[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. https://doi.org/10.3322/caac.21654
|
[2]
|
The National Lung Screening Trial Research Team (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409. https://doi.org/10.1056/nejmoa1102873
|
[3]
|
Li, N., Tan, F., Chen, W., Dai, M., Wang, F., Shen, S., et al. (2022) One-off Low-Dose CT for Lung Cancer Screening in China: A Multicentre, Population-Based, Prospective Cohort Study. The Lancet Respiratory Medicine, 10, 378-391. https://doi.org/10.1016/s2213-2600(21)00560-9
|
[4]
|
Mazzone, P.J. and Lam, L. (2022) Evaluating the Patient with a Pulmonary Nodule. JAMA, 327, 264-273. https://doi.org/10.1001/jama.2021.24287
|
[5]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[6]
|
Truong, M.T., Ko, J.P., Rossi, S.E., Rossi, I., Viswanathan, C., Bruzzi, J.F., et al. (2014) Update in the Evaluation of the Solitary Pulmonary Nodule. RadioGraphics, 34, 1658-1679. https://doi.org/10.1148/rg.346130092
|
[7]
|
Yuan, J., Sun, Y., Xu, F., Li, M., Fan, M., Zhang, C., et al. (2022) Cost-Effectiveness of Lung Cancer Screening Combined with Nurse-Led Smoking Cessation Intervention: A Population-Based Microsimulation Study. International Journal of Nursing Studies, 134, Article 104319. https://doi.org/10.1016/j.ijnurstu.2022.104319
|
[8]
|
Wu, F., Wu, Y., Chen, C. and Yang, S. (2022) Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education. Journal of Personalized Medicine, 12, Article 26. https://doi.org/10.3390/jpm12010026
|
[9]
|
Chen, C., Chang, C., Tu, C., Liao, W., Wu, B., Chou, K., et al. (2018) Radiomic Features Analysis in Computed Tomography Images of Lung Nodule Classification. PLOS ONE, 13, e0192002. https://doi.org/10.1371/journal.pone.0192002
|
[10]
|
Reiazi, R., Abbas, E., Famiyeh, P., Rezaie, A., Kwan, J.Y.Y., Patel, T., et al. (2021) The Impact of the Variation of Imaging Parameters on the Robustness of Computed Tomography Radiomic Features: A Review. Computers in Biology and Medicine, 133, Article 104400. https://doi.org/10.1016/j.compbiomed.2021.104400
|
[11]
|
MacMahon, H., Naidich, D.P., Goo, J.M., Lee, K.S., Leung, A.N.C., Mayo, J.R., et al. (2017) Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology, 284, 228-243. https://doi.org/10.1148/radiol.2017161659
|
[12]
|
She, Y., Zhao, L., Dai, C., Ren, Y., Zha, J., Xie, H., et al. (2016) Preoperative Nomogram for Identifying Invasive Pulmonary Adenocarcinoma in Patients with Pure Ground-Glass Nodule: A Multi-Institutional Study. Oncotarget, 8, 17229-17238. https://doi.org/10.18632/oncotarget.11236
|
[13]
|
Mao, R., She, Y., Zhu, E., Chen, D., Dai, C., Wu, C., et al. (2019) A Proposal for Restaging of Invasive Lung Adenocarcinoma Manifesting as Pure Ground Glass Opacity. The Annals of Thoracic Surgery, 107, 1523-1531. https://doi.org/10.1016/j.athoracsur.2018.11.039
|
[14]
|
Pan, F., Feng, L., Liu, B., Hu, Y. and Wang, Q. (2023) Application of Radiomics in Diagnosis and Treatment of Lung Cancer. Frontiers in Pharmacology, 14, Article 1295511. https://doi.org/10.3389/fphar.2023.1295511
|
[15]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[16]
|
Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W.E.E., et al. (2016) The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology, 11, 39-51. https://doi.org/10.1016/j.jtho.2015.09.009
|
[17]
|
Qureshi, N.R., Shah, A., Eaton, R.J., Miles, K. and Gilbert, F.J. (2016) Dynamic Contrast Enhanced CT in Nodule Characterization: How We Review and Report. Cancer Imaging, 16, Article No. 16. https://doi.org/10.1186/s40644-016-0074-4
|
[18]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[19]
|
Yanagawa, M., Tsubamoto, M., Satoh, Y., Hata, A., Miyata, T., Yoshida, Y., et al. (2020) Lung Adenocarcinoma at CT with 0.25-Mm Section Thickness and a 2048 Matrix: High-Spatial-Resolution Imaging for Predicting Invasiveness. Radiology, 297, 462-471. https://doi.org/10.1148/radiol.2020201911
|
[20]
|
Albers, J., Wagner, W.L., Fiedler, M.O., Rothermel, A., Wünnemann, F., Di Lillo, F., et al. (2023) High Resolution Propagation-Based Lung Imaging at Clinically Relevant X-Ray Dose Levels. Scientific Reports, 13, Article No. 4788. https://doi.org/10.1038/s41598-023-30870-y
|
[21]
|
Sharma, S., Pal, D., Abadi, E., Sauer, T., Segars, P., Hsieh, J., et al. (2023) Can Photon-Counting CT Improve Estimation Accuracy of Morphological Radiomics Features? A Simulation Study for Assessing the Quantitative Benefits from Improved Spatial Resolution in Deep Silicon-Based Photon-Counting CT. Academic Radiology, 30, 1153-1163. https://doi.org/10.1016/j.acra.2022.06.018
|
[22]
|
Zhang, C., Wang, Q., Feng, H., Cui, Y., Yu, X. and Shi, G. (2023) Computed-Tomography-Based Radiomic Nomogram for Predicting the Risk of Indeterminate Small (5-20 Mm) Solid Pulmonary Nodules. Diagnostic and Interventional Radiology, 29, 283-290. https://doi.org/10.4274/dir.2022.22395
|
[23]
|
Ren, C., Xu, M., Zhang, J., Zhang, F., Song, S., Sun, Y., et al. (2022) Classification of Solid Pulmonary Nodules Using a Machine-Learning Nomogram Based on 18F-FDG PET/CT Radiomics Integrated Clinicobiological Features. Annals of Translational Medicine, 10, 1265-1265. https://doi.org/10.21037/atm-22-2647
|
[24]
|
Kamiya, A., Murayama, S., Kamiya, H., Yamashiro, T., Oshiro, Y. and Tanaka, N. (2014) Kurtosis and Skewness Assessments of Solid Lung Nodule Density Histograms: Differentiating Malignant from Benign Nodules on CT. Japanese Journal of Radiology, 32, 14-21. https://doi.org/10.1007/s11604-013-0264-y
|
[25]
|
Choi, W., Oh, J.H., Riyahi, S., Liu, C., Jiang, F., Chen, W., et al. (2018) Radiomics Analysis of Pulmonary Nodules in Low‐Dose CT for Early Detection of Lung Cancer. Medical Physics, 45, 1537-1549. https://doi.org/10.1002/mp.12820
|
[26]
|
Chen, Q.-L., Li, M.-M., Xue, T., Peng, H., Shi, J., Li, Y.-Y., et al. (2023) Radiomics Nomogram Integrating Intratumoural and Peritumoural Features to Predict Lymph Node Metastasis and Prognosis in Clinical Stage IA Non-Small Cell Lung Cancer: A Two-Centre Study. Clinical Radiology, 78, e359-e367. https://doi.org/10.1016/j.crad.2023.02.004
|
[27]
|
Tu, S., Wang, C., Pan, K., Wu, Y. and Wu, C. (2018) Localized Thin-Section CT with Radiomics Feature Extraction and Machine Learning to Classify Early-Detected Pulmonary Nodules from Lung Cancer Screening. Physics in Medicine & Biology, 63, Article 065005. https://doi.org/10.1088/1361-6560/aaafab
|
[28]
|
Balagurunathan, Y., Schabath, M.B., Wang, H., Liu, Y. and Gillies, R.J. (2019) Quantitative Imaging Features Improve Discrimination of Malignancy in Pulmonary Nodules. Scientific Reports, 9, Article No. 8528. https://doi.org/10.1038/s41598-019-44562-z
|
[29]
|
Shen, Y., Xu, F., Zhu, W., Hu, H., Chen, T. and Li, Q. (2020) Multiclassifier Fusion Based on Radiomics Features for the Prediction of Benign and Malignant Primary Pulmonary Solid Nodules. Annals of Translational Medicine, 8, 171-171. https://doi.org/10.21037/atm.2020.01.135
|
[30]
|
Liu, Y., Zhou, J., Wu, J., Wang, W., Wang, X., Guo, J., et al. (2022) Development and Validation of Machine Learning Models to Predict Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer: A Multi-Center Retrospective Radiomics Study. Cancer Control, 29, 1-8. https://doi.org/10.1177/10732748221092926
|