放疗联合PD-1/PD-L1抑制剂治疗的协同机制及临床研究进展
Mechanisms and Clinical Research Advances in Radiotherapy Combined with PD-1/PD-L1 Inhibitor Therapy
DOI: 10.12677/acm.2025.1541327, PDF, HTML, XML,   
作者: 王蒙佳, 孙晓南:浙江大学医学院附属邵逸夫医院放疗科,浙江 杭州
关键词: 放疗免疫治疗免疫检查点抑制剂PD-1/PD-L1抑制剂Radiotherapy Immunotherapy Immune Checkpoint Inhibitors PD-1/PD-L1 Inhibitiors
摘要: 放疗与以免疫检查点抑制剂(如PD-1/PD-L1抑制剂)为主的免疫治疗,是实体瘤治疗的关键手段。本文聚焦放疗的免疫调节效应与二者联合应用,阐述放疗对正向免疫调节的作用机制、放疗与PD-1/PD-L1抑制剂联合时对肿瘤免疫微环境影响,远隔效应的发生等。相关临床试验显示,该联合治疗在非小细胞肺癌、肝细胞癌等多种实体瘤中展现出良好效果,但不同癌种获益有别。目前,联合治疗的最佳剂量、分割方案及时间安排策略尚存争议,需依据肿瘤类型和治疗目标进行个体化调整。本文系统梳理现有研究,为放疗与PD-1/PD-L1抑制剂联合治疗的临床实践提供全面科学依据与实用参考。
Abstract: Radiotherapy and immunotherapy mainly based on immune checkpoint inhibitors (such as PD-1/PD-L1 inhibitors) are key approaches for the treatment of solid tumors. This article focuses on the immunomodulatory effects of radiotherapy and their combined application. It elaborates on the mechanisms of radiotherapy’s positive immunomodulation, the impact of the combination of radiotherapy and PD-1/PD-L1 inhibitors on the tumor immune microenvironment, and the occurrence of the abscopal effect. Relevant clinical trials have demonstrated that this combined treatment has shown good efficacy in various solid tumors such as non-small cell lung cancer and hepatocellular carcinoma, yet the benefits vary among different cancer types. Currently, there are still controversies regarding the optimal dose, fractionation scheme, and timing strategy of the combined treatment, which need to be adjusted individually according to the tumor type and treatment goals. This article systematically reviews the existing research, providing a comprehensive scientific basis and practical reference for the clinical practice of the combined treatment of radiotherapy and PD-1/PD-L1 inhibitors.
文章引用:王蒙佳, 孙晓南. 放疗联合PD-1/PD-L1抑制剂治疗的协同机制及临床研究进展[J]. 临床医学进展, 2025, 15(4): 3538-3547. https://doi.org/10.12677/acm.2025.1541327

1. 引言

放射治疗(以下简称放疗)是治疗恶性肿瘤重要的局部治疗方式之一,可作为手术的替代方法或与手术及药物治疗联合使用。20世纪60年代以来,随着直线加速器发展实现了关键性飞跃,放疗技术的发展,包括调强放疗、立体定向放疗(Stereotactic Body Radiotherapy, SBRT)、图像引导调强放疗技术以及质子放疗开创了实体瘤精确放疗的时代[1]-[4]。传统观念认为,放疗利用高能射线的电离作用,直接或间接地对肿瘤细胞的脱氧核糖核酸(Deoxyribonucleic Acid, DNA)双链造成不可修复的损伤[5],并最终通过有丝分裂灾难、细胞衰老、凋亡和自噬从而引起细胞死亡,达到治疗肿瘤的目的。近些年,越来越多突破性的研究表明,放疗能够调节局部甚至全身肿瘤特异的免疫反应[6]-[8]。发挥抗肿瘤免疫反应的主要分子机制包括免疫原性细胞死亡(Immunogenic Cell Death, ICD),ICD释放出损伤相关分子模式(Damage-Associated Molecular Patterns, DAMP),增强了肿瘤细胞的免疫原性,从而刺激肿瘤肿瘤特异性T淋巴细胞亚群的克隆扩增[9] [10]

免疫治疗,特别是免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs),包括程序性细胞死亡蛋白1 (Programmed-death Protein 1, PD-1)、程序性细胞死亡配体1 (Programmed-death protein 1 Ligand 1, PD-L1)和细胞毒性T淋巴细胞相关蛋白4 (Cytotoxic T-Lymphocyte-Associated protein 4, CTLA-4)抑制剂,它们重新激活功能耗竭的细胞毒性T细胞,恢复其对肿瘤细胞的杀伤作用[11] [12]。PD-1是一种表达于T细胞表面的分子,与程序性细胞死亡机制相关,当其与配体PD-L1结合后,能够通过抑制淋巴细胞的增殖及细胞因子的释放,从而增强免疫耐受性。肿瘤细胞能够通过异常表达PD-L1实现免疫逃避[13] [14]。临床上用于抗肿瘤治疗的CTLA-4抑制剂有伊匹木单抗(Ipilimumab),PD-1抑制剂有纳武利尤单抗(Nivolumab)、帕博利珠单抗(Pembrolizumab),PD-L1抑制剂有阿特珠单抗(Atezolizumab)、阿维鲁单抗(Avelumab)、度伐利尤单抗(Durvalumab)等[15]。在黑色素瘤[16]、非小细胞肺癌[17]和头颈部鳞状细胞癌[18] [19]治疗中有着广泛的应用,一定程度上改变了患者的预后。与其他肿瘤治疗方式与化疗、放疗等的联合方案,同样获得了极大的关注[20] [21]。但随着ICIs药物临床试验的广泛开展和不断深入,尽管ICIs在部分肿瘤患者中取得了显著的治疗效果,但能够对其产生有效治疗应答的患者比例仍然有限[22] [23]

因此,放疗和免疫检查点抑制剂为主的免疫治疗作为实体瘤治疗的两大重要手段,尤其在不可手术切除的实体瘤患者的治疗中发挥着至关重要的作用。应用放疗联合免疫治疗的综合治疗这一概念于2005年首次提出[24],不同的免疫治疗策略与放疗结合可以增强抗肿瘤效果。经此概念提出后,越来越多的报道证实了“远隔效应”,即对肿瘤局部进行放疗后,不仅照射区域肿瘤得到控制,照射野外转移病灶也出现消退的临床观察[25]-[27]

本文系统回顾了放疗对免疫调节效应的潜在机制,重点探讨了放疗激活干扰素基因刺激蛋白信号通路、诱导免疫原性细胞死亡以及上调MHC-I类分子表达的作用。在此基础上,深入分析了放疗与PD-1/PD-L1抑制剂的协同作用,包括其协同机制、临床试验进展及联合治疗的时间点优化策略。通过对现有研究的全面梳理,本文旨在为放疗与PD-1/PD-L1抑制剂联合治疗的临床应用提供科学依据和实践参考。

2. 放疗对免疫调节效应的潜在机制

放疗与免疫系统之间的相互作用具有复杂性和多因素性,可能通过多种机制产生双向免疫调节效应(包括正向激活与负向抑制),不同放射类型对免疫细胞诱导效应也不同[28]。本综述将聚焦于放疗的主要的正向免疫激活效应,对其机制及临床意义进行深入探讨。

2.1. 放疗激活干扰素基因刺激蛋白信号通路

环磷酸鸟苷–腺苷合酶(cyclic GMP-AMP synthase, cGAS) [29]是一种核苷酸转移酶,由暴露于胞质中的双链DNA (dsDNA)激活,合成的第二信使环二核苷酸2',3'-cGAMP1,2 (cGAMP) [30]。cGAMP与干扰素基因刺激蛋白(Stimulator of Interferon Genes, STING)特异性结合后,诱导STING发生构象变化,并且转移至内质网–高尔基体中间体[31]。通过招募TANK结合激酶1 (TBK1)和干扰素调节因子3 (IRF3),激活下游信号通路。TBK1磷酸化IRF3,促使IRF3二聚化并转位至细胞核,启动I型干扰素(IFN-α/β)及多种促炎细胞因子的转录与表达[31]。这一过程不仅增强了抗肿瘤免疫反应,还可能通过激活树突状细胞(DCs)和细胞毒性T淋巴细胞(CTLs)等免疫细胞,进一步促进肿瘤细胞的免疫识别与清除。放疗促进细胞核dsDNA和细胞质线粒体DNA (Mitochondrial DNA, mtDNA)暴露,上调cGAS-STING信号传导通路,引发I型干扰素反应,由I型干扰素刺激DCs活化成熟,促进肿瘤抗原特异性T淋巴细胞增殖,进一步杀伤肿瘤[32] [33]。此外,关于利用STING激动剂增强放疗诱导抗肿瘤免疫反应的研究也有相关综述详细记载。许多临床前研究围绕cGAS-STING信号传导通路的激动剂增强放疗诱导抗肿瘤免疫反应开展。二聚氨基苯并咪唑是一种STING激动剂,被证实在非小细胞肺癌细胞系中能够通过活化cGAS-STING途径,促进非小细胞肺癌的凋亡,增强了放疗敏感性[34]。外核苷酸焦磷酸酶磷酸二酯酶1 (Ectonucleotide Pyrophosphatase Phosphodiesterase1, ENPP1)是一种cGAMP水解酶[35],而cGAMP及其类似物可以穿过细胞膜以激活大多数细胞类型中的STING。因此采用ENPP1抑制剂联合放疗被证实在小鼠髓样乳腺癌模型中能够协同作用,缩小肿瘤体积[36]。此外,STING激动剂使用的时机和剂量也是重要的,持续的STING激动可以导致T细胞因此而凋亡[37]

2.2. 放疗诱导免疫原性细胞死亡

放疗诱导肿瘤发生免疫原性细胞死亡(Immunogenic Cell Death, ICD),该细胞死亡形式能够在没有外源性佐剂的情况下启动针对死亡细胞所表达的抗原的适应性免疫反应[38]。其主要过程是,处于ICD过程中的肿瘤细胞会释放肿瘤特异性抗原和损伤相关分子模式(Damage-Associated Molecular Patterns, DAMPs) [9] [39] [40],如高迁移率族蛋白1 (High Mobility Group Box 1, HMGB1)、钙网蛋白(Calreticulin,CRT)、腺苷三磷酸(Adenosine Triphosphate, ATP)、热休克蛋白(Heat Shock Proteins, HSPs)等,增加肿瘤相关性抗原(Tumor-Associated Antigens, TAAs)的表达。抗原呈递细胞(Antigen-Presenting Cell, APC)通过捕捉TAAs并将其与主要组织相容性复合体(Major Histocompatibility Complex, MHC)结合,完成抗原呈递过程,进而激活辅助性T细胞(T Helper Cell, Th)。活化的T细胞主要包括细胞毒性T淋巴细胞(Cytotoxic T Lymphocyte, CTL)和自然杀伤细胞(Natural Killer Cell, NK),这些细胞能够通过抗肿瘤免疫反应有效清除肿瘤细胞。

在接受术前放化疗的食管鳞状患者组织样本中观察到HMGB1的上调,而在未接受术前放化疗的患者中免疫观察到,并且HMGB1的上调程度与患者生存率呈正相关[41]。HMGB1作为一种典型的的DAMP分子,能够通过与Toll样受体(Toll-like Receptor)和晚期糖基化终产物受体(Receptor for Advanced Glycosylation End Products, RAGE)结合,能够诱导树突状细胞的成熟[41],并且介导适应性免疫和先天性抗肿瘤免疫的诱导。同时,HMGB1作为一种氧化还原蛋白,能够对放疗引起的氧化应激产生反应,导致其从细胞核转移到细胞质,并最终释放到细胞外,介导免疫原性细胞死亡[42]。也有研究表明,放疗能够促进CD8+ T细胞向肿瘤的浸润,增强其抗肿瘤活性[43]

2.3. 放疗上调MHC-I类分子表达

MHC-I是一类广泛表达于有核细胞表面的重要免疫分子,其主要功能是参与内源性抗原的呈递过程,肿瘤细胞表面同样存在MHC-I类分子。然而,在多种恶性肿瘤的发展过程中,肿瘤细胞常通过下调或完全缺失MHC-Ⅰ类分子的表达来实现免疫逃逸。这种机制使肿瘤细胞能够逃避T淋巴细胞的识别与杀伤,从而在宿主体内存活和增殖[44]。MHC-Ⅰ类分子的表达缺失不仅削弱了先天性免疫系统对肿瘤的监视功能,还显著降低了适应性免疫应答的抗肿瘤效应,最终导致肿瘤免疫逃逸的加剧和疾病进展的恶化[44]。放疗可以上调肿瘤表面MHC-I类分子的表达,增强抗原呈递能力[45] [46]

在头颈部鳞状细胞癌中,Hanne等人[47]发现,经过照射的A223肿瘤细胞在体内外实验中都均表现出细胞表面的MHC-I类蛋白的显著上调,同时MHC-I的重要组成成分β2m、MHC-I反式激活因子(NOD-like Receptor family CARD Domain-containing Protein 5, NLRC5)以及抗原呈递相关基因的表达水平也显著升高[47]。此外,接受治疗剂量辐射的肿瘤细胞能够释放放射治疗相关微粒(Radiation Therapy-Microparticles, RT-MPs) [48],这些微粒通过诱导肿瘤细胞中的DNA双链断裂,激活ATM-ATR-Chk1介导的DNA损伤修复信号通路,从而进一步上调MHC-I的表达[49]。值得注意的是,ATM-ATR-Chk1激酶途径还能直接促进肿瘤细胞表面PD-L1的表达上调,这一机制为放疗联合PD-L1/PD-1抑制剂的协同作用提供了理论基础,显著增强了抗肿瘤效果。

另一方面,一项基于乳腺癌细胞系的研究表明,放疗能够通过激活干扰素信号通路的激活(如增强IFN-β信号传导通路)来刺激MHC-I的表达[50]。在B16/OVA黑色素瘤细胞模型中也发现,IFN-γ能够直接作用肿瘤细胞促进MHC-I的上调,这一上调与激活的STAT水平升高相关[51]

3. 放疗联合PD-1/PD-L1抑制剂的协同作用

3.1. 放疗联合PD-1/PD-L1抑制剂的协同机制

PD-1主要表达与T细胞、B细胞和骨髓细胞表面,而PD-L1在大多数正常组织中通常不表达,但在IFN-γ的诱导下于几乎所有有核细胞中表达。当PD-1与PD-L1结合时,会抑制CD8+ T细胞的活性,削弱其杀伤功能,从而介导肿瘤细胞的免疫逃逸[14]。PD-1/PD-L1抑制剂是一类重要的免疫检查点抑制剂,通过阻断PD-1与其配体PD-L1的结合,解除肿瘤对T细胞的免疫抑制,从而恢复抗肿瘤免疫应答[13]。这一机制为肿瘤免疫治疗开辟了新的方向,但其疗效受肿瘤微环境中多种因素的影响。

近年来,研究发现放疗与免疫治疗的联合应用能够产生协同作用,不仅能够提升局部肿瘤控制效果,还能激发全身性抗肿瘤免疫反应,重塑肿瘤免疫微环境[40]。Tumeh等[52]的研究揭示了PD-1/PD-L1抑制剂的疗效与肿瘤局部CD8+ T细胞的浸润状态密切相关。通过对46例转移性黑色素瘤患者接受帕博利珠治疗前后的样本分析发现,对治疗有反应的患者在其治疗前的样本中,肿瘤侵袭边缘和内部有更多的CD8+ T细胞以及PD-1、PD-L1表达细胞[52]。这一结果进一步证实,PD-1/PD-L1抑制剂发挥治疗作用依赖于肿瘤微环境中预先存在的CD8+ T细胞。此外,在非小细胞肺癌的小鼠模型中,观察到放疗联合抗PD-L1抗体通过促进CD8+ T细胞浸润并减少髓源性抑制细胞(Myeloid-derived Suppressor Cells, MDSCs)和肿瘤浸润调节性T细胞(Regulatory T Cells, Tregs)的积累,从而协同增强了抗肿瘤免疫反应[53]。该实验还观察到,放疗可能通过PI3K/AKT和STAT3信号通路上调PD-L1的表达[53]。也就是说,放疗可以通过改变肿瘤微环境,募集相关免疫细胞,达到增强PD-1/PD-L1抑制剂的作用。

远隔效应(abscopal effect)是指局部放疗诱导的非照射区域肿瘤消退现象,其机制主要与免疫系统的激活密切相关。研究表明,PD-1/PD-L1抑制剂与放疗联合应用可通过协同作用显著增强远隔效应,进而提升抗肿瘤疗效[1]。目前相关研究主要集中在临床前研究阶段,其机制尚未完全阐明。以4T1小鼠三阴性乳腺癌(一种相对放射敏感的细胞系,具有人乳腺癌的几个特征,包括自发地从原发性乳腺肿瘤转移至多个远端部位,因此被广泛用于人类乳腺癌研究的实验动物模型)模型中,研究发现,联合PD-1抑制剂并对小鼠右侧原发肿瘤的放疗后,不仅右侧原发灶显著缩小,左侧未行放疗的继发灶也出现了明显消退[54]。一项针对膀胱癌的研究同样使用小鼠模型评估了联合治疗的远隔效应,放疗联合PD-L1抑制剂治疗显著抑制了放疗野内外的肿瘤生长速率[55]。流式细胞术分析表明,联合治疗组中细胞毒性T细胞(CTL)浸润增加,且免疫抑制细胞与CTL的比例向细胞毒性活性倾斜,并且下调了免疫抑制相关基因(如CCL22、IL22和IL13),同时上调了CTL激活标志物(如CXCL9、GZMA和GZMB) [55]。另一项研究中,双侧腹部皮下种植MC38结直肠癌细胞系的小鼠被随机分为接受或不接受近距离放疗组,仅照射一侧肿瘤,另一侧作为模拟转移灶观察。所有小鼠接受PD-1抑制剂或对照试剂治疗。结果显示,仅同时接受放疗和PD-1抑制剂的小鼠,远端未照射肿瘤显著缩小,即远隔效应[56]

3.2. 放疗联合PD-1/PD-L1抑制剂的临床试验进展

基于放疗与PD-1/PD-L1抑制剂协同机制的理论支持,放疗联合免疫治疗(即放疗免疫疗法)在多种实体瘤中展现出显著的有效性和良好的安全性,为肿瘤治疗提供了新的策略和希望[57]。以下将重点探讨放疗联合PD-1/PD-L1抑制剂的临床试验进展。

立体定向体部放疗(Stereotactic Body Radiation Therapy, SBRT)是临床试验中最常用的治疗方法,现有的研究主要集中在非小细胞肺癌,在一项评估帕博利珠在晚期非小细胞肺癌患者中的安全性和抗肿瘤作用的临床研究(NCT 01295827)次要结果发现,在接受帕博利珠治疗前曾接受过放疗的患者的总生存期(Overall Survival, OS)和无进展生存期(Progression-free Survival, PFS)显著长于未接受过放疗的患者,即使放疗和免疫治疗的间期长达9.5个月[27]。患者PD-L1表达水平对放疗联合PD-1/PD-L1抑制剂的治疗效果有关,PEMBRO-RT (NCT02492568)招募了转移性非小细胞肺癌患者,分别接受单药帕博利珠或SBRT联合帕博利珠(放疗后7天内给药),结果显示PD-L1阴性肿瘤患者中联合放疗的获益最大,可显著改善PFS和OS [58]。尽管放疗联合PD-1/PD-L1抑制剂在非小细胞肺癌的临床研究中展现出显著的疗效,但这种联合治疗的获益并非在所有癌种中普遍存在。在其他类型肿瘤中,临床研究的获益结果相对有限[59]。一项针对III期及以上肝细胞癌及门静脉癌栓患者的临床研究将受试者分为两组,分别接受卡瑞利珠单抗联合阿帕替尼药物治疗联合或不联合SBRT。结果显示,联合SBRT组的中位OS和PFS均显著优于非联合组[60]。此外,该研究证实联合治疗的毒性在临床可接受范围内,为这类患者提供了新的治疗希望。对于免疫荒漠型肿瘤(如微卫星稳定型结直肠癌和胰腺导管腺癌),尽管其单独对免疫治疗的反应较差,但一项II期临床试验(NCT03104439)表明,放疗能够增强这类肿瘤对免疫治疗的敏感性,为免疫治疗在难治性肿瘤中的应用提供了新的思路[61]

4. 放疗与PD-1/PD-L1抑制剂联合治疗的时间安排策略

潜在的临床应用前景,但不同剂量和分次方案对免疫反应的调控机制及其疗效差异仍需进一步深入研究。目前,关于放疗与PD-1/PD-L1抑制剂联合治疗的最佳剂量、分割方案及时间安排策略仍存在争议,但学界普遍认为,针对不同肿瘤类型和治疗目标,需采取个体化的治疗策略[62]

无论采用何种放疗剂量(消融剂量、低分割或常规分割模式),放疗与PD-1/PD-L1抑制剂同步使用或放疗后序贯免疫治疗的疗效均优于免疫治疗后序贯放疗的方案。一种可能的机制解释是,当免疫治疗先行时,耗竭的T细胞被重新激活并释放大量IFN-γ和TNF-α,但随后的放疗可能会削弱这些新近激活的T细胞的抗肿瘤作用。相比之下,放疗与免疫治疗同步或放疗后序贯免疫治疗的策略能够更好地保护并持续发挥T细胞的抗肿瘤功能,从而提升治疗效果[63]。因此放疗联合PD-1/PD-L1抑制剂治疗的序贯顺序与放疗剂量也是许多研究的关注重点,PACIFIC临床试验发现在同步放化疗后2周内进行度伐利尤单抗治疗的患者比在4周时开始的患者存活时间更长[64]。一项以肺癌小鼠模型为基础的临床前研究中发现,放疗后3~14天内肿瘤微环境中的CD8+ T细胞均润显著增加并达到峰值,并3~7天内终末耗竭的T细胞比例却尚未达到峰值,提示放疗后3~7天可能是联合免疫检查点抑制剂治疗的适宜时间窗[65]。然而,现有研究多集中于特定肿瘤类型(如非小细胞肺癌),将结论外扩至其他肿瘤仍需要进一步验证。此外,尽管同步方案或放疗后序贯免疫治疗的策略在一些临床前和临床试验中展现优势,但是其长期安全性和耐受性仍需大规模临床试验证实。Shunsuke等人[66]通过单细胞RNA测序和空间转录组分析,系统研究了食管癌患者在放疗过程中肿瘤微环境的动态变化。基于数学模型,研究者预测了五种免疫检查点抑制剂(包括抗PD-1、抗PD-L1、抗CTLA4、抗LAG3和抗TIGIT)在放疗不同时间点(放疗前、放疗中、放疗后)的疗效。结果显示抗PD-1/PD-L1抑制剂在放疗期间(同步治疗)效果最佳,而抗CTLA4和抗TIGIT治疗在放疗后(辅助治疗)仍能维持显著的治疗效果[66]

放疗与免疫检查点抑制剂的协同作用与放疗的分割方式和剂量大小密切相关。SBRT或立体定向放射外科(Stereotactic Radiosurgery, SRS)联合PD-1/PD-L1抑制剂在晚期非小细胞肺癌患者中可能比常规放疗联合PD-1/PD-L1抑制剂更有效[67]。值得注意的是,高剂量放射治疗(High Dose Radiation Therapy, HDRT)能够启动原位肿瘤疫苗接种效应,促进全身性抗肿瘤免疫反应,并引发显著的远隔效应。然而,HDRT的使用对正常周围组织和肿瘤浸润淋巴细胞(Tumor Infiltrating Lymphocytes, TIL)的活力均存在潜在风险[68] [69]。低剂量放疗(Low Dose Radiation Therapy, LDRT)被发现能有效重塑肿瘤微环境,可能克服HDRT引起的免疫抑制[62]。一项针对转移性黑色素瘤的研究发现,LDRT能够刺激免疫系统,通过重塑肿瘤微环境,诱发系统性的抗肿瘤活性[70] [71]。尽管低剂量放疗已展现出潜在的临床应用前景,但不同剂量和分次方案对免疫反应的调控机制及其疗效差异仍需进一步深入研究。

5. 结语

放疗与免疫治疗的联合治疗,尤其是与PD-1/PD-L1抑制剂的协同作用,为实体瘤治疗带来了新的曙光。放疗通过激活干扰素基因刺激蛋白信号通路、诱导免疫原性细胞死亡以及上调MHC-I类分子表达等机制,调节肿瘤免疫微环境,与PD-1/PD-L1抑制剂产生协同作用,增强抗肿瘤免疫反应。相关开展的临床试验已在以非小细胞肺癌为主的实体瘤中展现出联合治疗的有效性与安全性,但不同癌种间获益仍然存在差异,且最佳的联合治疗时间安排、剂量及分割方案仍有待进一步探索。未来需深入研究联合治疗的分子机制,优化治疗策略,以实现个体化精准治疗,为更多肿瘤患者带来生存获益。

参考文献

[1] Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322.
https://doi.org/10.1038/nrc.2018.6
[2] Chun, S.G., Hu, C., Choy, H., Komaki, R.U., Timmerman, R.D., Schild, S.E., et al. (2017) Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. Journal of Clinical Oncology, 35, 56-62.
https://doi.org/10.1200/jco.2016.69.1378
[3] Bortfeld, T.R. and Loeffler, J.S. (2017) Three Ways to Make Proton Therapy Affordable. Nature, 549, 451-453.
https://doi.org/10.1038/549451a
[4] Yuan, T., Zhan, Z. and Qian, C. (2019) New Frontiers in Proton Therapy: Applications in Cancers. Cancer Communications, 39, 1-7.
https://doi.org/10.1186/s40880-019-0407-3
[5] Lomax, M.E., Folkes, L.K. and O'Neill, P. (2013) Biological Consequences of Radiation-Induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25, 578-585.
https://doi.org/10.1016/j.clon.2013.06.007
[6] Formenti, S.C. and Demaria, S. (2012) Radiation Therapy to Convert the Tumor into an in situ Vaccine. International Journal of Radiation OncologyBiologyPhysics, 84, 879-880.
https://doi.org/10.1016/j.ijrobp.2012.06.020
[7] Schaue, D., Ratikan, J.A., Iwamoto, K.S. and McBride, W.H. (2012) Maximizing Tumor Immunity with Fractionated Radiation. International Journal of Radiation OncologyBiologyPhysics, 83, 1306-1310.
https://doi.org/10.1016/j.ijrobp.2011.09.049
[8] Kornepati, A.V.R., Rogers, C.M., Sung, P. and Curiel, T.J. (2023) The Complementarity of DDR, Nucleic Acids and Anti-Tumour Immunity. Nature, 619, 475-486.
https://doi.org/10.1038/s41586-023-06069-6
[9] Galluzzi, L., Vitale, I., Warren, S., et al. (2020) Consensus Guidelines for the Definition, Detection and Interpretation of Immunogenic Cell Death. The Journal for ImmunoTherapy of Cancer, 8, e000337.
https://doi.org/10.1136/jitc-2019-000337
[10] Fucikova, J., Kepp, O., Kasikova, L., Petroni, G., Yamazaki, T., Liu, P., et al. (2020) Detection of Immunogenic Cell Death and Its Relevance for Cancer Therapy. Cell Death & Disease, 11, Article No. 1013.
https://doi.org/10.1038/s41419-020-03221-2
[11] Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. and Sharpe, A.H. (2001) CTLA-4 Regulates Induction of Anergy in vivo. Immunity, 14, 145-155.
https://doi.org/10.1016/s1074-7613(01)00097-8
[12] Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman, W.H., et al. (2023) Phase I Study of Single-Agent Anti-Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. Journal of Clinical Oncology, 41, 715-723.
https://doi.org/10.1200/jco.22.02270
[13] Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[14] Chen, L. and Han, X. (2015) Anti-PD-1/PD-L1 Therapy of Human Cancer: Past, Present, and Future. Journal of Clinical Investigation, 125, 3384-3391.
https://doi.org/10.1172/jci80011
[15] Chang, L., Barroso-Sousa, R., Tolaney, S.M., Hodi, F.S., Kaiser, U.B. and Min, L. (2018) Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocrine Reviews, 40, 17-65.
https://doi.org/10.1210/er.2018-00006
[16] Zhang, Y. and Zhang, Z. (2020) The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cellular & Molecular Immunology, 17, 807-821.
https://doi.org/10.1038/s41423-020-0488-6
[17] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for Pd-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/nejmoa1606774
[18] Herbst, R.S., Giaccone, G., de Marinis, F., Reinmuth, N., Vergnenegre, A., Barrios, C.H., et al. (2020) Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. New England Journal of Medicine, 383, 1328-1339.
https://doi.org/10.1056/nejmoa1917346
[19] Sharma, P., Retz, M., Siefker-Radtke, A., Baron, A., Necchi, A., Bedke, J., et al. (2017) Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (CheckMate 275): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 18, 312-322.
https://doi.org/10.1016/s1470-2045(17)30065-7
[20] Galon, J. and Bruni, D. (2019) Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nature Reviews Drug Discovery, 18, 197-218.
https://doi.org/10.1038/s41573-018-0007-y
[21] Yi, M., Zheng, X., Niu, M., Zhu, S., Ge, H. and Wu, K. (2022) Combination Strategies with PD-1/PD-L1 Blockade: Current Advances and Future Directions. Molecular Cancer, 21, Article No. 28.
https://doi.org/10.1186/s12943-021-01489-2
[22] Yang, K., Halima, A. and Chan, T.A. (2023) Antigen Presentation in Cancer—Mechanisms and Clinical Implications for Immunotherapy. Nature Reviews Clinical Oncology, 20, 604-623.
https://doi.org/10.1038/s41571-023-00789-4
[23] Kalbasi, A. and Ribas, A. (2019) Tumour-Intrinsic Resistance to Immune Checkpoint Blockade. Nature Reviews Immunology, 20, 25-39.
https://doi.org/10.1038/s41577-019-0218-4
[24] Demaria, S., Bhardwaj, N., McBride, W.H. and Formenti, S.C. (2005) Combining Radiotherapy and Immunotherapy: A Revived Partnership. International Journal of Radiation OncologyBiologyPhysics, 63, 655-666.
https://doi.org/10.1016/j.ijrobp.2005.06.032
[25] Postow, M.A., Callahan, M.K., Barker, C.A., Yamada, Y., Yuan, J., Kitano, S., et al. (2012) Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. New England Journal of Medicine, 366, 925-931.
https://doi.org/10.1056/nejmoa1112824
[26] Hatzi, V.I., Laskaratou, D.A., Mavragani, I.V., Nikitaki, Z., Mangelis, A., Panayiotidis, M.I., et al. (2015) Non-Targeted Radiation Effects in vivo: A Critical Glance of the Future in Radiobiology. Cancer Letters, 356, 34-42.
https://doi.org/10.1016/j.canlet.2013.11.018
[27] Shaverdian, N., Lisberg, A.E., Bornazyan, K., Veruttipong, D., Goldman, J.W., Formenti, S.C., et al. (2017) Previous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. The Lancet Oncology, 18, 895-903.
https://doi.org/10.1016/s1470-2045(17)30380-7
[28] Rodel, F., Frey, B., Gaipl, U., Keilholz, L., Fournier, C., Manda, K., et al. (2012) Modulation of Inflammatory Immune Reactions by Low-Dose Ionizing Radiation: Molecular Mechanisms and Clinical Application. Current Medicinal Chemistry, 19, 1741-1750.
https://doi.org/10.2174/092986712800099866
[29] Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J. (2013) Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 339, 786-791.
https://doi.org/10.1126/science.1232458
[30] Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., et al. (2013) Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 339, 826-830.
https://doi.org/10.1126/science.1229963
[31] Ishikawa, H. and Barber, G.N. (2008) STING Is an Endoplasmic Reticulum Adaptor That Facilitates Innate Immune Signalling. Nature, 455, 674-678.
https://doi.org/10.1038/nature07317
[32] Long, Y., Guo, J., Chen, J., Sun, J., Wang, H., Peng, X., et al. (2023) GPR162 Activates STING Dependent DNA Damage Pathway as a Novel Tumor Suppressor and Radiation Sensitizer. Signal Transduction and Targeted Therapy, 8, Article No. 48.
https://doi.org/10.1038/s41392-022-01224-3
[33] Du, S., Chen, G., Yang, P., Chen, Y., Hu, Y., Zhao, Q., et al. (2022) Radiation Therapy Promotes Hepatocellular Carcinoma Immune Cloaking via PD-L1 Upregulation Induced by cGAS-STING Activation. International Journal of Radiation OncologyBiologyPhysics, 112, 1243-1255.
https://doi.org/10.1016/j.ijrobp.2021.12.162
[34] Xue, A., Shang, Y., Jiao, P., Zhang, S., Zhu, C., He, X., et al. (2022) Increased Activation of cGAS‐STING Pathway Enhances Radiosensitivity of Non‐small Cell Lung Cancer Cells. Thoracic Cancer, 13, 1361-1368.
https://doi.org/10.1111/1759-7714.14400
[35] Li, L., Yin, Q., Kuss, P., Maliga, Z., Millán, J.L., Wu, H., et al. (2014) Hydrolysis of 2′3′-cGAMP by ENPP1 and Design of Nonhydrolyzable Analogs. Nature Chemical Biology, 10, 1043-1048.
https://doi.org/10.1038/nchembio.1661
[36] Carozza, J.A., Böhnert, V., Nguyen, K.C., Skariah, G., Shaw, K.E., Brown, J.A., et al. (2020) Extracellular cGAMP Is a Cancer-Cell-Produced Immunotransmitter Involved in Radiation-Induced Anticancer Immunity. Nature Cancer, 1, 184-196.
https://doi.org/10.1038/s43018-020-0028-4
[37] Vanpouille-Box, C., Alard, A., Aryankalayil, M.J., Sarfraz, Y., Diamond, J.M., Schneider, R.J., et al. (2017) DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nature Communications, 8, Article No. 15618.
https://doi.org/10.1038/ncomms15618
[38] Galassi, C., Klapp, V., Yamazaki, T. and Galluzzi, L. (2023) Molecular Determinants of Immunogenic Cell Death Elicited by Radiation Therapy. Immunological Reviews, 321, 20-32.
https://doi.org/10.1111/imr.13271
[39] Yu, W., Sun, G., Li, J., Xu, J. and Wang, X. (2019) Mechanisms and Therapeutic Potentials of Cancer Immunotherapy in Combination with Radiotherapy and/or Chemotherapy. Cancer Letters, 452, 66-70.
https://doi.org/10.1016/j.canlet.2019.02.048
[40] Rodriguez-Ruiz, M.E., Rodriguez, I., Leaman, O., López-Campos, F., Montero, A., Conde, A.J., et al. (2019) Immune Mechanisms Mediating Abscopal Effects in Radioimmunotherapy. Pharmacology & Therapeutics, 196, 195-203.
https://doi.org/10.1016/j.pharmthera.2018.12.002
[41] Suzuki, Y., Mimura, K., Yoshimoto, Y., Watanabe, M., Ohkubo, Y., Izawa, S., et al. (2012) Immunogenic Tumor Cell Death Induced by Chemoradiotherapy in Patients with Esophageal Squamous Cell Carcinoma. Cancer Research, 72, 3967-3976.
https://doi.org/10.1158/0008-5472.can-12-0851
[42] Zhan, S., Cao, Z., Li, J., Chen, F., Lai, X., Yang, W., et al. (2024) Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death. Bioconjugate Chemistry, 36, 80-91.
https://doi.org/10.1021/acs.bioconjchem.4c00488
[43] Vanpouille-Box, C., Pilones, K.A., Wennerberg, E., Formenti, S.C. and Demaria, S. (2015) In situ Vaccination by Radiotherapy to Improve Responses to Anti-CTLA-4 Treatment. Vaccine, 33, 7415-7422.
https://doi.org/10.1016/j.vaccine.2015.05.105
[44] Dhatchinamoorthy, K., Colbert, J.D. and Rock, K.L. (2021) Cancer Immune Evasion through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 12, Article 636568.
https://doi.org/10.3389/fimmu.2021.636568
[45] Spiotto, M., Fu, Y. and Weichselbaum, R.R. (2016) The Intersection of Radiotherapy and Immunotherapy: Mechanisms and Clinical Implications. Science Immunology, 1, eaag1266.
https://doi.org/10.1126/sciimmunol.aag1266
[46] Karapetyan, L., Iheagwara, U.K., Olson, A.C., Chmura, S.J., Skinner, H.K. and Luke, J.J. (2023) Radiation Dose, Schedule, and Novel Systemic Targets for Radio-Immunotherapy Combinations. JNCI: Journal of the National Cancer Institute, 115, 1278-1293.
https://doi.org/10.1093/jnci/djad118
[47] Lind, H.T., Hall, S.C., Strait, A.A., Goon, J.B., Aleman, J.D., Chen, S.M.Y., et al. (2025) MHC Class I Upregulation Contributes to the Therapeutic Response to Radiotherapy in Combination with Anti-PD-L1/Anti-TGF-β in Squamous Cell Carcinomas with Enhanced CD8 T Cell Memory-Driven Response. Cancer Letters, 608, Article 217347.
https://doi.org/10.1016/j.canlet.2024.217347
[48] Wan, C., Sun, Y., Tian, Y., Lu, L., Dai, X., Meng, J., et al. (2020) Irradiated Tumor Cell-Derived Microparticles Mediate Tumor Eradication via Cell Killing and Immune Reprogramming. Science Advances, 6, eaay9789.
https://doi.org/10.1126/sciadv.aay9789
[49] Deng, S., Wang, J., Hu, Y., Sun, Y., Yang, X., Zhang, B., et al. (2024) Irradiated Tumour Cell-Derived Microparticles Upregulate MHC-I Expression in Cancer Cells via DNA Double-Strand Break Repair Pathway. Cancer Letters, 592, Article 216898.
https://doi.org/10.1016/j.canlet.2024.216898
[50] Wan, S., Pestka, S., Jubin, R.G., Lyu, Y.L., Tsai, Y. and Liu, L.F. (2012) Chemotherapeutics and Radiation Stimulate MHC Class I Expression through Elevated Interferon-Beta Signaling in Breast Cancer Cells. PLOS ONE, 7, e32542.
https://doi.org/10.1371/journal.pone.0032542
[51] Lugade, A.A., Sorensen, E.W., Gerber, S.A., Moran, J.P., Frelinger, J.G. and Lord, E.M. (2008) Radiation-Induced IFN-γ Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139.
https://doi.org/10.4049/jimmunol.180.5.3132
[52] Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571.
https://doi.org/10.1038/nature13954
[53] Gong, X., Li, X., Jiang, T., Xie, H., Zhu, Z., Zhou, F., et al. (2017) Combined Radiotherapy and Anti-PD-L1 Antibody Synergistically Enhances Antitumor Effect in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 12, 1085-1097.
https://doi.org/10.1016/j.jtho.2017.04.014
[54] Song, H., Jin, H., Kim, J., Ha, I., Kang, K., Choi, H., et al. (2021) Abscopal Effect of Radiotherapy Enhanced with Immune Checkpoint Inhibitors of Triple Negative Breast Cancer in 4T1 Mammary Carcinoma Model. International Journal of Molecular Sciences, 22, Article 10476.
https://doi.org/10.3390/ijms221910476
[55] Rompré-Brodeur, A., Shinde-Jadhav, S., Ayoub, M., Piccirillo, C.A., Seuntjens, J., Brimo, F., et al. (2020) PD-1/PD-L1 Immune Checkpoint Inhibition with Radiation in Bladder Cancer: In situ and Abscopal Effects. Molecular Cancer Therapeutics, 19, 211-220.
https://doi.org/10.1158/1535-7163.mct-18-0986
[56] Rodriguez-Ruiz, M.E., Rodriguez, I., Barbes, B., Mayorga, L., Sanchez-Paulete, A.R., Ponz-Sarvise, M., et al. (2017) Brachytherapy Attains Abscopal Effects When Combined with Immunostimulatory Monoclonal Antibodies. Brachytherapy, 16, 1246-1251.
https://doi.org/10.1016/j.brachy.2017.06.012
[57] Deutsch, E., Chargari, C., Galluzzi, L. and Kroemer, G. (2019) Optimising Efficacy and Reducing Toxicity of Anticancer Radioimmunotherapy. The Lancet Oncology, 20, e452-e463.
https://doi.org/10.1016/s1470-2045(19)30171-8
[58] Theelen, W.S.M.E., Peulen, H.M.U., Lalezari, F., van der Noort, V., de Vries, J.F., Aerts, J.G.J.V., et al. (2019) Effect of Pembrolizumab after Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients with Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncology, 5, 1276-1282.
https://doi.org/10.1001/jamaoncol.2019.1478
[59] Torok, J.A. and Salama, J.K. (2019) Combining Immunotherapy and Radiotherapy for the STAR Treatment. Nature Reviews Clinical Oncology, 16, 666-667.
https://doi.org/10.1038/s41571-019-0277-2
[60] Hu, Y., Zhou, M., Tang, J., Li, S., Liu, H., Hu, J., et al. (2023) Efficacy and Safety of Stereotactic Body Radiotherapy Combined with Camrelizumab and Apatinib in Patients with Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. Clinical Cancer Research, 29, 4088-4097.
https://doi.org/10.1158/1078-0432.ccr-22-2592
[61] Parikh, A.R., Szabolcs, A., Allen, J.N., Clark, J.W., Wo, J.Y., Raabe, M., et al. (2021) Radiation Therapy Enhances Immunotherapy Response in Microsatellite Stable Colorectal and Pancreatic Adenocarcinoma in a Phase II Trial. Nature Cancer, 2, 1124-1135.
https://doi.org/10.1038/s43018-021-00269-7
[62] Ji, X., Jiang, W., Wang, J., Zhou, B., Ding, W., Liu, S., et al. (2023) Application of Individualized Multimodal Radiotherapy Combined with Immunotherapy in Metastatic Tumors. Frontiers in Immunology, 13, Article 1106644.
https://doi.org/10.3389/fimmu.2022.1106644
[63] Buchwald, Z.S., Wynne, J., Nasti, T.H., Zhu, S., Mourad, W.F., Yan, W., et al. (2018) Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation. Frontiers in Oncology, 8, Article 612.
https://doi.org/10.3389/fonc.2018.00612
[64] Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. New England Journal of Medicine, 379, 2342-2350.
https://doi.org/10.1056/nejmoa1809697
[65] Zhang, Y., Hu, H., Zhou, S., Xia, W., Zhang, Y., Zhang, J., et al. (2023) PET-Based Radiomics Visualizes Tumor-Infiltrating CD8 T Cell Exhaustion to Optimize Radiotherapy/Immunotherapy Combination in Mouse Models of Lung Cancer. Biomarker Research, 11, Article No. 10.
https://doi.org/10.1186/s40364-023-00454-z
[66] Sakai, S.A., Saeki, K., Chi, S., Hamaya, Y., Du, J., Nakamura, M., et al. (2024) Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunology Research, 13, 353-364.
https://doi.org/10.1158/2326-6066.cir-24-0610
[67] Geng, Y., Zhang, Q., Feng, S., Li, C., Wang, L., Zhao, X., et al. (2021) Safety and Efficacy of PD‐1/PD‐L1 Inhibitors Combined with Radiotherapy in Patients with Non‐Small‐Cell Lung Cancer: A Systematic Review and Meta‐Analysis. Cancer Medicine, 10, 1222-1239.
https://doi.org/10.1002/cam4.3718
[68] Jin, J., Hu, C., Xiao, Y., Zhang, H., Paulus, R., Ellsworth, S.G., et al. (2021) Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers, 13, Article 6193.
https://doi.org/10.3390/cancers13246193
[69] Gough, M.J. and Crittenden, M.R. (2022) The Paradox of Radiation and T Cells in Tumors. Neoplasia, 31, Article 100808.
https://doi.org/10.1016/j.neo.2022.100808
[70] Clark, P.A., Sriramaneni, R.N., Bates, A.M., Jin, W.J., Jagodinsky, J.C., Hernandez, R., et al. (2021) Low-Dose Radiation Potentiates the Propagation of Anti-Tumor Immunity against Melanoma Tumor in the Brain after in situ Vaccination at a Tumor Outside the Brain. Radiation Research, 195, 522-540.
https://doi.org/10.1667/rade-20-00237.1
[71] Rafiq, Z., Kang, M., Barsoumian, H.B., Manzar, G.S., Hu, Y., Leuschner, C., et al. (2025) Enhancing Immunotherapy Efficacy with Synergistic Low-Dose Radiation in Metastatic Melanoma: Current Insights and Prospects. Journal of Experimental & Clinical Cancer Research, 44, Article No. 31.
https://doi.org/10.1186/s13046-025-03281-2