[1]
|
Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., et al. (2019) Super-Resolution Microscopy Demystified. Nature Cell Biology, 21, 72-84. https://doi.org/10.1038/s41556-018-0251-8
|
[2]
|
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. (2017) Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science, 355, 606-612. https://doi.org/10.1126/science.aak9913
|
[3]
|
Laissue, P.P., Alghamdi, R.A., Tomancak, P., Reynaud, E.G. and Shroff, H. (2017) Assessing Phototoxicity in Live Fluorescence Imaging. Nature Methods, 14, 657-661. https://doi.org/10.1038/nmeth.4344
|
[4]
|
Chen, X., Zhong, S., Hou, Y., Cao, R., Wang, W., Li, D., et al. (2023) Superresolution Structured Illumination Microscopy Reconstruction Algorithms: A Review. Light: Science & Applications, 12, Article No. 172. https://doi.org/10.1038/s41377-023-01204-4
|
[5]
|
乔良, 唐远河, 张昊. 多维度结构光显微成像及其生物应用[D]: [硕士学位论文]. 西安: 西安理工大学, 2021.
|
[6]
|
Lukosz, W. and Marchand, M. (1963) Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta: International Journal of Optics, 10, 241-255. https://doi.org/10.1080/713817795
|
[7]
|
Gustafsson, M.G.L. (2000) Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy. Journal of Microscopy, 198, 82-87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
|
[8]
|
Szikora, S., Görög, P., Kozma, C. and Mihály, J. (2021) Drosophila Models Rediscovered with Super-Resolution Microscopy. Cells, 10, Article 1924. https://doi.org/10.3390/cells10081924
|
[9]
|
Cox, S. (2015) Super-Resolution Imaging in Live Cells. Developmental Biology, 401, 175-181. https://doi.org/10.1016/j.ydbio.2014.11.025
|
[10]
|
Richter, V., Piper, M., Wagner, M. and Schneckenburger, H. (2019) Increasing Resolution in Live Cell Microscopy by Structured Illumination (SIM). Applied Sciences, 9, Article 1188. https://doi.org/10.3390/app9061188
|
[11]
|
Fiolka, R., Shao, L., Rego, E.H., Davidson, M.W. and Gustafsson, M.G.L. (2012) Time-Lapse Two-Color 3D Imaging of Live Cells with Doubled Resolution Using Structured Illumination. Proceedings of the National Academy of Sciences, 109, 5311-5315. https://doi.org/10.1073/pnas.1119262109
|
[12]
|
张娇, 何勤, 武泽凯. 超分辨显微成像技术在活细胞成像中的应用与发展[J]. 生物化学与生物物理进展, 2021, 48(11): 1301-1315.
|
[13]
|
陈婕, 刘文娟, 徐兆超. 多种超分辨荧光成像技术比较和进展评述[J]. 色谱, 2021, 39(10): 1055-1064.
|
[14]
|
Hirvonen, L., Mandula, O., Wicker, K. and Heintzmann, R. (2008) Structured Illumination Microscopy Using Photoswitchable Fluorescent Proteins. SPIE Proceedings, 6861, 68610L. https://doi.org/10.1117/12.763021
|
[15]
|
Qiao, C., Chen, X., Zhang, S., Li, D., Guo, Y., Dai, Q., et al. (2021) 3D Structured Illumination Microscopy via Channel Attention Generative Adversarial Network. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-11. https://doi.org/10.1109/jstqe.2021.3060762
|
[16]
|
鲁心怡, 黄昱, 张梓童, 等. 深度学习在超分辨显微成像中的研究进展(特邀) [J]. 激光与光电子学进展, 2024, 61(16): 31-48.
|
[17]
|
Wang, J., Fan, J., Zhou, B., Huang, X. and Chen, L. (2023) Hybrid Reconstruction of the Physical Model with the Deep Learning That Improves Structured Illumination Microscopy. Advanced Photonics Nexus, 2, Article 016012. https://doi.org/10.1117/1.apn.2.1.016012
|
[18]
|
Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. and Gustafsson, M.G.L. (2009) Super-Resolution Video Microscopy of Live Cells by Structured Illumination. Nature Methods, 6, 339-342. https://doi.org/10.1038/nmeth.1324
|
[19]
|
Shao, L., Kner, P., Rego, E.H. and Gustafsson, M.G.L. (2011) Super-Resolution 3D Microscopy of Live Whole Cells Using Structured Illumination. Nature Methods, 8, 1044-1046. https://doi.org/10.1038/nmeth.1734
|
[20]
|
Li, D., Shao, L., Chen, B., Zhang, X., Zhang, M., Moses, B., et al. (2015) Extended-Resolution Structured Illumination Imaging of Endocytic and Cytoskeletal Dynamics. Science, 349, aab3500. https://doi.org/10.1126/science.aab3500
|
[21]
|
Guo, Y., Li, D., Zhang, S., Yang, Y., Liu, J., Wang, X., et al. (2018) Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 175, 1430-1442.E17. https://doi.org/10.1016/j.cell.2018.09.057
|
[22]
|
Ouyang, Z., Wang, Q., Li, X., Dai, Q., Tang, M., Shao, L., et al. (2024) Elucidating Subcellular Architecture and Dynamics at Isotropic 100-Nm Resolution with 4Pi-SIM. Nature Methods, 22, 335-347. https://doi.org/10.1038/s41592-024-02515-z
|
[23]
|
Hell, S.W. and Wichmann, J. (1994) Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy. Optics Letters, 19, 780-782. https://doi.org/10.1364/ol.19.000780
|
[24]
|
Klar, T.A. and Hell, S.W. (1999) Subdiffraction Resolution in Far-Field Fluorescence Microscopy. Optics Letters, 24, 954-956. https://doi.org/10.1364/ol.24.000954
|
[25]
|
Hell, S.W., Willig, K.I., Dyba, M., Jakobs, S., Kastrup, L. and Westphal, V. (2006) Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts. In: Pawley, J., Ed., Handbook of Biological Confocal Microscopy, Springer, 571-579. https://doi.org/10.1007/978-0-387-45524-2_31
|
[26]
|
Heine, J., Reuss, M., Harke, B., D’Este, E., Sahl, S.J. and Hell, S.W. (2017) Adaptive-Illumination STED Nanoscopy. Proceedings of the National Academy of Sciences, 114, 9797-9802. https://doi.org/10.1073/pnas.1708304114
|
[27]
|
Li, M. (2020) Deep Adversarial Network for Super Stimulated Emission Depletion Imaging. Journal of Nanophotonics, 14, Article 016009. https://doi.org/10.1117/1.jnp.14.016009
|
[28]
|
Ebrahimi, V., Stephan, T., Kim, J., Carravilla, P., Eggeling, C., Jakobs, S., et al. (2023) Deep Learning Enables Fast, Gentle STED Microscopy. Communications Biology, 6, Article No. 674. https://doi.org/10.1038/s42003-023-05054-z
|
[29]
|
周汉秋, 朱殷铷, 韩鸿怡, 等. 基于受激发射损耗显微术的活细胞和活体超分辨成像[J]. 生物化学与生物物理进展, 2023, 50(3): 513-528.
|
[30]
|
Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., et al. (2013) A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nature Chemistry, 5, 132-139. https://doi.org/10.1038/nchem.1546
|
[31]
|
Bottanelli, F., Kromann, E.B., Allgeyer, E.S., Erdmann, R.S., Wood Baguley, S., Sirinakis, G., et al. (2016) Two-Colour Live-Cell Nanoscale Imaging of Intracellular Targets. Nature Communications, 7, Article No. 10778. https://doi.org/10.1038/ncomms10778
|
[32]
|
Wang, C., Taki, M., Sato, Y., Tamura, Y., Yaginuma, H., Okada, Y., et al. (2019) A Photostable Fluorescent Marker for the Superresolution Live Imaging of the Dynamic Structure of the Mitochondrial Cristae. Proceedings of the National Academy of Sciences, 116, 15817-15822. https://doi.org/10.1073/pnas.1905924116
|
[33]
|
Yang, X., Yang, Z., Wu, Z., He, Y., Shan, C., Chai, P., et al. (2020) Mitochondrial Dynamics Quantitatively Revealed by STED Nanoscopy with an Enhanced Squaraine Variant Probe. Nature Communications, 11, Article No. 3699. https://doi.org/10.1038/s41467-020-17546-1
|
[34]
|
Liu, T., Stephan, T., Chen, P., Keller-Findeisen, J., Chen, J., Riedel, D., et al. (2022) Multi-Color Live-Cell STED Nanoscopy of Mitochondria with a Gentle Inner Membrane Stain. Proceedings of the National Academy of Sciences, 119, e2215799119. https://doi.org/10.1073/pnas.2215799119
|
[35]
|
Lelek, M., Gyparaki, M.T., Beliu, G., Schueder, F., Griffié, J., Manley, S., et al. (2021) Single-Molecule Localization Microscopy. Nature Reviews Methods Primers, 1, Article No. 39. https://doi.org/10.1038/s43586-021-00038-x
|
[36]
|
Thompson, R.E., Larson, D.R. and Webb, W.W. (2002) Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophysical Journal, 82, 2775-2783. https://doi.org/10.1016/s0006-3495(02)75618-x
|
[37]
|
Rust, M.J., Bates, M. and Zhuang, X. (2006) Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nature Methods, 3, 793-796. https://doi.org/10.1038/nmeth929
|
[38]
|
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 313, 1642-1645. https://doi.org/10.1126/science.1127344
|
[39]
|
何辰颖, 詹政以, 李传康, 等. 亚20nm荧光超分辨显微技术研究进展(特邀) [J]. 激光与光电子学进展, 2024, 61(2): 64-76.
|
[40]
|
Carsten, A., Failla, A.V. and Aepfelbacher, M. (2025) MINFLUX Nanoscopy: Visualising Biological Matter at the Nanoscale Level. Journal of Microscopy, 298, 219-231.
|
[41]
|
Cheezum, M.K., Walker, W.F. and Guilford, W.H. (2001) Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. Biophysical Journal, 81, 2378-2388. https://doi.org/10.1016/s0006-3495(01)75884-5
|
[42]
|
Aguet, F., Van De Ville, D. and Unser, M. (2005) A Maximum-Likelihood Formalism for Sub-Resolution Axial Localization of Fluorescent Nanoparticles. Optics Express, 13, 10503-10522. https://doi.org/10.1364/opex.13.010503
|
[43]
|
Zhu, L., Zhang, W., Elnatan, D. and Huang, B. (2012) Faster STORM Using Compressed Sensing. Nature Methods, 9, 721-723. https://doi.org/10.1038/nmeth.1978
|
[44]
|
Nehme, E., Weiss, L.E., Michaeli, T. and Shechtman, Y. (2018) Deep-STORM: Super-Resolution Single-Molecule Microscopy by Deep Learning. Optica, 5, 458-464. https://doi.org/10.1364/optica.5.000458
|
[45]
|
Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. and Hagen, G.M. (2014) Thunderstorm: A Comprehensive Imagej Plug-in for PALM and STORM Data Analysis and Super-Resolution Imaging. Bioinformatics, 30, 2389-2390. https://doi.org/10.1093/bioinformatics/btu202
|
[46]
|
Speiser, A., Müller, L., Hoess, P., Matti, U., Obara, C.J., Legant, W.R., et al. (2021) Deep Learning Enables Fast and Dense Single-Molecule Localization with High Accuracy. Nature Methods, 18, 1082-1090. https://doi.org/10.1038/s41592-021-01236-x
|
[47]
|
Kumar Gaire, S., Zhang, Y., Li, H., Yu, R., Zhang, H.F. and Ying, L. (2020) Accelerating Multicolor Spectroscopic Single-Molecule Localization Microscopy Using Deep Learning. Biomedical Optics Express, 11, 2705-2721. https://doi.org/10.1364/boe.391806
|
[48]
|
Heilemann, M., van de Linde, S., Mukherjee, A. and Sauer, M. (2009) Super‐Resolution Imaging with Small Organic Fluorophores. Angewandte Chemie International Edition, 48, 6903-6908. https://doi.org/10.1002/anie.200902073
|
[49]
|
Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M. and Yin, P. (2014) Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 11, 313-318. https://doi.org/10.1038/nmeth.2835
|
[50]
|
Niederauer, C., Nguyen, C., Wang-Henderson, M., Stein, J., Strauss, S., Cumberworth, A., et al. (2023) Dual-Color DNA-PAINT Single-Particle Tracking Enables Extended Studies of Membrane Protein Interactions. Nature Communications, 14, Article No. 4345. https://doi.org/10.1038/s41467-023-40065-8
|
[51]
|
Deguchi, T., Iwanski, M.K., Schentarra, E.M., et al. (2022) Direct Observation of Motor Protein Stepping in Living Cells Using MINFLUX. bioRxiv: 2022.07.25.500391.
|
[52]
|
Schleske, J.M., Hubrich, J., Wirth, J.O., D’Este, E., Engelhardt, J. and Hell, S.W. (2024) MINFLUX Reveals Dynein Stepping in Live Neurons. Proceedings of the National Academy of Sciences, 121, e2412241121. https://doi.org/10.1073/pnas.2412241121
|
[53]
|
Gwosch, K.C., Pape, J.K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., et al. (2020) MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells. Nature Methods, 17, 217-224. https://doi.org/10.1038/s41592-019-0688-0
|
[54]
|
Valli, J., Garcia-Burgos, A., Rooney, L.M., Vale de Melo e Oliveira, B., Duncan, R.R. and Rickman, C. (2021) Seeing Beyond the Limit: A Guide to Choosing the Right Super-Resolution Microscopy Technique. Journal of Biological Chemistry, 297, Article 100791. https://doi.org/10.1016/j.jbc.2021.100791
|
[55]
|
Nosov, G., Kahms, M. and Klingauf, J. (2020) The Decade of Super-Resolution Microscopy of the Presynapse. Frontiers in Synaptic Neuroscience, 12, Article 32. https://doi.org/10.3389/fnsyn.2020.00032
|