线粒体自噬在糖尿病及其并发症中的作用研究进展
Advances in the Study of the Role of Mitophagy in Diabetes Mellitus and Its Complications
DOI: 10.12677/pi.2025.143018, PDF, HTML, XML,   
作者: 沙晓彤, 张清雅, 吴斐华*:中国药科大学中药学院,江苏 南京;沈滟惠:嘉兴市食品药品与产品质量检验检测研究院中药室,浙江 嘉兴
关键词: 线粒体自噬糖尿病糖尿病并发症Mitophagy Diabetes Mellitus Diabetic Complications
摘要: 糖尿病(Diabetes mellitus, DM)作为一种慢性代谢疾病,其发生与胰岛素抵抗和胰岛β细胞受损密切相关,DM及其并发症严重威胁全球健康。线粒体自噬作为清除受损线粒体的关键机制,在DM及其并发症的病理过程中扮演重要角色。本文系统综述了线粒体自噬的核心调控机制,并深入探讨其通过调控氧化应激、炎症反应及细胞稳态,从而改善糖尿病肾病、视网膜病变、神经病变及心血管并发症的作用机制,为基于线粒体自噬的新型药物开发及糖尿病慢性并发症的防治提供依据。
Abstract: Diabetes mellitus (DM), a chronic metabolic disorder closely associated with insulin resistance and impairment of pancreatic β-cells, poses significant threats to global health through its associated complications. Mitophagy, as a critical quality control mechanism for eliminating damaged mitochondria, plays a pivotal role in the pathological progression of DM and its complications. This review systematically elucidates the core regulatory mechanisms of mitophagy and comprehensively investigates its therapeutic potential in diabetic kidney disease, retinopathy, neuropathy and cardiovascular complications through modulating oxidative stress, inflammatory responses, and cellular homeostasis. The findings provide theoretical foundations for developing novel mitophagy targeted therapeutic strategies and advancing the clinical management of chronic diabetic complications.
文章引用:沙晓彤, 沈滟惠, 张清雅, 吴斐华. 线粒体自噬在糖尿病及其并发症中的作用研究进展[J]. 药物资讯, 2025, 14(3): 146-153. https://doi.org/10.12677/pi.2025.143018

1. 引言

糖尿病(Diabetes Mellitus, DM)是一种以持续高血糖为特征的慢性代谢疾病,全球患病人数在2021年已达到5.29亿,预计到2050年将影响13.1亿人[1]。糖尿病慢性并发症是DM患者高死亡率的主要原因,包括糖尿病肾病、糖尿病视网膜病变、糖尿病神经病变和糖尿病心血管疾病等。线粒体是细胞的能量中心,负责进行有氧呼吸并通过氧化磷酸化过程产生ATP。活性氧(Reactive oxygen species, ROS)、高糖、缺血缺氧等外界压力下,细胞内的线粒体会发生去极化损伤,导致线粒体功能障碍并破坏细胞稳态[2]。线粒体自噬是一种针对受损的线粒体进行溶酶体降解的选择性自噬,对于维持线粒体和细胞的稳态至关重要[3]。在DM中,增强线粒体自噬有助于清除损伤的线粒体降低自身免疫反应和炎症[4],抑制氧化应激和胰岛素抵抗[5]。因此,靶向线粒体自噬和线粒体功能可能是糖尿病并发症治疗的潜在治疗策略。目前,现有降糖药虽具有显著降糖效果,但存在诸多的副作用,糖尿病及其并发症仍是全球公共卫生领域亟待攻克的重大医学难题。本文围绕线粒体自噬的分子调控机制,并分别探讨糖尿病肾病(Diabetic kidney disease, DKD)、糖尿病视网膜病变(Diabetic retinopathy, DR)、糖尿病神经病变(Diabetic neuropathy, DN)和糖尿病心血管并发症(Diabetic cardiovascular complications, DCV)与线粒体自噬之间的关系,为基于线粒体自噬的新型药物开发及糖尿病慢性并发症的防治提供依据。

2. 线粒体自噬

线粒体自噬是一种选择性自噬过程,通过溶酶体途径特异性清除受损或功能失调的线粒体,以维持线粒体网络稳态和细胞能量代谢。其机制涉及两类途径:依赖泛素的丝氨酸/苏氨酸激酶PTEN诱导激酶1 (PTEN-induced putative kinase 1, PINK1)和E3泛素连接酶(Parkin RBR E3 ubiquitin-protein ligase, Parkin)通路和非依赖泛素的受体介导途径。

2.1. PINK1-Parkin介导的线粒体自噬

在哺乳动物细胞中,PINK1和Parkin协同作用,感知线粒体功能状态,标记受损线粒体并进行处理。PINK1作为线粒体损伤传感器,Parkin作为信号放大器,泛素链作为信号效应器,三者共同决定受损线粒体自噬激活[3]。在生理状态下,PINK1蛋白经早老素相关菱形样蛋白(Presenilin associated rhomboid like protein, PARL)切割维持低表达水平;当线粒体受损导致膜电位降低时,PINK1在线粒体外膜(Outer mitochondrial membrane, OMM)稳定积聚并激活。随后,PINK1通过磷酸化修饰募集胞质Parkin至OMM,增强其E3泛素连接酶活性。活化的Parkin催化OMM蛋白的泛素化修饰,形成自噬识别信号。泛素化底物通过结合自噬受体蛋白的泛素结合结构域,并借助其LC3相互作用区域(LC3-interacting region, LIR)与LC3结合,从而启动自噬体形成。最终,自噬体与溶酶体融合形成自噬溶酶体,实现受损线粒体的选择性降解[6]。此外,去泛素化酶(Deubiquitinase, DUBs)通过去泛素化Parkin或其线粒体靶标来调控自噬,而Parkin还能介导转录因子EB (Transcription factor EB, TFEB)的核转位,从而上调与溶酶体生物合成相关基因的表达[3]。该通路通过多层级信号整合实现线粒体稳态的精确调控。

2.2. 自噬受体介导的线粒体自噬

2.2.1. BNIP3和BNIP3L

BCL2相互作用蛋白3 (BCL2 interacting protein 3, BNIP3)和BCL2相互作用蛋白3样(BCL2 interacting protein 3 like, BNIP3L)是BCL-2蛋白家族中细胞死亡调节因子。BNIP3L位于线粒体外膜上,可通过与Atg8家族蛋白直接结合将自噬体的前体募集到线粒体[7]。BNIP3L介导的线粒体自噬具有Parkin非依赖性特征,其功能依赖于丝氨酸残基磷酸化修饰[8]及稳定的同源二聚体构象,二聚化显著增强其招募自噬体的能力[9]。研究显示,BNIP3在神经酰胺诱导的恶性胶质瘤细胞中显著上调,诱导线粒体去极化和自噬激活[10]。这些发现揭示了BNIP3/BNIP3L通过结构特异性和翻译后修饰动态调控线粒体自噬的分子基础。

2.2.2. FUNDC1

2012年,线粒体外膜蛋白含FUN14域蛋白1 (FUN14 domain containing 1, FUNDC1)作为一种新的缺氧诱导的线粒体自噬受体首次被报道[11],FUNDC1位于哺乳动物线粒体外膜,N端包含一个与LC3相互作用区(LC3-interactingregion, LIR)。Wu等人[12]研究发现FUNDC1缺陷导致线粒体质量控制失调,产生炎症反应,最终导致代谢紊乱。近年研究发现,FUNDC1介导的线粒体自噬受关键位点磷酸化动态调控,上游磷酸酶通过改变FUNDC1特定残基(如Ser13磷酸化及Tyr18/Ser17去磷酸化)的磷酸化状态,调节LIR与LC3的结合能力,从而决定线粒体自噬的激活或抑制[13]-[15]。高血糖环境下AMPK活性受抑可增强FUNDC1蛋白稳定性,导致线粒体-内质网膜接触位点(Mitochondria-associated membranes, MAMs)异常、线粒体钙超载及功能障碍[16],提示其代谢调控机制在病理状态中的重要作用。

2.2.3. AMBRA1

自噬及beclin-1调节因子1 (Autophagy and beclin 1 regu‑lator 1, AMBRA1)是ULK1和BECN1依赖性自噬的调节因子,同时参与PINK1-Parkin依赖性和非依赖性线粒体自噬。作为线粒体自噬受体,可经CHUK/IKKα磷酸化后与LC3蛋白结合,直接介导自噬体对受损线粒体的识别[17]。在PINK1-PRKN通路中,AMBRA1是线粒体去极化后激活PINK1-Parkin信号的必要因子[18],且与Parkin相互作用协同诱导线粒体自噬,显著抑制ROS诱导的多巴胺能神经元凋亡[19]。通过募集E3泛素连接酶HUWE1至受损线粒体,介导抗自噬蛋白MCL1和MFN2的蛋白酶体降解,从而解除其对线粒体自噬的抑制作用[20]。这些发现揭示了AMBRA1在自噬调控网络中的多层级作用。

3. 线粒体自噬在糖尿病并发症中的应用

糖尿病引发的并发症常累及心、脑、眼、肾及神经等关键器官,临床表现为心肌病变、视网膜病变、肾病及周围神经损伤等,一旦进入并发症阶段,治疗手段有限且预后较差,最终可能进展为心力衰竭、失明、尿毒症或截肢等严重后果。线粒体自噬作为维持细胞代谢稳态的核心枢纽,通过清除功能失调线粒体,在抑制糖尿病胰岛素抵抗、改善细胞功能及延缓并发症进展中发挥关键作用,靶向线粒体自噬为糖尿病及其并发症的精准干预提供新方向。

3.1. 糖尿病肾病

糖尿病肾病是DM最常见的慢性微血管并发症之一,是终末期肾脏病的主要原因。DKD的发病机制复杂,涉及肾脏氧化应激、炎症和纤维化以及遗传、代谢和血流动力学等因素。临床上,DKD患者表现为肾小球高滤过,白蛋白尿。目前DKD的治疗方法仅限于血糖和血压控制,透析及肾移植技术,但存在很大的风险,迫切需要有效的药物来更好地控制疾病发展。

高血糖通过氧化应激、晚期糖基化终末产物(Advanced glycation end products, AGEs)等途径抑制PINK1/Parkin通路及下调自噬受体表达,削弱线粒体自噬能力,致使肾小管上皮细胞与足细胞中线粒体DNA损伤及功能障碍加剧,最终促进细胞凋亡与纤维化病理进程。在DKD的早期阶段,近端肾小管是氧化应激和损伤的主要目标[21]。Maximiliano等[22]发现糖尿病小鼠的近端小管细胞具有更大更多的自噬囊泡,表明肾小管内吞转运蛋白的改变,可能与自噬功能障碍有关。Jiang等[23]人在db/db糖尿病小鼠肾近端肾小管细胞中观察到自噬通量受损、线粒体功能障碍和内质网应激增强。肾小管上皮细胞的过早衰老是糖尿病肾病进展的关键过程,肾脏中视神经蛋白(Optineurin, OPTN)表达降低与肾小管间质损伤增加、衰老标志物表达缺乏和肾功能变差有关,提示线粒体自噬是糖尿病肾病中防止细胞衰老的重要保护机制[24]。足细胞损伤在DKD和蛋白尿的发展中起着核心作用,一些足细胞相关的生物标志物,如Nephrin、Podocalyxin、MCP-1和足细胞衍生的微粒,可以作为DKD的早期标志物[25]。Yann等[26]人发现糖尿病小鼠模型中足细胞瞬时受体电位阳离子通道蛋白6 (Transient receptor potential cation channel 6, TRPC6)表达增加,自噬通量降低,通过转基因过表达内源性抑制剂钙蛋白酶抑素或采用药物抑制钙蛋白酶活性,使糖尿病小鼠的足细胞自噬通量恢复正常、减少Nephrin蛋白的丢失,并有效防止蛋白尿的产生。综上所述,高血糖通过多重机制破坏肾脏细胞线粒体自噬稳态,加速肾小管上皮细胞衰老及足细胞功能损伤,靶向调控自噬通路可能为延缓DKD进展提供新型治疗策略。

3.2. 糖尿病视网膜病变

糖尿病视网膜病变是糖尿病主要微血管并发症及致盲主因,其发病与高糖诱导的氧化应激、慢性炎症、血管内皮生长因子(Vascular endothelial growth factor, VEGF)异常上调及视网膜屏障破坏等机制相关。早期表现为无症状微血管病变,进展后出现黄斑水肿、视网膜缺血及新生血管,最终致盲。现有疗法如抗VEGF药物、激光光凝术虽可延缓病情,但存在反复注射风险、视网膜损伤等局限。因此,聚焦靶向调控氧化应激、炎症通路或修复线粒体自噬等核心机制,成为当前研究的迫切方向。

DR中线粒体自噬的动态失衡与高糖诱导的病理进程密切相关。高糖环境下,线粒体功能障碍表现为碎片化增加、膜电位丧失及ROS过度累积,触发线粒体自噬的异常调控。此时,线粒体自噬作为清除受损线粒体的关键机制,其功能可能受到抑制或异常激活。在DR中,ROS可能通过FOXO3-PINK1/Parkin信号通路或TXNIP-线粒体–溶酶体介导的线粒体自噬通路抑制视网膜色素上皮细胞中的线粒体自噬[27]。Alka等[28]人发现高糖通过增加线粒体融合蛋白2 (Mitochondrial fusion protein 2, Mfn 2)的乙酰化抑制其GTP酶活性,导致线粒体碎片化;而抑制Mfn 2乙酰化或过表达NAD-依赖性去乙酰化酶(Sirtuin-1, SIRT1)可恢复其功能并改善糖尿病所致线粒体自噬障碍,从而抑制糖尿病视网膜病变的发展。此外,线粒体自噬在DR不同阶段呈现双相性:在DR早期,部分研究观察到线粒体自噬增强,可能是细胞为清除受损线粒体而启动的保护性反应;在DR后期,过度或失调的自噬可加重细胞死亡、视网膜新生血管和血管损伤[29]。硫氧还蛋白互作蛋白(Thioredoxin-interactingprotein, TXNIP)是DR发病机制中视网膜色素上皮细胞线粒体降解的重要参与者,Devi等[30]人证明高糖导致TXNIP表达增加、线粒体功能障碍、线粒体碎片增加、线粒体自噬通量增加,而敲低TXNIP减少了线粒体碎片、线粒体自噬和溶酶体增大,提示靶向TXNIP可能治疗DR的潜在靶点。综上所述,恢复线粒体自噬功能可能成为治疗DR的新方向,但需针对疾病阶段和具体分子机制设计精准干预策略。

3.3. 糖尿病神经病变

糖尿病神经病变是糖尿病常见慢性并发症,以周围神经损伤为主要特征,临床表现为疼痛、感觉异常及高截肢风险。其发病机制,涉及高血糖诱导的氧化应激、AGEs积累、线粒体功能障碍、炎症反应及微血管损伤等多因素交互作用。临床上,DN主要表现为远端对称性多发神经病,如麻木、刺痛或灼烧感、自主神经功能障碍及足部溃疡,甚至截肢。当前治疗手段以血糖控制为核心,辅以疼痛管理药物和改善微循环药物,但仅能缓解症状,无法逆转神经损伤或阻断疾病进展。针对关键病理环节(如线粒体自噬调控、AGEs清除或抗炎靶点)开发新型疗法,是突破当前治疗瓶颈的重要方向。

高血糖诱导的氧化应激和线粒体损伤是DN的核心机制,线粒体膜电位降低、ROS积累及ATP合成减少直接导致神经元损伤,线粒体自噬作为清除受损线粒体的关键过程,在糖尿病状态下可能被抑制或失调。在糖尿病神经病变大鼠中,线粒体自噬相关蛋白LC3Ⅱ/Ⅰ、Beclin-1表达显著降低,自噬体数量减少,受损线粒体堆积,进一步加剧神经损伤和疼痛[31]。在DN中,高血糖诱导的线粒体自噬失衡是介导施万细胞损伤的关键机制。持续高血糖会导致原本髓鞘较厚的施万细胞逐渐变薄或丧失髓鞘,从而引发髓鞘神经纤维损伤[32]。在此过程中,线粒体超氧化物累积及膜电位异常可触发神经炎症级联反应,而白皮杉醇通过激活SIRT1-PGC-1α轴增强线粒体生物发生,同时协同激活PINK1-Parkin通路促进受损线粒体清除,显著缓解高糖环境下的氧化损伤[33]。值得注意的是,糖尿病微环境中的缺氧信号进一步加剧线粒体稳态失衡:He等[34]人发现HIF-1α激动剂DMOG通过Parkin依赖性途径增强脊髓线粒体自噬,改善DN小鼠痛觉过敏,但Parkin基因缺失时该保护作用消失,表明HIF-1α-Parkin通路是缺氧条件下维持线粒体功能的核心枢纽。这些研究共同揭示,针对线粒体自噬通路及氧化应激调控网络的精准干预,可为DN治疗提供多维度策略。

3.4. 糖尿病心血管并发症

糖尿病心血管并发症是DM患者致死致残的主要原因,涵盖动脉粥样硬化性心血管疾病(Atherosclerotic cardiovascular disease, ASCVD)、心肌病和心力衰竭等。其核心机制为慢性高糖驱动内皮功能障碍、氧化应激、炎症激活及心肌代谢紊乱,共同促进血管斑块不稳定、心肌纤维化和舒张功能受损[35]。临床上,DCV表现为加速性动脉粥样硬化、冠状动脉狭窄、左心室肥厚,常伴随微循环障碍。当前治疗以强化血糖和血压控制、他汀类药物降脂及介入手术为主,但难以逆转已形成的血管与心肌结构损伤。近年来,SGLT2抑制剂(如恩格列净)和GLP-1受体激动剂(如利拉鲁肽)通过代谢调控显示出心肾保护作用,但仍需开发靶向线粒体自噬、炎症小体或代谢重编程的新型疗法,以改善患者长期预后。

近年研究表明,线粒体自噬失调在DCV中发挥关键作用,其调控机制呈现多通路、多靶点的特征。在糖尿病心肌病发病机制中,Devi等[36]发现线粒体自噬受损可通过mtDNA异常释放激活Aim2/NLRC4炎性小体,促进caspase-1活化,最终加剧T2DM小鼠心肌损伤和心力衰竭进程。这一发现揭示了线粒体质量控制与炎症反应之间的重要联系。在分子调控层面,Yu等[37]研究发现,Sirt3通过促进FOXO3A去乙酰化正向调控Parkin表达,该过程在糖尿病状态下受Mst1负向调控[38],而褪黑素可通过抑制Mst1激活Parkin介导的线粒体自噬改善DCM [39]。线粒体自噬相关接头蛋白FUNDC1在代谢调控中展现重要作用:FUNDC1缺失加剧高脂饮食诱导的心脏重构和线粒体损伤,同时伴随细胞死亡增加、IP3R3水平升高及Ca2+超载[40];在肥胖模型中可通过调控MAPK信号维持代谢稳态[12]。内皮功能障碍是糖尿病动脉粥样硬化和血管并发症发展的关键早期步骤,线粒体自噬起着保护作用。内皮细胞暴露于高糖环境不仅会诱导线粒体过度裂变和ROS生成,还会减少PINK1、Parkin和LC3B的mRNA和蛋白水平,提示线粒体自噬抑制[41]。灯盏乙素可能通过PINK1/Parkin信号通路上调线粒体自噬,从而保护血管内皮细胞免受高血糖诱导的损伤[42]。此外,线粒体裂变与线粒体自噬之间存在动态平衡,分裂诱导线粒体碎片化可促进线粒体自噬发生,而线粒体裂变本身即为PINK1/Parkin介导的线粒体自噬的起始信号,激活的线粒体自噬可以消除片段化的线粒体以抵消裂变的有害影响,从而保留线粒体功能[43]。这些发现不仅阐明线粒体自噬在糖尿病心血管并发症中的核心地位,更为临床干预提供了多个潜在靶点。

4. 现有研究的局限

尽管当前研究揭示了线粒体自噬在糖尿病并发症中的重要作用,但仍存在一些局限性。多数研究基于啮齿类动物模型(如db/db小鼠或STZ诱导糖尿病大鼠),其代谢特征与人类糖尿病存在差异,基因工程模型虽发病机制层面上与人类最为接近,但现仍处于摸索阶段、技术难度大,难以大规模应用。研究显示线粒体自噬呈现双相性调控特征:在糖尿病肾病早期阶段表现为代偿性激活(如PINK1/Parkin通路的上调),而在晚期则出现自噬流阻滞和溶酶体降解功能障碍,然而,这种表型转换阈值调控机制尚不清晰。尽管小分子化合物在动物模型中显示出调控线粒体自噬的潜力,但其生物利用度、组织特异性及长期安全性仍需评估,临床应用面临多重障碍。

5. 结语

线粒体自噬通过调控氧化应激、炎症反应及细胞稳态精准清除功能失调的线粒体,在糖尿病及其并发症中展现出多层面的保护效应。现有研究揭示了PINK1/Parkin、BNIP3、FUNDC1等核心通路在维持线粒体质量中的关键作用,并证实其调控异常与糖尿病肾病、视网膜病变、神经病变和心血管损伤密切相关。但目前线粒体自噬与炎症小体、代谢重编程等通路的交互作用尚未完全阐明,多靶点联合干预可能是未来方向。

NOTES

*通讯作者。

参考文献

[1] Xu, Y., Lu, J., Li, M., Wang, T., Wang, K., Cao, Q., et al. (2024) Diabetes in China Part 1: Epidemiology and Risk Factors. The Lancet Public Health, 9, e1089-e1097.
https://doi.org/10.1016/s2468-2667(24)00250-0
[2] Forbes, J.M. and Thorburn, D.R. (2018) Mitochondrial Dysfunction in Diabetic Kidney Disease. Nature Reviews Nephrology, 14, 291-312.
https://doi.org/10.1038/nrneph.2018.9
[3] Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., et al. (2023) The Mitophagy Pathway and Its Implications in Human Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 304.
https://doi.org/10.1038/s41392-023-01503-7
[4] Blagov, A.V., Summerhill, V.I., Sukhorukov, V.N., Popov, M.A., Grechko, A.V. and Orekhov, A.N. (2023) Type 1 Diabetes Mellitus: Inflammation, Mitophagy, and Mitochondrial Function. Mitochondrion, 72, 11-21.
https://doi.org/10.1016/j.mito.2023.07.002
[5] Shan, Z., Fa, W.H., Tian, C.R., Yuan, C.S. and Jie, N. (2022) Mitophagy and Mitochondrial Dynamics in Type 2 Diabetes Mellitus Treatment. Aging, 14, 2902-2919.
https://doi.org/10.18632/aging.203969
[6] Narendra, D.P. and Youle, R.J. (2024) The Role of Pink1-Parkin in Mitochondrial Quality Control. Nature Cell Biology, 26, 1639-1651.
https://doi.org/10.1038/s41556-024-01513-9
[7] Nguyen, T.T., Wei, S., Nguyen, T.H., Jo, Y., Zhang, Y., Park, W., et al. (2023) Mitochondria-Associated Programmed Cell Death as a Therapeutic Target for Age-Related Disease. Experimental & Molecular Medicine, 55, 1595-1619.
https://doi.org/10.1038/s12276-023-01046-5
[8] Yuan, Y., Zheng, Y., Zhang, X., Chen, Y., Wu, X., Wu, J., et al. (2017) BNIP3L/NIX-Mediated Mitophagy Protects against Ischemic Brain Injury Independent of Park2. Autophagy, 13, 1754-1766.
https://doi.org/10.1080/15548627.2017.1357792
[9] Marinković, M., Šprung, M. and Novak, I. (2020) Dimerization of Mitophagy Receptor BNIP3L/NIX Is Essential for Recruitment of Autophagic Machinery. Autophagy, 17, 1232-1243.
https://doi.org/10.1080/15548627.2020.1755120
[10] Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y. and Kondo, S. (2004) Pivotal Role of the Cell Death Factor BNIP3 in Ceramide-Induced Autophagic Cell Death in Malignant Glioma Cells. Cancer Research, 64, 4286-4293.
https://doi.org/10.1158/0008-5472.can-03-3084
[11] Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., et al. (2012) Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells. Nature Cell Biology, 14, 177-185.
https://doi.org/10.1038/ncb2422
[12] Wu, H., Wang, Y., Li, W., Chen, H., Du, L., Liu, D., et al. (2019) Deficiency of Mitophagy Receptor FUNDC1 Impairs Mitochondrial Quality and Aggravates Dietary-Induced Obesity and Metabolic Syndrome. Autophagy, 15, 1882-1898.
https://doi.org/10.1080/15548627.2019.1596482
[13] Zhou, H., Zhu, P., Wang, J., Zhu, H., Ren, J. and Chen, Y. (2018) Pathogenesis of Cardiac Ischemia Reperfusion Injury Is Associated with Ck2α-Disturbed Mitochondrial Homeostasis via Suppression of Fundc1-Related Mitophagy. Cell Death & Differentiation, 25, 1080-1093.
https://doi.org/10.1038/s41418-018-0086-7
[14] Chen, G., Han, Z., Feng, D., Chen, Y., Chen, L., Wu, H., et al. (2014) A Regulatory Signaling Loop Comprising the PGAM5 Phosphatase and CK2 Controls Receptor-Mediated Mitophagy. Molecular Cell, 54, 362-377.
https://doi.org/10.1016/j.molcel.2014.02.034
[15] Zhou, H., Zhu, P., Guo, J., Hu, N., Wang, S., Li, D., et al. (2017) Ripk3 Induces Mitochondrial Apoptosis via Inhibition of FUNDC1 Mitophagy in Cardiac IR Injury. Redox Biology, 13, 498-507.
https://doi.org/10.1016/j.redox.2017.07.007
[16] Wu, S., Lu, Q., Ding, Y., Wu, Y., Qiu, Y., Wang, P., et al. (2019) Hyperglycemia-Driven Inhibition of Amp-Activated Protein Kinase Α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes in Vivo. Circulation, 139, 1913-1936.
https://doi.org/10.1161/circulationaha.118.033552
[17] Di Rita, A., Peschiaroli, A., D’Acunzo, P., Strobbe, D., Hu, Z., Gruber, J., et al. (2018) HUWE1 E3 Ligase Promotes Pink1/Parkin-Independent Mitophagy by Regulating AMBRA1 Activation via IKKα. Nature Communications, 9, Article No. 3755.
https://doi.org/10.1038/s41467-018-05722-3
[18] Di Rienzo, M., Romagnoli, A., Ciccosanti, F., Refolo, G., Consalvi, V., Arena, G., et al. (2021) AMBRA1 Regulates Mitophagy by Interacting with ATAD3A and Promoting PINK1 Stability. Autophagy, 18, 1752-1762.
https://doi.org/10.1080/15548627.2021.1997052
[19] Di Rita, A., D’Acunzo, P., Simula, L., Campello, S., Strappazzon, F. and Cecconi, F. (2018) Ambra1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Frontiers in Cellular Neuroscience, 12, Article 92.
https://doi.org/10.3389/fncel.2018.00092
[20] Strappazzon, F., Di Rita, A., Peschiaroli, A., Leoncini, P.P., Locatelli, F., Melino, G., et al. (2019) HUWE1 Controls MCL1 Stability to Unleash Ambra1-Induced Mitophagy. Cell Death & Differentiation, 27, 1155-1168.
https://doi.org/10.1038/s41418-019-0404-8
[21] Haraguchi, R., Kohara, Y., Matsubayashi, K., Kitazawa, R. and Kitazawa, S. (2020) New Insights into the Pathogenesis of Diabetic Nephropathy: Proximal Renal Tubules Are Primary Target of Oxidative Stress in Diabetic Kidney. ACTA Histochemica et Cytochemica, 53, 21-31.
https://doi.org/10.1267/ahc.20008
[22] Giraud-Billoud M., Fader C.M., Aguero R., et al. (2018) Diabetic Nephropathy, Autophagy and Proximal Tubule Protein Endocytic Transport: A Potentially Harmful Relationship. Bio Cell, 42, 35-40.
https://doi.org/10.32604/biocell.2018.07010
[23] Jiang, X., Xiang, X., Chen, X., He, J., Liu, T., Gan, H., et al. (2020) Inhibition of Soluble Epoxide Hydrolase Attenuates Renal Tubular Mitochondrial Dysfunction and ER Stress by Restoring Autophagic Flux in Diabetic Nephropathy. Cell Death & Disease, 11, Article No. 385.
https://doi.org/10.1038/s41419-020-2594-x
[24] Chen, K., Dai, H., Yuan, J., Chen, J., Lin, L., Zhang, W., et al. (2018) Optineurin-Mediated Mitophagy Protects Renal Tubular Epithelial Cells against Accelerated Senescence in Diabetic Nephropathy. Cell Death & Disease, 9, Article No. 105.
https://doi.org/10.1038/s41419-017-0127-z
[25] Li, J., Zheng, S., Ma, C., Chen, X., Li, X., Li, S., et al. (2023) Research Progress on Exosomes in Podocyte Injury Associated with Diabetic Kidney Disease. Frontiers in Endocrinology, 14, Article 1129884.
https://doi.org/10.3389/fendo.2023.1129884
[26] Salemkour, Y., Yildiz, D., Dionet, L., Hart, D.C., Verheijden, K.A.T., Saito, R., et al. (2023) Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves Trpc6-Mediated Calpain Activation Impairing Autophagy. Journal of the American Society of Nephrology, 34, 1823-1842.
https://doi.org/10.1681/asn.0000000000000212
[27] Zhang, S., Fan, B., Li, Y.L., Zuo, Z. and Li, G. (2023) Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cellular and Molecular Neurobiology, 43, 3265-3276.
https://doi.org/10.1007/s10571-023-01383-z
[28] Alka, K., Kumar, J. and Kowluru, R.A. (2023) Impaired Mitochondrial Dynamics and Removal of the Damaged Mitochondria in Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1160155.
https://doi.org/10.3389/fendo.2023.1160155
[29] Gong, Q., Wang, H., Yu, P., Qian, T. and Xu, X. (2021) Protective or Harmful: The Dual Roles of Autophagy in Diabetic Retinopathy. Frontiers in Medicine, 8, Article 644121.
https://doi.org/10.3389/fmed.2021.644121
[30] Devi, T.S., Yumnamcha, T., Yao, F., Somayajulu, M., Kowluru, R.A. and Singh, L.P. (2019) TXNIP Mediates High Glucose-Induced Mitophagic Flux and Lysosome Enlargement in Human Retinal Pigment Epithelial Cells. Biology Open, 8, bio038521.
https://doi.org/10.1242/bio.038521
[31] Yang, J., Yu, Z., Jiang, Y., Zhang, Z., Tian, Y., Cai, J., et al. (2024) SIRT3 Alleviates Painful Diabetic Neuropathy by Mediating the FoxO3a-PINK1-Parkin Signaling Pathway to Activate Mitophagy. CNS Neuroscience & Therapeutics, 30, e14703.
https://doi.org/10.1111/cns.14703
[32] Chang, L., Wu, Y., Wang, H., Tseng, K., Wang, Y., Lu, Y., et al. (2024) Cilostazol Ameliorates Motor Dysfunction and Schwann Cell Impairment in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences, 25, Article 7847.
https://doi.org/10.3390/ijms25147847
[33] Khan, I., Preeti, K., Kumar, R., Kumar Khatri, D. and Bala Singh, S. (2023) Piceatannol Promotes Neuroprotection by Inducing Mitophagy and Mitobiogenesis in the Experimental Diabetic Peripheral Neuropathy and Hyperglycemia-Induced Neurotoxicity. International Immunopharmacology, 116, Article 109793.
https://doi.org/10.1016/j.intimp.2023.109793
[34] He, J., Qin, Z., Chen, X., He, W., Li, D., Zhang, L., et al. (2022) HIF-1α Ameliorates Diabetic Neuropathic Pain via Parkin-Mediated Mitophagy in a Mouse Model. BioMed Research International, 2022, Article 5274375.
https://doi.org/10.1155/2022/5274375
[35] Ritchie, R.H. and Abel, E.D. (2020) Basic Mechanisms of Diabetic Heart Disease. Circulation Research, 126, 1501-1525.
https://doi.org/10.1161/circresaha.120.315913
[36] Durga Devi, T., Babu, M., Mäkinen, P., Kaikkonen, M.U., Heinaniemi, M., Laakso, H., et al. (2017) Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. The American Journal of Pathology, 187, 2659-2673.
https://doi.org/10.1016/j.ajpath.2017.08.023
[37] Yu, W., Gao, B., Li, N., Wang, J., Qiu, C., Zhang, G., et al. (2017) SIRT3 Deficiency Exacerbates Diabetic Cardiac Dysfunction: Role of FoxO3a-Parkin-Mediated Mitophagy. Biochimica et Biophysica ActaMolecular Basis of Disease, 1863, 1973-1983.
https://doi.org/10.1016/j.bbadis.2016.10.021
[38] Wang, S., Zhao, Z., Fan, Y., Zhang, M., Feng, X., Lin, J., et al. (2019) Mst1 Inhibits SIRT3 Expression and Contributes to Diabetic Cardiomyopathy through Inhibiting Parkin-Dependent Mitophagy. Biochimica et Biophysica ActaMolecular Basis of Disease, 1865, 1905-1914.
https://doi.org/10.1016/j.bbadis.2018.04.009
[39] Wang, S., Zhao, Z., Feng, X., Cheng, Z., Xiong, Z., Wang, T., et al. (2018) Melatonin Activates Parkin Translocation and Rescues the Impaired Mitophagy Activity of Diabetic Cardiomyopathy through Mst1 Inhibition. Journal of Cellular and Molecular Medicine, 22, 5132-5144.
https://doi.org/10.1111/jcmm.13802
[40] Ren, J., Sun, M., Zhou, H., Ajoolabady, A., Zhou, Y., Tao, J., et al. (2020) FUNDC1 Interacts with FBXL2 to Govern Mitochondrial Integrity and Cardiac Function through an IP3R3-Dependent Manner in Obesity. Science Advances, 6, eabc8561.
https://doi.org/10.1126/sciadv.abc8561
[41] Chen, C., Pan, B., Tsai, P., Chen, F., Yang, W. and Shen, M. (2021) Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling. International Journal of Molecular Sciences, 22, Article 10309.
https://doi.org/10.3390/ijms221910309
[42] Xi, J., Rong, Y., Zhao, Z., Huang, Y., Wang, P., Luan, H., et al. (2021) Scutellarin Ameliorates High Glucose-Induced Vascular Endothelial Cells Injury by Activating PINK1/Parkin-Mediated Mitophagy. Journal of Ethnopharmacology, 271, Article 113855.
https://doi.org/10.1016/j.jep.2021.113855
[43] Zhang, X., Zhou, H. and Chang, X. (2023) Involvement of Mitochondrial Dynamics and Mitophagy in Diabetic Endothelial Dysfunction and Cardiac Microvascular Injury. Archives of Toxicology, 97, 3023-3035.
https://doi.org/10.1007/s00204-023-03599-w