[1]
|
Uddin, N., Zhang, H., Du, Y., Jia, G., Wang, S. and Yin, Z. (2020) Structural‐Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 32, Article ID: 1905739. https://doi.org/10.1002/adma.201905739
|
[2]
|
Wang, X., Ren, Y., Li, Y. and Zhang, G. (2022) Fabrication of 1D/2D BiPO4/g-C3N4 Heterostructured Photocatalyst with Enhanced Photocatalytic Efficiency for NO Removal. Chemosphere, 287, Article ID: 132098. https://doi.org/10.1016/j.chemosphere.2021.132098
|
[3]
|
Yang, Y., Li, P., Zheng, X., Sun, W., Dou, S.X., Ma, T., et al. (2022) Anion-Exchange Membrane Water Electrolyzers and Fuel Cells. Chemical Society Reviews, 51, 9620-9693. https://doi.org/10.1039/d2cs00038e
|
[4]
|
Zheng, X., Yuan, M., Zhao, Y., Li, Z., Shi, K., Li, H., et al. (2023) Status and Prospects of MXene‐Based Lithium-Oxygen Batteries: Theoretical Prediction and Experimental Modulation. Advanced Energy Materials, 13, Article ID: 2204019. https://doi.org/10.1002/aenm.202204019
|
[5]
|
Schwietzke, S., Sherwood, O.A., Bruhwiler, L.M.P., Miller, J.B., Etiope, G., Dlugokencky, E.J., et al. (2016) Upward Revision of Global Fossil Fuel Methane Emissions Based on Isotope Database. Nature, 538, 88-91. https://doi.org/10.1038/nature19797
|
[6]
|
Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., et al. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences, 20, 14-27. https://doi.org/10.1016/s1001-0742(08)60002-9
|
[7]
|
Ombadi, M., Risser, M.D., Rhoades, A.M. and Varadharajan, C. (2023) A Warming-Induced Reduction in Snow Fraction Amplifies Rainfall Extremes. Nature, 619, 305-310. https://doi.org/10.1038/s41586-023-06092-7
|
[8]
|
Wang, W., An, W., Ramalingam, B., Mukherjee, S., Niedzwiedzki, D.M., Gangopadhyay, S., et al. (2012) Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 134, 11276-11281. https://doi.org/10.1021/ja304075b
|
[9]
|
Indrakanti, V.P., Kubicki, J.D. and Schobert, H.H. (2009) Photoinduced Activation of CO2 on Ti-Based Heterogeneous Catalysts: Current State, Chemical Physics-Based Insights and Outlook. Energy & Environmental Science, 2, 745-758. https://doi.org/10.1039/b822176f
|
[10]
|
Roy, S.C., Varghese, O.K., Paulose, M. and Grimes, C.A. (2010) Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4, 1259-1278. https://doi.org/10.1021/nn9015423
|
[11]
|
Wang, L., Cheng, B., Zhang, L. and Yu, J. (2021) In Situ Irradiated XPS Investigation on S‐scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small, 17, Article ID: 2103447. https://doi.org/10.1002/smll.202103447
|
[12]
|
Wu, J., Huang, Y., Ye, W. and Li, Y. (2017) CO2 Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 4, Article ID: 1700194. https://doi.org/10.1002/advs.201700194
|
[13]
|
Wang, K., Du, Y., Li, Y., Wu, X., Hu, H., Wang, G., et al. (2022) Atomic‐Level Insight of Sulfidation‐Engineered Aurivillius‐Related Bi2O2SiO3 Nanosheets Enabling Visible Light Low‐Concentration CO2 Conversion. Carbon Energy, 5, e264. https://doi.org/10.1002/cey2.264
|
[14]
|
Liu, F. and Fan, Z. (2023) Defect Engineering of Two-Dimensional Materials for Advanced Energy Conversion and Storage. Chemical Society Reviews, 52, 1723-1772. https://doi.org/10.1039/d2cs00931e
|
[15]
|
Gong, E., Ali, S., Hiragond, C.B., Kim, H.S., Powar, N.S., Kim, D., et al. (2022) Solar Fuels: Research and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuels. Energy & Environmental Science, 15, 880-937. https://doi.org/10.1039/d1ee02714j
|
[16]
|
He, Y., Yin, L., Yuan, N. and Zhang, G. (2024) Adsorption and Activation, Active Site and Reaction Pathway of Photocatalytic CO2 Reduction: A Review. Chemical Engineering Journal, 481, Article ID: 148754. https://doi.org/10.1016/j.cej.2024.148754
|
[17]
|
Wang, S., Wang, J., Wang, Y., Sui, X., Wu, S., Dai, W., et al. (2024) Insight into the Selectivity-Determining Step of Various Photocatalytic CO2 Reduction Products by Inorganic Semiconductors. ACS Catalysis, 14, 10760-10788. https://doi.org/10.1021/acscatal.4c01712
|
[18]
|
Liao, L., Xie, G., Xie, X. and Zhang, N. (2023) Advances in Modulating the Activity and Selectivity of Photocatalytic CO2 Reduction to Multicarbon Products. The Journal of Physical Chemistry C, 127, 2766-2781. https://doi.org/10.1021/acs.jpcc.2c08963
|
[19]
|
Albero, J., Peng, Y. and García, H. (2020) Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10, 5734-5749. https://doi.org/10.1021/acscatal.0c00478
|
[20]
|
Yang, R., Mei, L., Fan, Y., Zhang, Q., Zhu, R., Amal, R., et al. (2021) ZnIn2S4‐Based Photocatalysts for Energy and Environmental Applications. Small Methods, 5, Article ID: 2100887. https://doi.org/10.1002/smtd.202100887
|
[21]
|
Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., et al. (2017) Template-Free Precursor-Surface-Etching Route to Porous, Thin G-C3N4 Nanosheets for Enhancing Photocatalytic Reduction and Oxidation Activity. Journal of Materials Chemistry A, 5, 17452-17463. https://doi.org/10.1039/c7ta04639a
|
[22]
|
Pan, B., Wu, Y., Rhimi, B., Qin, J., Huang, Y., Yuan, M., et al. (2021) Oxygen-Doping of ZnIn2S4 Nanosheets Towards Boosted Photocatalytic CO2 Reduction. Journal of Energy Chemistry, 57, 1-9. https://doi.org/10.1016/j.jechem.2020.08.024
|
[23]
|
Zhou, F., Zhang, Y., Wu, J., Yang, W., Fang, X., Jia, T., et al. (2024) Utilizing Er-Doped ZnIn2S4 for Efficient Photocatalytic CO2 Conversion. Applied Catalysis B: Environmental, 341, Article ID: 123347. https://doi.org/10.1016/j.apcatb.2023.123347
|
[24]
|
Chen, X., Sun, H., Zelekew, O.A., Zhang, J., Guo, Y., Zeng, A., et al. (2020) Biological Renewable Hemicellulose-Template for Synthesis of Visible Light Responsive Sulfur-Doped Tio2 for Photocatalytic Oxidation of Toxic Organic and As(III) Pollutants. Applied Surface Science, 525, Article ID: 146531. https://doi.org/10.1016/j.apsusc.2020.146531
|
[25]
|
Shi, X., Dai, C., Wang, X., Hu, J., Zhang, J., Zheng, L., et al. (2022) Protruding Pt Single-Sites on Hexagonal ZnIn2S4 to Accelerate Photocatalytic Hydrogen Evolution. Nature Communications, 13, Article No. 1287. https://doi.org/10.1038/s41467-022-28995-1
|
[26]
|
Xiong, Z., Wang, H., Xu, N., Li, H., Fang, B., Zhao, Y., et al. (2015) Photocatalytic Reduction of CO2 on Pt2+–pt0/TiO2 Nanoparticles under UV/Vis Light Irradiation: A Combination of Pt2+ Doping and Pt Nanoparticles Deposition. International Journal of Hydrogen Energy, 40, 10049-10062. https://doi.org/10.1016/j.ijhydene.2015.06.075
|
[27]
|
Wang, S., Guan, B.Y. and Lou, X.W.D. (2018) Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. Journal of the American Chemical Society, 140, 5037-5040. https://doi.org/10.1021/jacs.8b02200
|
[28]
|
Wang, S., Wang, Y., Zhang, S.L., Zang, S. and Lou, X.W. (2019) Supporting Ultrathin Znin2s4 Nanosheets on Co/N‐Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H2 Generation. Advanced Materials, 31, Article ID: 1903404. https://doi.org/10.1002/adma.201903404
|
[29]
|
Zhang, H., Wang, Y., Zuo, S., Zhou, W., Zhang, J. and Lou, X.W.D. (2021) Isolated Cobalt Centers on W18O49 Nanowires Perform as a Reaction Switch for Efficient CO2 Photoreduction. Journal of the American Chemical Society, 143, 2173-2177. https://doi.org/10.1021/jacs.0c08409
|
[30]
|
Lu, K., Li, Y., Zhang, F., Qi, M., Chen, X., Tang, Z., et al. (2020) Rationally Designed Transition Metal Hydroxide Nanosheet Arrays on Graphene for Artificial CO2 Reduction. Nature Communications, 11, Article No. 5181. https://doi.org/10.1038/s41467-020-18944-1
|