[1]
|
Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322. https://doi.org/10.1038/nrc.2018.6
|
[2]
|
Chun, S.G., Hu, C., Choy, H., Komaki, R.U., Timmerman, R.D., Schild, S.E., et al. (2017) Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. Journal of Clinical Oncology, 35, 56-62. https://doi.org/10.1200/jco.2016.69.1378
|
[3]
|
Bortfeld, T.R. and Loeffler, J.S. (2017) Three Ways to Make Proton Therapy Affordable. Nature, 549, 451-453. https://doi.org/10.1038/549451a
|
[4]
|
Yuan, T., Zhan, Z. and Qian, C. (2019) New Frontiers in Proton Therapy: Applications in Cancers. Cancer Communications, 39, 1-7. https://doi.org/10.1186/s40880-019-0407-3
|
[5]
|
Lomax, M.E., Folkes, L.K. and O'Neill, P. (2013) Biological Consequences of Radiation-Induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25, 578-585. https://doi.org/10.1016/j.clon.2013.06.007
|
[6]
|
Formenti, S.C. and Demaria, S. (2012) Radiation Therapy to Convert the Tumor into an in situ Vaccine. International Journal of Radiation Oncology∙Biology∙Physics, 84, 879-880. https://doi.org/10.1016/j.ijrobp.2012.06.020
|
[7]
|
Schaue, D., Ratikan, J.A., Iwamoto, K.S. and McBride, W.H. (2012) Maximizing Tumor Immunity with Fractionated Radiation. International Journal of Radiation Oncology∙Biology∙Physics, 83, 1306-1310. https://doi.org/10.1016/j.ijrobp.2011.09.049
|
[8]
|
Kornepati, A.V.R., Rogers, C.M., Sung, P. and Curiel, T.J. (2023) The Complementarity of DDR, Nucleic Acids and Anti-Tumour Immunity. Nature, 619, 475-486. https://doi.org/10.1038/s41586-023-06069-6
|
[9]
|
Galluzzi, L., Vitale, I., Warren, S., et al. (2020) Consensus Guidelines for the Definition, Detection and Interpretation of Immunogenic Cell Death. The Journal for ImmunoTherapy of Cancer, 8, e000337. https://doi.org/10.1136/jitc-2019-000337
|
[10]
|
Fucikova, J., Kepp, O., Kasikova, L., Petroni, G., Yamazaki, T., Liu, P., et al. (2020) Detection of Immunogenic Cell Death and Its Relevance for Cancer Therapy. Cell Death & Disease, 11, Article No. 1013. https://doi.org/10.1038/s41419-020-03221-2
|
[11]
|
Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. and Sharpe, A.H. (2001) CTLA-4 Regulates Induction of Anergy in vivo. Immunity, 14, 145-155. https://doi.org/10.1016/s1074-7613(01)00097-8
|
[12]
|
Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman, W.H., et al. (2023) Phase I Study of Single-Agent Anti-Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. Journal of Clinical Oncology, 41, 715-723. https://doi.org/10.1200/jco.22.02270
|
[13]
|
Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355. https://doi.org/10.1126/science.aar4060
|
[14]
|
Chen, L. and Han, X. (2015) Anti-PD-1/PD-L1 Therapy of Human Cancer: Past, Present, and Future. Journal of Clinical Investigation, 125, 3384-3391. https://doi.org/10.1172/jci80011
|
[15]
|
Chang, L., Barroso-Sousa, R., Tolaney, S.M., Hodi, F.S., Kaiser, U.B. and Min, L. (2018) Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocrine Reviews, 40, 17-65. https://doi.org/10.1210/er.2018-00006
|
[16]
|
Zhang, Y. and Zhang, Z. (2020) The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cellular & Molecular Immunology, 17, 807-821. https://doi.org/10.1038/s41423-020-0488-6
|
[17]
|
Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for Pd-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833. https://doi.org/10.1056/nejmoa1606774
|
[18]
|
Herbst, R.S., Giaccone, G., de Marinis, F., Reinmuth, N., Vergnenegre, A., Barrios, C.H., et al. (2020) Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. New England Journal of Medicine, 383, 1328-1339. https://doi.org/10.1056/nejmoa1917346
|
[19]
|
Sharma, P., Retz, M., Siefker-Radtke, A., Baron, A., Necchi, A., Bedke, J., et al. (2017) Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (CheckMate 275): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 18, 312-322. https://doi.org/10.1016/s1470-2045(17)30065-7
|
[20]
|
Galon, J. and Bruni, D. (2019) Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nature Reviews Drug Discovery, 18, 197-218. https://doi.org/10.1038/s41573-018-0007-y
|
[21]
|
Yi, M., Zheng, X., Niu, M., Zhu, S., Ge, H. and Wu, K. (2022) Combination Strategies with PD-1/PD-L1 Blockade: Current Advances and Future Directions. Molecular Cancer, 21, Article No. 28. https://doi.org/10.1186/s12943-021-01489-2
|
[22]
|
Yang, K., Halima, A. and Chan, T.A. (2023) Antigen Presentation in Cancer—Mechanisms and Clinical Implications for Immunotherapy. Nature Reviews Clinical Oncology, 20, 604-623. https://doi.org/10.1038/s41571-023-00789-4
|
[23]
|
Kalbasi, A. and Ribas, A. (2019) Tumour-Intrinsic Resistance to Immune Checkpoint Blockade. Nature Reviews Immunology, 20, 25-39. https://doi.org/10.1038/s41577-019-0218-4
|
[24]
|
Demaria, S., Bhardwaj, N., McBride, W.H. and Formenti, S.C. (2005) Combining Radiotherapy and Immunotherapy: A Revived Partnership. International Journal of Radiation Oncology∙Biology∙Physics, 63, 655-666. https://doi.org/10.1016/j.ijrobp.2005.06.032
|
[25]
|
Postow, M.A., Callahan, M.K., Barker, C.A., Yamada, Y., Yuan, J., Kitano, S., et al. (2012) Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. New England Journal of Medicine, 366, 925-931. https://doi.org/10.1056/nejmoa1112824
|
[26]
|
Hatzi, V.I., Laskaratou, D.A., Mavragani, I.V., Nikitaki, Z., Mangelis, A., Panayiotidis, M.I., et al. (2015) Non-Targeted Radiation Effects in vivo: A Critical Glance of the Future in Radiobiology. Cancer Letters, 356, 34-42. https://doi.org/10.1016/j.canlet.2013.11.018
|
[27]
|
Shaverdian, N., Lisberg, A.E., Bornazyan, K., Veruttipong, D., Goldman, J.W., Formenti, S.C., et al. (2017) Previous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. The Lancet Oncology, 18, 895-903. https://doi.org/10.1016/s1470-2045(17)30380-7
|
[28]
|
Rodel, F., Frey, B., Gaipl, U., Keilholz, L., Fournier, C., Manda, K., et al. (2012) Modulation of Inflammatory Immune Reactions by Low-Dose Ionizing Radiation: Molecular Mechanisms and Clinical Application. Current Medicinal Chemistry, 19, 1741-1750. https://doi.org/10.2174/092986712800099866
|
[29]
|
Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J. (2013) Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 339, 786-791. https://doi.org/10.1126/science.1232458
|
[30]
|
Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., et al. (2013) Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 339, 826-830. https://doi.org/10.1126/science.1229963
|
[31]
|
Ishikawa, H. and Barber, G.N. (2008) STING Is an Endoplasmic Reticulum Adaptor That Facilitates Innate Immune Signalling. Nature, 455, 674-678. https://doi.org/10.1038/nature07317
|
[32]
|
Long, Y., Guo, J., Chen, J., Sun, J., Wang, H., Peng, X., et al. (2023) GPR162 Activates STING Dependent DNA Damage Pathway as a Novel Tumor Suppressor and Radiation Sensitizer. Signal Transduction and Targeted Therapy, 8, Article No. 48. https://doi.org/10.1038/s41392-022-01224-3
|
[33]
|
Du, S., Chen, G., Yang, P., Chen, Y., Hu, Y., Zhao, Q., et al. (2022) Radiation Therapy Promotes Hepatocellular Carcinoma Immune Cloaking via PD-L1 Upregulation Induced by cGAS-STING Activation. International Journal of Radiation Oncology∙Biology∙Physics, 112, 1243-1255. https://doi.org/10.1016/j.ijrobp.2021.12.162
|
[34]
|
Xue, A., Shang, Y., Jiao, P., Zhang, S., Zhu, C., He, X., et al. (2022) Increased Activation of cGAS‐STING Pathway Enhances Radiosensitivity of Non‐small Cell Lung Cancer Cells. Thoracic Cancer, 13, 1361-1368. https://doi.org/10.1111/1759-7714.14400
|
[35]
|
Li, L., Yin, Q., Kuss, P., Maliga, Z., Millán, J.L., Wu, H., et al. (2014) Hydrolysis of 2′3′-cGAMP by ENPP1 and Design of Nonhydrolyzable Analogs. Nature Chemical Biology, 10, 1043-1048. https://doi.org/10.1038/nchembio.1661
|
[36]
|
Carozza, J.A., Böhnert, V., Nguyen, K.C., Skariah, G., Shaw, K.E., Brown, J.A., et al. (2020) Extracellular cGAMP Is a Cancer-Cell-Produced Immunotransmitter Involved in Radiation-Induced Anticancer Immunity. Nature Cancer, 1, 184-196. https://doi.org/10.1038/s43018-020-0028-4
|
[37]
|
Vanpouille-Box, C., Alard, A., Aryankalayil, M.J., Sarfraz, Y., Diamond, J.M., Schneider, R.J., et al. (2017) DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nature Communications, 8, Article No. 15618. https://doi.org/10.1038/ncomms15618
|
[38]
|
Galassi, C., Klapp, V., Yamazaki, T. and Galluzzi, L. (2023) Molecular Determinants of Immunogenic Cell Death Elicited by Radiation Therapy. Immunological Reviews, 321, 20-32. https://doi.org/10.1111/imr.13271
|
[39]
|
Yu, W., Sun, G., Li, J., Xu, J. and Wang, X. (2019) Mechanisms and Therapeutic Potentials of Cancer Immunotherapy in Combination with Radiotherapy and/or Chemotherapy. Cancer Letters, 452, 66-70. https://doi.org/10.1016/j.canlet.2019.02.048
|
[40]
|
Rodriguez-Ruiz, M.E., Rodriguez, I., Leaman, O., López-Campos, F., Montero, A., Conde, A.J., et al. (2019) Immune Mechanisms Mediating Abscopal Effects in Radioimmunotherapy. Pharmacology & Therapeutics, 196, 195-203. https://doi.org/10.1016/j.pharmthera.2018.12.002
|
[41]
|
Suzuki, Y., Mimura, K., Yoshimoto, Y., Watanabe, M., Ohkubo, Y., Izawa, S., et al. (2012) Immunogenic Tumor Cell Death Induced by Chemoradiotherapy in Patients with Esophageal Squamous Cell Carcinoma. Cancer Research, 72, 3967-3976. https://doi.org/10.1158/0008-5472.can-12-0851
|
[42]
|
Zhan, S., Cao, Z., Li, J., Chen, F., Lai, X., Yang, W., et al. (2024) Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death. Bioconjugate Chemistry, 36, 80-91. https://doi.org/10.1021/acs.bioconjchem.4c00488
|
[43]
|
Vanpouille-Box, C., Pilones, K.A., Wennerberg, E., Formenti, S.C. and Demaria, S. (2015) In situ Vaccination by Radiotherapy to Improve Responses to Anti-CTLA-4 Treatment. Vaccine, 33, 7415-7422. https://doi.org/10.1016/j.vaccine.2015.05.105
|
[44]
|
Dhatchinamoorthy, K., Colbert, J.D. and Rock, K.L. (2021) Cancer Immune Evasion through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 12, Article 636568. https://doi.org/10.3389/fimmu.2021.636568
|
[45]
|
Spiotto, M., Fu, Y. and Weichselbaum, R.R. (2016) The Intersection of Radiotherapy and Immunotherapy: Mechanisms and Clinical Implications. Science Immunology, 1, eaag1266. https://doi.org/10.1126/sciimmunol.aag1266
|
[46]
|
Karapetyan, L., Iheagwara, U.K., Olson, A.C., Chmura, S.J., Skinner, H.K. and Luke, J.J. (2023) Radiation Dose, Schedule, and Novel Systemic Targets for Radio-Immunotherapy Combinations. JNCI: Journal of the National Cancer Institute, 115, 1278-1293. https://doi.org/10.1093/jnci/djad118
|
[47]
|
Lind, H.T., Hall, S.C., Strait, A.A., Goon, J.B., Aleman, J.D., Chen, S.M.Y., et al. (2025) MHC Class I Upregulation Contributes to the Therapeutic Response to Radiotherapy in Combination with Anti-PD-L1/Anti-TGF-β in Squamous Cell Carcinomas with Enhanced CD8 T Cell Memory-Driven Response. Cancer Letters, 608, Article 217347. https://doi.org/10.1016/j.canlet.2024.217347
|
[48]
|
Wan, C., Sun, Y., Tian, Y., Lu, L., Dai, X., Meng, J., et al. (2020) Irradiated Tumor Cell-Derived Microparticles Mediate Tumor Eradication via Cell Killing and Immune Reprogramming. Science Advances, 6, eaay9789. https://doi.org/10.1126/sciadv.aay9789
|
[49]
|
Deng, S., Wang, J., Hu, Y., Sun, Y., Yang, X., Zhang, B., et al. (2024) Irradiated Tumour Cell-Derived Microparticles Upregulate MHC-I Expression in Cancer Cells via DNA Double-Strand Break Repair Pathway. Cancer Letters, 592, Article 216898. https://doi.org/10.1016/j.canlet.2024.216898
|
[50]
|
Wan, S., Pestka, S., Jubin, R.G., Lyu, Y.L., Tsai, Y. and Liu, L.F. (2012) Chemotherapeutics and Radiation Stimulate MHC Class I Expression through Elevated Interferon-Beta Signaling in Breast Cancer Cells. PLOS ONE, 7, e32542. https://doi.org/10.1371/journal.pone.0032542
|
[51]
|
Lugade, A.A., Sorensen, E.W., Gerber, S.A., Moran, J.P., Frelinger, J.G. and Lord, E.M. (2008) Radiation-Induced IFN-γ Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139. https://doi.org/10.4049/jimmunol.180.5.3132
|
[52]
|
Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571. https://doi.org/10.1038/nature13954
|
[53]
|
Gong, X., Li, X., Jiang, T., Xie, H., Zhu, Z., Zhou, F., et al. (2017) Combined Radiotherapy and Anti-PD-L1 Antibody Synergistically Enhances Antitumor Effect in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 12, 1085-1097. https://doi.org/10.1016/j.jtho.2017.04.014
|
[54]
|
Song, H., Jin, H., Kim, J., Ha, I., Kang, K., Choi, H., et al. (2021) Abscopal Effect of Radiotherapy Enhanced with Immune Checkpoint Inhibitors of Triple Negative Breast Cancer in 4T1 Mammary Carcinoma Model. International Journal of Molecular Sciences, 22, Article 10476. https://doi.org/10.3390/ijms221910476
|
[55]
|
Rompré-Brodeur, A., Shinde-Jadhav, S., Ayoub, M., Piccirillo, C.A., Seuntjens, J., Brimo, F., et al. (2020) PD-1/PD-L1 Immune Checkpoint Inhibition with Radiation in Bladder Cancer: In situ and Abscopal Effects. Molecular Cancer Therapeutics, 19, 211-220. https://doi.org/10.1158/1535-7163.mct-18-0986
|
[56]
|
Rodriguez-Ruiz, M.E., Rodriguez, I., Barbes, B., Mayorga, L., Sanchez-Paulete, A.R., Ponz-Sarvise, M., et al. (2017) Brachytherapy Attains Abscopal Effects When Combined with Immunostimulatory Monoclonal Antibodies. Brachytherapy, 16, 1246-1251. https://doi.org/10.1016/j.brachy.2017.06.012
|
[57]
|
Deutsch, E., Chargari, C., Galluzzi, L. and Kroemer, G. (2019) Optimising Efficacy and Reducing Toxicity of Anticancer Radioimmunotherapy. The Lancet Oncology, 20, e452-e463. https://doi.org/10.1016/s1470-2045(19)30171-8
|
[58]
|
Theelen, W.S.M.E., Peulen, H.M.U., Lalezari, F., van der Noort, V., de Vries, J.F., Aerts, J.G.J.V., et al. (2019) Effect of Pembrolizumab after Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients with Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncology, 5, 1276-1282. https://doi.org/10.1001/jamaoncol.2019.1478
|
[59]
|
Torok, J.A. and Salama, J.K. (2019) Combining Immunotherapy and Radiotherapy for the STAR Treatment. Nature Reviews Clinical Oncology, 16, 666-667. https://doi.org/10.1038/s41571-019-0277-2
|
[60]
|
Hu, Y., Zhou, M., Tang, J., Li, S., Liu, H., Hu, J., et al. (2023) Efficacy and Safety of Stereotactic Body Radiotherapy Combined with Camrelizumab and Apatinib in Patients with Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. Clinical Cancer Research, 29, 4088-4097. https://doi.org/10.1158/1078-0432.ccr-22-2592
|
[61]
|
Parikh, A.R., Szabolcs, A., Allen, J.N., Clark, J.W., Wo, J.Y., Raabe, M., et al. (2021) Radiation Therapy Enhances Immunotherapy Response in Microsatellite Stable Colorectal and Pancreatic Adenocarcinoma in a Phase II Trial. Nature Cancer, 2, 1124-1135. https://doi.org/10.1038/s43018-021-00269-7
|
[62]
|
Ji, X., Jiang, W., Wang, J., Zhou, B., Ding, W., Liu, S., et al. (2023) Application of Individualized Multimodal Radiotherapy Combined with Immunotherapy in Metastatic Tumors. Frontiers in Immunology, 13, Article 1106644. https://doi.org/10.3389/fimmu.2022.1106644
|
[63]
|
Buchwald, Z.S., Wynne, J., Nasti, T.H., Zhu, S., Mourad, W.F., Yan, W., et al. (2018) Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation. Frontiers in Oncology, 8, Article 612. https://doi.org/10.3389/fonc.2018.00612
|
[64]
|
Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. New England Journal of Medicine, 379, 2342-2350. https://doi.org/10.1056/nejmoa1809697
|
[65]
|
Zhang, Y., Hu, H., Zhou, S., Xia, W., Zhang, Y., Zhang, J., et al. (2023) PET-Based Radiomics Visualizes Tumor-Infiltrating CD8 T Cell Exhaustion to Optimize Radiotherapy/Immunotherapy Combination in Mouse Models of Lung Cancer. Biomarker Research, 11, Article No. 10. https://doi.org/10.1186/s40364-023-00454-z
|
[66]
|
Sakai, S.A., Saeki, K., Chi, S., Hamaya, Y., Du, J., Nakamura, M., et al. (2024) Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunology Research, 13, 353-364. https://doi.org/10.1158/2326-6066.cir-24-0610
|
[67]
|
Geng, Y., Zhang, Q., Feng, S., Li, C., Wang, L., Zhao, X., et al. (2021) Safety and Efficacy of PD‐1/PD‐L1 Inhibitors Combined with Radiotherapy in Patients with Non‐Small‐Cell Lung Cancer: A Systematic Review and Meta‐Analysis. Cancer Medicine, 10, 1222-1239. https://doi.org/10.1002/cam4.3718
|
[68]
|
Jin, J., Hu, C., Xiao, Y., Zhang, H., Paulus, R., Ellsworth, S.G., et al. (2021) Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers, 13, Article 6193. https://doi.org/10.3390/cancers13246193
|
[69]
|
Gough, M.J. and Crittenden, M.R. (2022) The Paradox of Radiation and T Cells in Tumors. Neoplasia, 31, Article 100808. https://doi.org/10.1016/j.neo.2022.100808
|
[70]
|
Clark, P.A., Sriramaneni, R.N., Bates, A.M., Jin, W.J., Jagodinsky, J.C., Hernandez, R., et al. (2021) Low-Dose Radiation Potentiates the Propagation of Anti-Tumor Immunity against Melanoma Tumor in the Brain after in situ Vaccination at a Tumor Outside the Brain. Radiation Research, 195, 522-540. https://doi.org/10.1667/rade-20-00237.1
|
[71]
|
Rafiq, Z., Kang, M., Barsoumian, H.B., Manzar, G.S., Hu, Y., Leuschner, C., et al. (2025) Enhancing Immunotherapy Efficacy with Synergistic Low-Dose Radiation in Metastatic Melanoma: Current Insights and Prospects. Journal of Experimental & Clinical Cancer Research, 44, Article No. 31. https://doi.org/10.1186/s13046-025-03281-2
|