自噬在心血管疾病中的研究进展
Advances in Autophagy Research in Cardiovascular Diseases
DOI: 10.12677/acm.2025.1541332, PDF, HTML, XML,   
作者: 王 成:绍兴文理学院医学院,浙江 绍兴;米亚非*:浙江省台州医院心内科,浙江 台州
关键词: 自噬心力衰竭心肌缺血糖尿病心肌病Autophagy Heart Failure Myocardial Ischemia Diabetic Cardiomyopathy
摘要: 自噬作为真核细胞清除受损成分、维持稳态的关键机制,通过巨自噬、微自噬和分子伴侣介导自噬三种形式动态调控细胞命运。自噬活性受mTOR、AMPK及Mst1等信号通路精密调控。在心血管疾病中,自噬呈现双向作用:心力衰竭早期适度自噬通过清除受损线粒体延缓心衰进展,但过度激活会破坏自噬流稳态,加剧病理性重塑;心肌缺血阶段自噬发挥保护作用,而再灌注期ROS诱导的异常自噬则加重细胞死亡;糖尿病心肌病中自噬活性随病程呈现动态变化,早期抑制自噬可缓解纤维化,长期增强自噬以改善线粒体功能;阿霉素心肌损伤中自噬兼具保护与毒性双重角色。当前研究强调自噬通量动态平衡的重要性,但是自噬与铁死亡等非经典凋亡途径的交互作用将会给未来研究、治疗等提供新方向。
Abstract: As a pivotal mechanism for eukaryotic cells to eliminate damaged components and maintain homeostasis, autophagy dynamically regulates cellular fate through three forms: macroautophagy, micro-autophagy, and chaperone-mediated autophagy. Autophagic activity is precisely regulated by signaling pathways including mTOR, AMPK, and Mst1. In cardiovascular diseases, autophagy exhibits dual roles: during early-stage heart failure, moderate autophagy delays disease progression by clearing damaged mitochondria, while excessive activation disrupts autophagic flux homeostasis and exacerbates pathological remodeling. Myocardial ischemia benefits from protective autophagy, whereas reperfusion-induced ROS triggers aberrant autophagy that aggravates cell death. Diabetic cardiomyopathy demonstrates dynamic changes in autophagic activity throughout disease progression—early-stage autophagy inhibition alleviates fibrosis, while long-term enhancement improves mitochondrial function. In doxorubicin-induced cardiotoxicity, autophagy manifests both protective and toxic effects. Current research emphasizes the importance of autophagy flux homeostasis, but the interaction between autophagy and ferroptosis and other non-canonical apoptotic pathways will provide new directions for future research and treatment.
文章引用:王成, 米亚非. 自噬在心血管疾病中的研究进展[J]. 临床医学进展, 2025, 15(4): 3585-3590. https://doi.org/10.12677/acm.2025.1541332

1. 引言

自噬(Autophagy)是真核细胞通过形成双层膜结构的自噬体包裹并降解细胞内受损蛋白质、细胞器及异常成分的过程,是维持细胞稳态的关键机制。根据底物递送方式的不同主要可分为三种类型:巨自噬(Macroautophagy)是指通过自噬体包裹底物并与溶酶体融合完成降解,这是目前研究最为深入的形式;微自噬(Microautophagy)是指通过溶酶体膜直接内陷吞噬底物;而分子伴侣介导的自噬(Chaperone-mediated Autophagy)则依赖分子伴侣特异性识别含有特定序列的底物蛋白并将其转运至溶酶体。在生理状态下,自噬通常维持在基础水平以执行稳态维持功能。当细胞受到氧化应激、代谢紊乱或毒物刺激等病理条件时,自噬活性会显著增强从而发挥保护作用。值得注意的是,自噬具有双向调控特性:适度激活可限制细胞紊乱和程序性死亡,但在自噬不足或过度激活的情况下,反而可能促进细胞凋亡甚至坏死性死亡。近年研究表明,自噬在心脏疾病的发生发展中具有关键作用。本研究系统阐述自噬在心血管疾病中的调控机制以及潜在治疗价值。

2. 自噬相关信号通路

自噬对细胞内稳态的维持发挥着重要作用,与多种信号通路相关。

1) 哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)是一类保守的丝氨酸/苏氨酸蛋白激酶,通过形成mTOR复合物1 (mTORC1)和mTOR复合物2 (mTORC2)两种功能性复合体发挥生物学作用。其中,mTORC1与自噬调控关系最为密切,通过整合营养物质、生长因子和能量状态等信号,协调调控蛋白质合成、细胞增殖、代谢稳态及自噬等关键生理过程。具体而言,在营养充足条件下,mTORC1通过磷酸化自噬起始的关键激酶UNC-51样激酶1 (ULK1)抑制自噬体形成;而在营养匮乏或应激状态下,mTORC1活性受抑,导致ULK1去磷酸化,从而启动自噬程序[1] [2]。此外,mTORC2可通过磷酸化蛋白激酶B (Akt)和哺乳动物不育系20样激酶1 (Mst1)等下游效应分子间接影响自噬进程[1]

2) AMP激活蛋白激酶(AMP-activated protein kinase, AMPK)是细胞能量稳态的核心调控因子,其活性通过细胞内ATP/AMP比值动态变化而被精确调控:当能量耗竭导致ATP水平下降、AMP累积时,AMPK通过变构激活机制启动。在自噬调控中,AMPK通过下列方式调节自噬进程:其一,AMPK通过磷酸化结节性硬化复合体2 (TSC2)促进其活化,后者通过抑制小G蛋白Rheb的活性负向调控mTORC1,从而解除mTORC1对自噬的抑制作用;其二,AMPK可直接磷酸化ULK1,促使ULK1从mTORC1复合体解离并诱导自噬体形成[2] [3]

3) 哺乳动物STE20样激酶1(Mammalian STE20-like kinase 1, Mst1)是一类丝氨酸/苏氨酸蛋白激酶,其活性可被氧化应激等促凋亡信号特异性激活。在自噬调控中,Mst1通过磷酸化自噬关键调控蛋白Beclin 1 (BECN1)发挥双重作用:一方面,Mst1介导的Beclin 1磷酸化增强其与抗凋亡蛋白Bcl-2的结合能力,通过稳定Bcl-2-Beclin 1复合物抑制自噬体形成;另一方面,此结合过程会竞争性破坏Bcl-2与促凋亡蛋白Bax的相互作用,导致游离Bax寡聚化并激活线粒体凋亡通路。研究表明,在心肌细胞中,氧化应激通过激活Mst1,抑制自噬机制和启动凋亡程序,从而加剧心肌细胞死亡[4]

3. 自噬在心力衰竭中调控作用

心力衰竭(Heart Failure, HF)指心脏无法有效泵血以满足机体代谢需求的状态。其核心机制主要是心脏收缩或舒张功能障碍,导致血液淤积和组织灌注不足。近年研究表明,自噬在HF进程中发挥重要作用,但其具体机制仍存在争议。一方面研究指出自噬有利于HF。Nakai等团队发现,压力超负荷模型中心肌细胞适度激活自噬,可通过清除受损线粒体减少氧化应激损伤,从而延缓心衰进展[5];MY等研究表明Mst1基因敲除小鼠通过增强自噬活性,显著改善心肌梗死后心脏重构和功能障碍[4];此外,在苯肾上腺素诱导的心肌细胞肥大模型中,Atg7基因沉默导致自噬抑制,使得心肌肥厚程度增加,而Sestrin1过表达通过AMPK/mTORC1信号轴激活自噬,抑制心肌肥厚的发生[6]。而SA等研究通过使用自噬诱导剂来激活线粒体自噬,以此改善心功能[7]

然而,令一方面自噬过度激活造成HF进展:在严重心衰的小鼠模型中,其心肌细胞中Beclin 1的过度表达,从而加剧了心肌病理性重塑[8],而组蛋白去乙酰化酶(HDAC)抑制剂通过抑制自噬相关基因表达,可减轻压力超负荷(PO)小鼠的心肌肥厚,改善心脏功能[9]。Li F等构建的小鼠心肌肥厚模型显示,疾病早期自噬短暂激活后迅速进入衰竭状态,而使用紫丁香苷干预,可抑制自噬过度活化,使心肌肥厚面积减少[10]

综上可认为,在心力衰竭中,自噬作为代偿机制被激活,在一定程度上发挥保护作用;但是随着疾病进展,自噬降低会使得细胞质中的组件降解减少,从而促进心肌肥厚;并且过度的自噬破坏了自噬流的平衡,损伤了必要的蛋白质与细胞器从而引起细胞凋亡并推动疾病向失代偿性心衰进展。这一动态平衡的破坏可能是心衰从适应性代偿向失代偿转变的关键节点。

4. 自噬在心肌缺血/再灌注损伤中作用

心肌缺血是指心肌细胞因冠状动脉血流减少或中断,从而导致的氧气和营养物质供应不足的过程。常见原因包括冠状动脉粥样硬化斑块破裂、血栓形成或血管痉挛。当出现缺血损伤时,此时AMPK信号轴迅速启动自噬程序。AMPK磷酸化ULK1直接激活自噬体形成,同时抑制Rheb/mTORC1信号轴解除其对自噬的负向调控[3] [11]。有研究证实,神经鞘氨醇磷酸胆碱通过PTEN/AKT1/mTOR通路增强自噬活性,使缺血区心肌细胞凋亡率降低[12]。在猪的慢性缺血心脏模型中,通过自噬依赖性清除受损的线粒体,能显著减少凋亡形成[13] [14]。此外在兔心梗模型中,用组蛋白去乙酰化酶治疗后,通过上调Atg5/Atg7表达增强自噬流,可使兔心肌梗死面积缩小,而沉默Atg5/Atg7基因会抑制该保护效应[15]

再灌注是通过溶栓治疗、经皮冠状动脉介入术或搭桥手术恢复缺血心肌的血液供应。再灌注是虽恢复血流供应,但线粒体呼吸链异常会导致活性氧(ROS)的聚集与爆发,会引发二次损伤。此时自噬呈现病理性激活特征:Beclin 1在ROS依赖的JNK通路激活下过度表达,促使自噬体-溶酶体融合[3]。Yu P等研究表明大鼠心肌梗死模型中LC3Ⅱ/Ⅰ比例,Beclin1,Atg5和Atg7表达均升高,自噬过度活化损伤心肌细胞,而使用七氟醚处理可促进自噬体清除,最终减少心肌细胞死亡[16]

总之,在心肌梗死缺血时期,自噬作为一种适应性反应,对抗心肌缺氧和能量供给不足带来的损伤,发挥着保护性作用。而在再灌注阶段自噬的作用及其机制仍不明确,但达到共识的是,促进正常自噬、抑制过度自噬及凋亡可对抗缺血/再灌注过程中的心肌细胞死亡,发挥心脏保护作用。

5. 自噬与糖尿病心肌病

糖尿病心肌病作为糖尿病患者最主要的致死性并发症之一,其发病机制涉及胰岛素抵抗、代偿性高胰岛素血症及持续高血糖等多因素协同作用。从病理学角度看,该疾病以心肌纤维化和线粒体功能紊乱为典型特征。近年来研究揭示,自噬活动的异常与糖尿病心肌病发展密切相关:在Ⅱ型糖尿病小鼠模型中观察到自噬体生成,以及自噬体与溶酶体融合效率显著降低[17];高脂高糖饮食诱导的猪心脏模型则显示自噬活性显著下降[18]。值得注意的是,在用链脲佐菌素(STZ)诱导的1型糖尿病大鼠模型中,模型组自噬水平明显降低,而外源性补充1,25-二羟维生素D3后可通过抑制mTOR信号通路来上调自噬,产生心肌保护效应[19]。然而其他研究表明Beclin-1基因过表达介导的自噬激活反而加剧糖尿病相关心脏损伤[20]。这种双向作用提示我们需关注自噬调控的时效性——在注射STZ诱发糖尿病心肌病的早期阶段(1周内),抑制自噬能有效改善心肌纤维化进展[21],而在较长时间内(12周)通过增强自噬水平可以改善心肌纤维化[22] [23]。以上研究表明,自噬功能在糖尿病病程中存在动态变化,其作用方向取决于自噬强度与病程的发展。

6. 自噬与阿霉素导致的心肌损伤

阿霉素(Doxorubicin, DOX)作为广谱抗肿瘤药物,其临床应用主要受限于剂量依赖性心肌损伤。有研究表明,DOX通过剂量依赖性机制降低转录因子GATA4表达并促进自噬体形成,从而加剧心肌细胞死亡。而GATA4过表达可通过抑制心肌细胞自噬流,显著减弱DOX诱导的心肌毒性作用[24]。然而也有其他研究表明持相反观点,Li DL等研究指出DOX可通过mTOR通路的方式直接抑制心肌细胞自噬流[25];Bartlett JJ研究表明DOX也能通过下调转录因子EB(TFEB)表达水平,进一步干扰自噬功能并促进心肌细胞凋亡[26]。当TFEB水平被外源性恢复时,自噬水平提高,可有效逆转DOX引起的心肌损伤[27]。这种机制上的矛盾性揭示出:在阿霉素介导的心肌损伤过程中,自噬的调控具有双重性——既可能作为细胞保护机制发挥作用,也可能在特定条件下被转化为致死性信号。

7. 展望

近年来,心脏自噬机制的研究已取得突破性进展,揭示了其在心肌病理生理过程中的核心调控作用。尽管通过靶向调节自噬通路为心血管疾病治疗提供了创新策略,但仍面临关键挑战:如何精准评估特定病理条件下自噬活动的动态平衡(激活/抑制状态)。此外自噬的双重角色在心脏疾病中体现得尤为突出——既可通过清除受损成分发挥细胞保护作用,又在特定应激条件下过度激活并触发程序性坏死,这种功能悖论使得对于自噬通量的评估就显得尤为重要。更进一步,过量自噬不仅可直接诱导细胞死亡,是否还会与铁死亡、铜死亡等非经典凋亡途径产生级联效应,这种多通路的交叉调控,将会成为未来研究的新方向。

NOTES

*通讯作者。

参考文献

[1] Sciarretta, S., Volpe, M. and Sadoshima, J. (2014) Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circulation Research, 114, 549-564.
https://doi.org/10.1161/circresaha.114.302022
[2] Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141.
https://doi.org/10.1038/ncb2152
[3] Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. (2007) Distinct Roles of Autophagy in the Heart during Ischemia and Reperfusion. Circulation Research, 100, 914-922.
https://doi.org/10.1161/01.res.0000261924.76669.36
[4] Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Ivessa, A., et al. (2013) Mst1 Inhibits Autophagy by Promoting the Interaction between Beclin1 and Bcl-2. Nature Medicine, 19, 1478-1488.
https://doi.org/10.1038/nm.3322
[5] Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007) The Role of Autophagy in Cardiomyocytes in the Basal State and in Response to Hemodynamic Stress. Nature Medicine, 13, 619-624.
https://doi.org/10.1038/nm1574
[6] Xue, R., Zeng, J., Chen, Y., Chen, C., Tan, W., Zhao, J., et al. (2017) Sestrin 1 Ameliorates Cardiac Hypertrophy via Autophagy Activation. Journal of Cellular and Molecular Medicine, 21, 1193-1205.
https://doi.org/10.1111/jcmm.13052
[7] Shirakabe, A., Zhai, P., Ikeda, Y., Saito, T., Maejima, Y., Hsu, C., et al. (2016) Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. Circulation, 133, 1249-1263.
https://doi.org/10.1161/circulationaha.115.020502
[8] Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., et al. (2007) Cardiac Autophagy Is a Maladaptive Response to Hemodynamic Stress. Journal of Clinical Investigation, 117, 1782-1793.
https://doi.org/10.1172/jci27523
[9] Cao, D.J., Wang, Z.V., Battiprolu, P.K., Jiang, N., Morales, C.R., Kong, Y., et al. (2011) Histone Deacetylase (HDAC) Inhibitors Attenuate Cardiac Hypertrophy by Suppressing Autophagy. Proceedings of the National Academy of Sciences, 108, 4123-4128.
https://doi.org/10.1073/pnas.1015081108
[10] Li, F., Zhang, N., Wu, Q., Yuan, Y., Yang, Z., Zhou, M., et al. (2016) Syringin Prevents Cardiac Hypertrophy Induced by Pressure Overload through the Attenuation of Autophagy. International Journal of Molecular Medicine, 39, 199-207.
https://doi.org/10.3892/ijm.2016.2824
[11] Sciarretta, S., Zhai, P., Shao, D., Maejima, Y., Robbins, J., Volpe, M., et al. (2012) Rheb Is a Critical Regulator of Autophagy during Myocardial Ischemia: Pathophysiological Implications in Obesity and Metabolic Syndrome. Circulation, 125, 1134-1146.
https://doi.org/10.1161/circulationaha.111.078212
[12] Yue, H., Liu, J., Liu, P., Li, W., Chang, F., Miao, J., et al. (2015) Sphingosylphosphorylcholine Protects Cardiomyocytes against Ischemic Apoptosis via Lipid Raft/PTEN/Akt1/mTOR Mediated Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851, 1186-1193.
https://doi.org/10.1016/j.bbalip.2015.04.001
[13] Yan, L., Vatner, D.E., Kim, S., Ge, H., Masurekar, M., Massover, W.H., et al. (2005) Autophagy in Chronically Ischemic Myocardium. Proceedings of the National Academy of Sciences, 102, 13807-13812.
https://doi.org/10.1073/pnas.0506843102
[14] Jaishy, B., Zhang, Q., Chung, H.S., Riehle, C., Soto, J., Jenkins, S., et al. (2015) Lipid-induced NOX2 Activation Inhibits Autophagic Flux by Impairing Lysosomal Enzyme Activity. Journal of Lipid Research, 56, 546-561.
https://doi.org/10.1194/jlr.m055152
[15] Xie, M., Kong, Y., Tan, W., May, H., Battiprolu, P.K., Pedrozo, Z., et al. (2014) Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 129, 1139-1151.
https://doi.org/10.1161/circulationaha.113.002416
[16] Yu, P., Zhang, J., Yu, S., Luo, Z., Hua, F., Yuan, L., et al. (2015) Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLOS ONE, 10, e0134666.
https://doi.org/10.1371/journal.pone.0134666
[17] Sciarretta, S., Boppana, V.S., Umapathi, M., et al. (2015) Boosting Autophagy in the Diabetic Heart: A Translational Perspective. Cardiovascular Diagnosis and Therapy, 5, 394-402.
[18] Li, Z., Woollard, J.R., Ebrahimi, B., Crane, J.A., Jordan, K.L., Lerman, A., et al. (2012) Transition from Obesity to Metabolic Syndrome Is Associated with Altered Myocardial Autophagy and Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1132-1141.
https://doi.org/10.1161/atvbaha.111.244061
[19] Wei, H., Qu, H., Wang, H., Ji, B., Ding, Y., Liu, D., et al. (2017) 1,25-Dihydroxyvitamin-D3 Prevents the Development of Diabetic Cardiomyopathy in Type 1 Diabetic Rats by Enhancing Autophagy via Inhibiting the β-Catenin/TCF4/GSK-3β/mTOR Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 168, 71-90.
https://doi.org/10.1016/j.jsbmb.2017.02.007
[20] Xu, X., Kobayashi, S., Chen, K., Timm, D., Volden, P., Huang, Y., et al. (2013) Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes. Journal of Biological Chemistry, 288, 18077-18092.
https://doi.org/10.1074/jbc.m113.474650
[21] Feng, Y., Xu, W., Zhang, W., Wang, W., Liu, T. and Zhou, X. (2019) LncRNA DCRF Regulates Cardiomyocyte Autophagy by Targeting miR-551b-5p in Diabetic Cardiomyopathy. Theranostics, 9, 4558-4566.
https://doi.org/10.7150/thno.31052
[22] Lin, C., Zhang, M., Zhang, Y., Yang, K., Hu, J., Si, R., et al. (2017) Helix B Surface Peptide Attenuates Diabetic Cardiomyopathy via AMPK-Dependent Autophagy. Biochemical and Biophysical Research Communications, 482, 665-671.
https://doi.org/10.1016/j.bbrc.2016.11.091
[23] Xiao, Y., Wu, Q.Q., Duan, M.X., Liu, C., Yuan, Y., Yang, Z., et al. (2018) TAX1BP1 Overexpression Attenuates Cardiac Dysfunction and Remodeling in STZ-Induced Diabetic Cardiomyopathy in Mice by Regulating Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864, 1728-1743.
https://doi.org/10.1016/j.bbadis.2018.02.012
[24] Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X. and Liang, Q. (2010) Transcription Factor GATA4 Inhibits Doxorubicin-Induced Autophagy and Cardiomyocyte Death. Journal of Biological Chemistry, 285, 793-804.
https://doi.org/10.1074/jbc.m109.070037
[25] Li, D.L., Wang, Z.V., Ding, G., Tan, W., Luo, X., Criollo, A., et al. (2016) Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 133, 1668-1687.
https://doi.org/10.1161/circulationaha.115.017443
[26] Bartlett, J.J., Trivedi, P.C., Yeung, P., Kienesberger, P.C. and Pulinilkunnil, T. (2016) Doxorubicin Impairs Cardiomyocyte Viability by Suppressing Transcription Factor EB Expression and Disrupting Autophagy. Biochemical Journal, 473, 3769-3789.
https://doi.org/10.1042/bcj20160385
[27] Chen, C., Jiang, L., Zhang, M., Pan, X., Peng, C., Huang, W., et al. (2019) Isodunnianol Alleviates Doxorubicin-Induced Myocardial Injury by Activating Protective Autophagy. Food & Function, 10, 2651-2657.
https://doi.org/10.1039/c9fo00063a