[1]
|
Xu, Y., Lu, J., Li, M., Wang, T., Wang, K., Cao, Q., et al. (2024) Diabetes in China Part 1: Epidemiology and Risk Factors. The Lancet Public Health, 9, e1089-e1097. https://doi.org/10.1016/s2468-2667(24)00250-0
|
[2]
|
Forbes, J.M. and Thorburn, D.R. (2018) Mitochondrial Dysfunction in Diabetic Kidney Disease. Nature Reviews Nephrology, 14, 291-312. https://doi.org/10.1038/nrneph.2018.9
|
[3]
|
Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., et al. (2023) The Mitophagy Pathway and Its Implications in Human Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 304. https://doi.org/10.1038/s41392-023-01503-7
|
[4]
|
Blagov, A.V., Summerhill, V.I., Sukhorukov, V.N., Popov, M.A., Grechko, A.V. and Orekhov, A.N. (2023) Type 1 Diabetes Mellitus: Inflammation, Mitophagy, and Mitochondrial Function. Mitochondrion, 72, 11-21. https://doi.org/10.1016/j.mito.2023.07.002
|
[5]
|
Shan, Z., Fa, W.H., Tian, C.R., Yuan, C.S. and Jie, N. (2022) Mitophagy and Mitochondrial Dynamics in Type 2 Diabetes Mellitus Treatment. Aging, 14, 2902-2919. https://doi.org/10.18632/aging.203969
|
[6]
|
Narendra, D.P. and Youle, R.J. (2024) The Role of Pink1-Parkin in Mitochondrial Quality Control. Nature Cell Biology, 26, 1639-1651. https://doi.org/10.1038/s41556-024-01513-9
|
[7]
|
Nguyen, T.T., Wei, S., Nguyen, T.H., Jo, Y., Zhang, Y., Park, W., et al. (2023) Mitochondria-Associated Programmed Cell Death as a Therapeutic Target for Age-Related Disease. Experimental & Molecular Medicine, 55, 1595-1619. https://doi.org/10.1038/s12276-023-01046-5
|
[8]
|
Yuan, Y., Zheng, Y., Zhang, X., Chen, Y., Wu, X., Wu, J., et al. (2017) BNIP3L/NIX-Mediated Mitophagy Protects against Ischemic Brain Injury Independent of Park2. Autophagy, 13, 1754-1766. https://doi.org/10.1080/15548627.2017.1357792
|
[9]
|
Marinković, M., Šprung, M. and Novak, I. (2020) Dimerization of Mitophagy Receptor BNIP3L/NIX Is Essential for Recruitment of Autophagic Machinery. Autophagy, 17, 1232-1243. https://doi.org/10.1080/15548627.2020.1755120
|
[10]
|
Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y. and Kondo, S. (2004) Pivotal Role of the Cell Death Factor BNIP3 in Ceramide-Induced Autophagic Cell Death in Malignant Glioma Cells. Cancer Research, 64, 4286-4293. https://doi.org/10.1158/0008-5472.can-03-3084
|
[11]
|
Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., et al. (2012) Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells. Nature Cell Biology, 14, 177-185. https://doi.org/10.1038/ncb2422
|
[12]
|
Wu, H., Wang, Y., Li, W., Chen, H., Du, L., Liu, D., et al. (2019) Deficiency of Mitophagy Receptor FUNDC1 Impairs Mitochondrial Quality and Aggravates Dietary-Induced Obesity and Metabolic Syndrome. Autophagy, 15, 1882-1898. https://doi.org/10.1080/15548627.2019.1596482
|
[13]
|
Zhou, H., Zhu, P., Wang, J., Zhu, H., Ren, J. and Chen, Y. (2018) Pathogenesis of Cardiac Ischemia Reperfusion Injury Is Associated with Ck2α-Disturbed Mitochondrial Homeostasis via Suppression of Fundc1-Related Mitophagy. Cell Death & Differentiation, 25, 1080-1093. https://doi.org/10.1038/s41418-018-0086-7
|
[14]
|
Chen, G., Han, Z., Feng, D., Chen, Y., Chen, L., Wu, H., et al. (2014) A Regulatory Signaling Loop Comprising the PGAM5 Phosphatase and CK2 Controls Receptor-Mediated Mitophagy. Molecular Cell, 54, 362-377. https://doi.org/10.1016/j.molcel.2014.02.034
|
[15]
|
Zhou, H., Zhu, P., Guo, J., Hu, N., Wang, S., Li, D., et al. (2017) Ripk3 Induces Mitochondrial Apoptosis via Inhibition of FUNDC1 Mitophagy in Cardiac IR Injury. Redox Biology, 13, 498-507. https://doi.org/10.1016/j.redox.2017.07.007
|
[16]
|
Wu, S., Lu, Q., Ding, Y., Wu, Y., Qiu, Y., Wang, P., et al. (2019) Hyperglycemia-Driven Inhibition of Amp-Activated Protein Kinase Α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes in Vivo. Circulation, 139, 1913-1936. https://doi.org/10.1161/circulationaha.118.033552
|
[17]
|
Di Rita, A., Peschiaroli, A., D’Acunzo, P., Strobbe, D., Hu, Z., Gruber, J., et al. (2018) HUWE1 E3 Ligase Promotes Pink1/Parkin-Independent Mitophagy by Regulating AMBRA1 Activation via IKKα. Nature Communications, 9, Article No. 3755. https://doi.org/10.1038/s41467-018-05722-3
|
[18]
|
Di Rienzo, M., Romagnoli, A., Ciccosanti, F., Refolo, G., Consalvi, V., Arena, G., et al. (2021) AMBRA1 Regulates Mitophagy by Interacting with ATAD3A and Promoting PINK1 Stability. Autophagy, 18, 1752-1762. https://doi.org/10.1080/15548627.2021.1997052
|
[19]
|
Di Rita, A., D’Acunzo, P., Simula, L., Campello, S., Strappazzon, F. and Cecconi, F. (2018) Ambra1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Frontiers in Cellular Neuroscience, 12, Article 92. https://doi.org/10.3389/fncel.2018.00092
|
[20]
|
Strappazzon, F., Di Rita, A., Peschiaroli, A., Leoncini, P.P., Locatelli, F., Melino, G., et al. (2019) HUWE1 Controls MCL1 Stability to Unleash Ambra1-Induced Mitophagy. Cell Death & Differentiation, 27, 1155-1168. https://doi.org/10.1038/s41418-019-0404-8
|
[21]
|
Haraguchi, R., Kohara, Y., Matsubayashi, K., Kitazawa, R. and Kitazawa, S. (2020) New Insights into the Pathogenesis of Diabetic Nephropathy: Proximal Renal Tubules Are Primary Target of Oxidative Stress in Diabetic Kidney. ACTA Histochemica et Cytochemica, 53, 21-31. https://doi.org/10.1267/ahc.20008
|
[22]
|
Giraud-Billoud M., Fader C.M., Aguero R., et al. (2018) Diabetic Nephropathy, Autophagy and Proximal Tubule Protein Endocytic Transport: A Potentially Harmful Relationship. Bio Cell, 42, 35-40. https://doi.org/10.32604/biocell.2018.07010
|
[23]
|
Jiang, X., Xiang, X., Chen, X., He, J., Liu, T., Gan, H., et al. (2020) Inhibition of Soluble Epoxide Hydrolase Attenuates Renal Tubular Mitochondrial Dysfunction and ER Stress by Restoring Autophagic Flux in Diabetic Nephropathy. Cell Death & Disease, 11, Article No. 385. https://doi.org/10.1038/s41419-020-2594-x
|
[24]
|
Chen, K., Dai, H., Yuan, J., Chen, J., Lin, L., Zhang, W., et al. (2018) Optineurin-Mediated Mitophagy Protects Renal Tubular Epithelial Cells against Accelerated Senescence in Diabetic Nephropathy. Cell Death & Disease, 9, Article No. 105. https://doi.org/10.1038/s41419-017-0127-z
|
[25]
|
Li, J., Zheng, S., Ma, C., Chen, X., Li, X., Li, S., et al. (2023) Research Progress on Exosomes in Podocyte Injury Associated with Diabetic Kidney Disease. Frontiers in Endocrinology, 14, Article 1129884. https://doi.org/10.3389/fendo.2023.1129884
|
[26]
|
Salemkour, Y., Yildiz, D., Dionet, L., Hart, D.C., Verheijden, K.A.T., Saito, R., et al. (2023) Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves Trpc6-Mediated Calpain Activation Impairing Autophagy. Journal of the American Society of Nephrology, 34, 1823-1842. https://doi.org/10.1681/asn.0000000000000212
|
[27]
|
Zhang, S., Fan, B., Li, Y.L., Zuo, Z. and Li, G. (2023) Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cellular and Molecular Neurobiology, 43, 3265-3276. https://doi.org/10.1007/s10571-023-01383-z
|
[28]
|
Alka, K., Kumar, J. and Kowluru, R.A. (2023) Impaired Mitochondrial Dynamics and Removal of the Damaged Mitochondria in Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1160155. https://doi.org/10.3389/fendo.2023.1160155
|
[29]
|
Gong, Q., Wang, H., Yu, P., Qian, T. and Xu, X. (2021) Protective or Harmful: The Dual Roles of Autophagy in Diabetic Retinopathy. Frontiers in Medicine, 8, Article 644121. https://doi.org/10.3389/fmed.2021.644121
|
[30]
|
Devi, T.S., Yumnamcha, T., Yao, F., Somayajulu, M., Kowluru, R.A. and Singh, L.P. (2019) TXNIP Mediates High Glucose-Induced Mitophagic Flux and Lysosome Enlargement in Human Retinal Pigment Epithelial Cells. Biology Open, 8, bio038521. https://doi.org/10.1242/bio.038521
|
[31]
|
Yang, J., Yu, Z., Jiang, Y., Zhang, Z., Tian, Y., Cai, J., et al. (2024) SIRT3 Alleviates Painful Diabetic Neuropathy by Mediating the FoxO3a-PINK1-Parkin Signaling Pathway to Activate Mitophagy. CNS Neuroscience & Therapeutics, 30, e14703. https://doi.org/10.1111/cns.14703
|
[32]
|
Chang, L., Wu, Y., Wang, H., Tseng, K., Wang, Y., Lu, Y., et al. (2024) Cilostazol Ameliorates Motor Dysfunction and Schwann Cell Impairment in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences, 25, Article 7847. https://doi.org/10.3390/ijms25147847
|
[33]
|
Khan, I., Preeti, K., Kumar, R., Kumar Khatri, D. and Bala Singh, S. (2023) Piceatannol Promotes Neuroprotection by Inducing Mitophagy and Mitobiogenesis in the Experimental Diabetic Peripheral Neuropathy and Hyperglycemia-Induced Neurotoxicity. International Immunopharmacology, 116, Article 109793. https://doi.org/10.1016/j.intimp.2023.109793
|
[34]
|
He, J., Qin, Z., Chen, X., He, W., Li, D., Zhang, L., et al. (2022) HIF-1α Ameliorates Diabetic Neuropathic Pain via Parkin-Mediated Mitophagy in a Mouse Model. BioMed Research International, 2022, Article 5274375. https://doi.org/10.1155/2022/5274375
|
[35]
|
Ritchie, R.H. and Abel, E.D. (2020) Basic Mechanisms of Diabetic Heart Disease. Circulation Research, 126, 1501-1525. https://doi.org/10.1161/circresaha.120.315913
|
[36]
|
Durga Devi, T., Babu, M., Mäkinen, P., Kaikkonen, M.U., Heinaniemi, M., Laakso, H., et al. (2017) Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. The American Journal of Pathology, 187, 2659-2673. https://doi.org/10.1016/j.ajpath.2017.08.023
|
[37]
|
Yu, W., Gao, B., Li, N., Wang, J., Qiu, C., Zhang, G., et al. (2017) SIRT3 Deficiency Exacerbates Diabetic Cardiac Dysfunction: Role of FoxO3a-Parkin-Mediated Mitophagy. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1863, 1973-1983. https://doi.org/10.1016/j.bbadis.2016.10.021
|
[38]
|
Wang, S., Zhao, Z., Fan, Y., Zhang, M., Feng, X., Lin, J., et al. (2019) Mst1 Inhibits SIRT3 Expression and Contributes to Diabetic Cardiomyopathy through Inhibiting Parkin-Dependent Mitophagy. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1865, 1905-1914. https://doi.org/10.1016/j.bbadis.2018.04.009
|
[39]
|
Wang, S., Zhao, Z., Feng, X., Cheng, Z., Xiong, Z., Wang, T., et al. (2018) Melatonin Activates Parkin Translocation and Rescues the Impaired Mitophagy Activity of Diabetic Cardiomyopathy through Mst1 Inhibition. Journal of Cellular and Molecular Medicine, 22, 5132-5144. https://doi.org/10.1111/jcmm.13802
|
[40]
|
Ren, J., Sun, M., Zhou, H., Ajoolabady, A., Zhou, Y., Tao, J., et al. (2020) FUNDC1 Interacts with FBXL2 to Govern Mitochondrial Integrity and Cardiac Function through an IP3R3-Dependent Manner in Obesity. Science Advances, 6, eabc8561. https://doi.org/10.1126/sciadv.abc8561
|
[41]
|
Chen, C., Pan, B., Tsai, P., Chen, F., Yang, W. and Shen, M. (2021) Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling. International Journal of Molecular Sciences, 22, Article 10309. https://doi.org/10.3390/ijms221910309
|
[42]
|
Xi, J., Rong, Y., Zhao, Z., Huang, Y., Wang, P., Luan, H., et al. (2021) Scutellarin Ameliorates High Glucose-Induced Vascular Endothelial Cells Injury by Activating PINK1/Parkin-Mediated Mitophagy. Journal of Ethnopharmacology, 271, Article 113855. https://doi.org/10.1016/j.jep.2021.113855
|
[43]
|
Zhang, X., Zhou, H. and Chang, X. (2023) Involvement of Mitochondrial Dynamics and Mitophagy in Diabetic Endothelial Dysfunction and Cardiac Microvascular Injury. Archives of Toxicology, 97, 3023-3035. https://doi.org/10.1007/s00204-023-03599-w
|