (2013) Taurine Ameliorate Alloxan Induced Oxidative Stress and Intrinsic Apoptotic Pathway in the Hepatic Tissue of Diabetic Rats. Food and Chemical Toxicology, 51, 317-329. https://doi.org/10.1016/j.fct.2012.10.007
|
[58]
|
Kasai, D., Adachi, T., Deng, L., Nagano-Fujii, M., Sada, K., Ikeda, M., et al. (2009) HCV Replication Suppresses Cellular Glucose Uptake through Down-Regulation of Cell Surface Expression of Glucose Transporters. Journal of Hepatology, 50, 883-894. https://doi.org/10.1016/j.jhep.2008.12.029
|
[59]
|
Zhao, F., Deng, J., Yu, X., Li, D., Shi, H. and Zhao, Y. (2015) Protective Effects of Vascular Endothelial Growth Factor in Cultured Brain Endothelial Cells against Hypoglycemia. Metabolic Brain Disease, 30, 999-1007. https://doi.org/10.1007/s11011-015-9659-z
|
[60]
|
Nopparat, C., Chaopae, W., Boontem, P., Sopha, P., Wongchitrat, P. and Govitrapong, P. (2022) Melatonin Attenuates High Glucose-Induced Changes in Beta Amyloid Precursor Protein Processing in Human Neuroblastoma Cells. Neurochemical Research, 47, 2568-2579. https://doi.org/10.1007/s11064-021-03290-5
|
[61]
|
Ganapathy-Kanniappan, S. and Geschwind, J.H. (2013) Tumor Glycolysis as a Target for Cancer Therapy: Progress and Prospects. Molecular Cancer, 12, Article No. 152. https://doi.org/10.1186/1476-4598-12-152
|
[62]
|
Trus, M.D., Zawalich, W.S., Burch, P.T., Berner, D.K., Weill, V.A. and Matschinsky, F.M. (1981) Regulation of Glucose Metabolism in Pancreatic Islets. Diabetes, 30, 911-922. https://doi.org/10.2337/diab.30.11.911
|
[63]
|
Rabbani, N., Xue, M. and Thornalley, P.J. (2022) Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis—Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. International Journal of Molecular Sciences, 23, Article 2165. https://doi.org/10.3390/ijms23042165
|
[64]
|
Rabbani, N. and Thornalley, P.J. (2024) Hexokinase-Linked Glycolytic Overload and Unscheduled Glycolysis in Hyperglycemia-Induced Pathogenesis of Insulin Resistance, Beta-Cell Glucotoxicity, and Diabetic Vascular Complications. Frontiers in Endocrinology, 14, Article 1268308. https://doi.org/10.3389/fendo.2023.1268308
|
[65]
|
Rabbani, N. and Thornalley, P.J. (2019) Hexokinase-2 Glycolytic Overload in Diabetes and Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 30, 419-431. https://doi.org/10.1016/j.tem.2019.04.011
|
[66]
|
Silva, D.D., Zancan, P., Coelho, W.S., Gomez, L.S. and Sola-Penna, M. (2010) Metformin Reverses Hexokinase and 6-Phosphofructo-1-Kinase Inhibition in Skeletal Muscle, Liver and Adipose Tissues from Streptozotocin-Induced Diabetic Mouse. Archives of Biochemistry and Biophysics, 496, 53-60. https://doi.org/10.1016/j.abb.2010.01.013
|
[67]
|
Li, J., Liu, H., Takagi, S., Nitta, K., Kitada, M., Srivastava, S.P., et al. (2020) Renal Protective Effects of Empagliflozin via Inhibition of EMT and Aberrant Glycolysis in Proximal Tubules. JCI Insight, 5, e129034. https://doi.org/10.1172/jci.insight.129034
|
[68]
|
Nederlof, R., Eerbeek, O., Hollmann, M.W., Southworth, R. and Zuurbier, C.J. (2014) Targeting Hexokinase II to Mitochondria to Modulate Energy Metabolism and Reduce Ischaemia-Reperfusion Injury in Heart. British Journal of Pharmacology, 171, 2067-2079. https://doi.org/10.1111/bph.12363
|
[69]
|
Xia, F., Sun, J., Jiang, Y. and Li, C. (2018) MicroRNA-384-3p Inhibits Retinal Neovascularization through Targeting Hexokinase 2 in Mice with Diabetic Retinopathy. Journal of Cellular Physiology, 234, 721-730. https://doi.org/10.1002/jcp.26871
|
[70]
|
Islam, M.T., Khan, M.A.A.M., Rahman, S. and Kibria, K.M.K. (2024) Genetic Association of Novel SNPs in HK-1 (rs201626997) and HK-3 (rs143604141) with Type 2 Diabetes Mellitus in Bangladeshi Population. Gene, 914, Article 148409. https://doi.org/10.1016/j.gene.2024.148409
|
[71]
|
Malkki, M., Laakso, M. and Deeb, S.S. (1994) Structure of the Human Hexokinase II Gene. Biochemical and Biophysical Research Communications, 205, 490-496. https://doi.org/10.1006/bbrc.1994.2692
|
[72]
|
Mali, A.V., Bhise, S.S., Hegde, M.V. and Katyare, S.S. (2016) Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes. Indian Journal of Clinical Biochemistry, 31, 321-325. https://doi.org/10.1007/s12291-015-0529-6
|
[73]
|
Mendez Garcia, M.F., Matsuzaki, S., Batushansky, A., Newhardt, R., Kinter, C., Jin, Y., et al. (2023) Increased Cardiac PFK-2 Protects against High-Fat Diet-Induced Cardiomyopathy and Mediates Beneficial Systemic Metabolic Effects. iScience, 26, Article 107131. https://doi.org/10.1016/j.isci.2023.107131
|
[74]
|
Amadi, P.U., Osuoha, J.O., Ekweogu, C.N., Jarad, S.J., Efiong, E.E., Odika, P.C., et al. (2025) Phenolic Acids from Anisopus mannii Modulates Phosphofructokinase 1 to Improve Glycemic Control in Patients with Type 2 Diabetes: A Double-Blind, Randomized, Clinical Trial. Pharmacological Research, 212, Article 107602. https://doi.org/10.1016/j.phrs.2025.107602
|
[75]
|
Schoors, S., De Bock, K., Cantelmo, A.R., Georgiadou, M., Ghesquière, B., Cauwenberghs, S., et al. (2014) Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis. Cell Metabolism, 19, 37-48. https://doi.org/10.1016/j.cmet.2013.11.008
|
[76]
|
Martins, C.P., New, L.A., O’Connor, E.C., Previte, D.M., Cargill, K.R., Tse, I.L., et al. (2021) Glycolysis Inhibition Induces Functional and Metabolic Exhaustion of CD4+ T Cells in Type 1 Diabetes. Frontiers in Immunology, 12, Article 669456. https://doi.org/10.3389/fimmu.2021.669456
|
[77]
|
Agius, L., Ford, B.E. and Chachra, S.S. (2020) The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. International Journal of Molecular Sciences, 21, Article 3240. https://doi.org/10.3390/ijms21093240
|
[78]
|
Zhang, Z., Deng, X., Liu, Y., Liu, Y., Sun, L. and Chen, F. (2019) PKM2, Function and Expression and Regulation. Cell & Bioscience, 9, Article No. 52. https://doi.org/10.1186/s13578-019-0317-8
|
[79]
|
Gassaway, B.M., Cardone, R.L., Padyana, A.K., Petersen, M.C., Judd, E.T., Hayes, S., et al. (2019) Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports, 29, 3394-3404.E9. https://doi.org/10.1016/j.celrep.2019.11.009
|
[80]
|
Nakatsu, D., Horiuchi, Y., Kano, F., Noguchi, Y., Sugawara, T., Takamoto, I., et al. (2015) L-Cysteine Reversibly Inhibits Glucose-Induced Biphasic Insulin Secretion and ATP Production by Inactivating PKM2. Proceedings of the National Academy of Sciences, 112, E1067-E1076. https://doi.org/10.1073/pnas.1417197112
|
[81]
|
Liu, H., Takagaki, Y., Kumagai, A., Kanasaki, K. and Koya, D. (2020) The PKM2 Activator TEPP-46 Suppresses Kidney Fibrosis via Inhibition of the EMT Program and Aberrant Glycolysis Associated with Suppression of Hif‐1α Accumulation. Journal of Diabetes Investigation, 12, 697-709. https://doi.org/10.1111/jdi.13478
|
[82]
|
Sharma, D., Singh, M. and Rani, R. (2022) Role of LDH in Tumor Glycolysis: Regulation of LDHA by Small Molecules for Cancer Therapeutics. Seminars in Cancer Biology, 87, 184-195. https://doi.org/10.1016/j.semcancer.2022.11.007
|
[83]
|
Yang, P., Xu, W., Liu, L. and Yang, G. (2023) Association of Lactate Dehydrogenase and Diabetic Retinopathy in US Adults with Diabetes Mellitus. Journal of Diabetes, 16, e13476. https://doi.org/10.1111/1753-0407.13476
|
[84]
|
Tang, L., Yang, Q., Ma, R., Zhou, P., Peng, C., Xie, C., et al. (2024) Association between Lactate Dehydrogenase and the Risk of Diabetic Kidney Disease in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 15, Article 1369968. https://doi.org/10.3389/fendo.2024.1369968
|
[85]
|
Zhao, L., Dong, M., Ren, M., Li, C., Zheng, H. and Gao, H. (2018) Metabolomic Analysis Identifies Lactate as an Important Pathogenic Factor in Diabetes-Associated Cognitive Decline Rats. Molecular & Cellular Proteomics, 17, 2335-2346. https://doi.org/10.1074/mcp.ra118.000690
|
[86]
|
Adki, K.M. and Kulkarni, Y.A. (2022) Paeonol Attenuates Retinopathy in Streptozotocin-Induced Diabetes in Rats by Regulating the Oxidative Stress and Polyol Pathway. Frontiers in Pharmacology, 13, Article 891485. https://doi.org/10.3389/fphar.2022.891485
|
[87]
|
Wu, M., Ye, W., Zheng, Y. and Zhang, S. (2017) Oxamate Enhances the Anti-Inflammatory and Insulin-Sensitizing Effects of Metformin in Diabetic Mice. Pharmacology, 100, 218-228. https://doi.org/10.1159/000478909
|