[1]
|
Sciarretta, S., Volpe, M. and Sadoshima, J. (2014) Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circulation Research, 114, 549-564. https://doi.org/10.1161/circresaha.114.302022
|
[2]
|
Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. https://doi.org/10.1038/ncb2152
|
[3]
|
Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. (2007) Distinct Roles of Autophagy in the Heart during Ischemia and Reperfusion. Circulation Research, 100, 914-922. https://doi.org/10.1161/01.res.0000261924.76669.36
|
[4]
|
Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Ivessa, A., et al. (2013) Mst1 Inhibits Autophagy by Promoting the Interaction between Beclin1 and Bcl-2. Nature Medicine, 19, 1478-1488. https://doi.org/10.1038/nm.3322
|
[5]
|
Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007) The Role of Autophagy in Cardiomyocytes in the Basal State and in Response to Hemodynamic Stress. Nature Medicine, 13, 619-624. https://doi.org/10.1038/nm1574
|
[6]
|
Xue, R., Zeng, J., Chen, Y., Chen, C., Tan, W., Zhao, J., et al. (2017) Sestrin 1 Ameliorates Cardiac Hypertrophy via Autophagy Activation. Journal of Cellular and Molecular Medicine, 21, 1193-1205. https://doi.org/10.1111/jcmm.13052
|
[7]
|
Shirakabe, A., Zhai, P., Ikeda, Y., Saito, T., Maejima, Y., Hsu, C., et al. (2016) Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. Circulation, 133, 1249-1263. https://doi.org/10.1161/circulationaha.115.020502
|
[8]
|
Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., et al. (2007) Cardiac Autophagy Is a Maladaptive Response to Hemodynamic Stress. Journal of Clinical Investigation, 117, 1782-1793. https://doi.org/10.1172/jci27523
|
[9]
|
Cao, D.J., Wang, Z.V., Battiprolu, P.K., Jiang, N., Morales, C.R., Kong, Y., et al. (2011) Histone Deacetylase (HDAC) Inhibitors Attenuate Cardiac Hypertrophy by Suppressing Autophagy. Proceedings of the National Academy of Sciences, 108, 4123-4128. https://doi.org/10.1073/pnas.1015081108
|
[10]
|
Li, F., Zhang, N., Wu, Q., Yuan, Y., Yang, Z., Zhou, M., et al. (2016) Syringin Prevents Cardiac Hypertrophy Induced by Pressure Overload through the Attenuation of Autophagy. International Journal of Molecular Medicine, 39, 199-207. https://doi.org/10.3892/ijm.2016.2824
|
[11]
|
Sciarretta, S., Zhai, P., Shao, D., Maejima, Y., Robbins, J., Volpe, M., et al. (2012) Rheb Is a Critical Regulator of Autophagy during Myocardial Ischemia: Pathophysiological Implications in Obesity and Metabolic Syndrome. Circulation, 125, 1134-1146. https://doi.org/10.1161/circulationaha.111.078212
|
[12]
|
Yue, H., Liu, J., Liu, P., Li, W., Chang, F., Miao, J., et al. (2015) Sphingosylphosphorylcholine Protects Cardiomyocytes against Ischemic Apoptosis via Lipid Raft/PTEN/Akt1/mTOR Mediated Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851, 1186-1193. https://doi.org/10.1016/j.bbalip.2015.04.001
|
[13]
|
Yan, L., Vatner, D.E., Kim, S., Ge, H., Masurekar, M., Massover, W.H., et al. (2005) Autophagy in Chronically Ischemic Myocardium. Proceedings of the National Academy of Sciences, 102, 13807-13812. https://doi.org/10.1073/pnas.0506843102
|
[14]
|
Jaishy, B., Zhang, Q., Chung, H.S., Riehle, C., Soto, J., Jenkins, S., et al. (2015) Lipid-induced NOX2 Activation Inhibits Autophagic Flux by Impairing Lysosomal Enzyme Activity. Journal of Lipid Research, 56, 546-561. https://doi.org/10.1194/jlr.m055152
|
[15]
|
Xie, M., Kong, Y., Tan, W., May, H., Battiprolu, P.K., Pedrozo, Z., et al. (2014) Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 129, 1139-1151. https://doi.org/10.1161/circulationaha.113.002416
|
[16]
|
Yu, P., Zhang, J., Yu, S., Luo, Z., Hua, F., Yuan, L., et al. (2015) Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLOS ONE, 10, e0134666. https://doi.org/10.1371/journal.pone.0134666
|
[17]
|
Sciarretta, S., Boppana, V.S., Umapathi, M., et al. (2015) Boosting Autophagy in the Diabetic Heart: A Translational Perspective. Cardiovascular Diagnosis and Therapy, 5, 394-402.
|
[18]
|
Li, Z., Woollard, J.R., Ebrahimi, B., Crane, J.A., Jordan, K.L., Lerman, A., et al. (2012) Transition from Obesity to Metabolic Syndrome Is Associated with Altered Myocardial Autophagy and Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1132-1141. https://doi.org/10.1161/atvbaha.111.244061
|
[19]
|
Wei, H., Qu, H., Wang, H., Ji, B., Ding, Y., Liu, D., et al. (2017) 1,25-Dihydroxyvitamin-D3 Prevents the Development of Diabetic Cardiomyopathy in Type 1 Diabetic Rats by Enhancing Autophagy via Inhibiting the β-Catenin/TCF4/GSK-3β/mTOR Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 168, 71-90. https://doi.org/10.1016/j.jsbmb.2017.02.007
|
[20]
|
Xu, X., Kobayashi, S., Chen, K., Timm, D., Volden, P., Huang, Y., et al. (2013) Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes. Journal of Biological Chemistry, 288, 18077-18092. https://doi.org/10.1074/jbc.m113.474650
|
[21]
|
Feng, Y., Xu, W., Zhang, W., Wang, W., Liu, T. and Zhou, X. (2019) LncRNA DCRF Regulates Cardiomyocyte Autophagy by Targeting miR-551b-5p in Diabetic Cardiomyopathy. Theranostics, 9, 4558-4566. https://doi.org/10.7150/thno.31052
|
[22]
|
Lin, C., Zhang, M., Zhang, Y., Yang, K., Hu, J., Si, R., et al. (2017) Helix B Surface Peptide Attenuates Diabetic Cardiomyopathy via AMPK-Dependent Autophagy. Biochemical and Biophysical Research Communications, 482, 665-671. https://doi.org/10.1016/j.bbrc.2016.11.091
|
[23]
|
Xiao, Y., Wu, Q.Q., Duan, M.X., Liu, C., Yuan, Y., Yang, Z., et al. (2018) TAX1BP1 Overexpression Attenuates Cardiac Dysfunction and Remodeling in STZ-Induced Diabetic Cardiomyopathy in Mice by Regulating Autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864, 1728-1743. https://doi.org/10.1016/j.bbadis.2018.02.012
|
[24]
|
Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X. and Liang, Q. (2010) Transcription Factor GATA4 Inhibits Doxorubicin-Induced Autophagy and Cardiomyocyte Death. Journal of Biological Chemistry, 285, 793-804. https://doi.org/10.1074/jbc.m109.070037
|
[25]
|
Li, D.L., Wang, Z.V., Ding, G., Tan, W., Luo, X., Criollo, A., et al. (2016) Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 133, 1668-1687. https://doi.org/10.1161/circulationaha.115.017443
|
[26]
|
Bartlett, J.J., Trivedi, P.C., Yeung, P., Kienesberger, P.C. and Pulinilkunnil, T. (2016) Doxorubicin Impairs Cardiomyocyte Viability by Suppressing Transcription Factor EB Expression and Disrupting Autophagy. Biochemical Journal, 473, 3769-3789. https://doi.org/10.1042/bcj20160385
|
[27]
|
Chen, C., Jiang, L., Zhang, M., Pan, X., Peng, C., Huang, W., et al. (2019) Isodunnianol Alleviates Doxorubicin-Induced Myocardial Injury by Activating Protective Autophagy. Food & Function, 10, 2651-2657. https://doi.org/10.1039/c9fo00063a
|