[1]
|
范莉超, 陈妍, 罗巧侠, 等. 脂代谢在特发性肺纤维化中的作用及机制研究[J]. 中华结核和呼吸杂志, 2022, 45(5): 493-497.
|
[2]
|
阮红霞, 陈捷. 特发性肺纤维化的诊疗工具: 血液生物标志物的潜力与挑战[J]. 中华检验医学杂志, 2024, 47(10): 1115-1122.
|
[3]
|
Moore, C., Blumhagen, R.Z., Yang, I.V., Walts, A., Powers, J., Walker, T., et al. (2019) Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 200, 199-208. https://doi.org/10.1164/rccm.201810-1891oc
|
[4]
|
Hill, C., Jones, M., Davies, D. and Wang, Y. (2019) Epithelial-Mesenchymal Transition Contributes to Pulmonary Fibrosis via Aberrant Epithelial/Fibroblastic Cross-Talk. Journal of Lung Health and Diseases, 3, 31-35. https://doi.org/10.29245/2689-999x/2019/2.1149
|
[5]
|
Petnak, T., Lertjitbanjong, P., Thongprayoon, C. and Moua, T. (2021) Impact of Antifibrotic Therapy on Mortality and Acute Exacerbation in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Chest, 160, 1751-1763. https://doi.org/10.1016/j.chest.2021.06.049
|
[6]
|
Zheng, C., Zhan, X., Yang, Y., Jiang, T., Ye, Q. and Lu, Y. (2018) A Rare Missense Variant in Telomerase Reverse Transcriptase Is Associated with Idiopathic Pulmonary Fibrosis in a Chinese Han Family. Chinese Medical Journal, 131, 2205-2209. https://doi.org/10.4103/0366-6999.240802
|
[7]
|
刘兰兰. Sohlh2通过调控II型肺泡上皮细胞的氧化应激促进特发性肺纤维化[D]: [硕士学位论文]. 济南: 山东大学, 2022.
|
[8]
|
Derynck, R. and Budi, E.H. (2019) Specificity, Versatility, and Control of TGF-β Family Signaling. Science Signaling, 12, eaav5183. https://doi.org/10.1126/scisignal.aav5183
|
[9]
|
邓玲玲, 欧阳博书, 魏颖, 等. 上皮间质转化在特发性肺纤维化及其信号通路中的研究进展[J]. 复旦学报(医学版), 2022, 49(4): 614-619, 627.
|
[10]
|
李亚丽. 蓝莓汁通过TGF-β1/Smad2/3和Stat3途径预防和缓解特发性肺纤维化的作用及机制研究[D]: [博士学位论文]. 成都: 四川大学, 2021.
|
[11]
|
景小燕. 骨髓间充质干细胞外泌体经内质网应激减轻肺泡上皮细胞衰老致肺纤维化的干预机制[D]: [博士学位论文]. 北京: 北京协和医学院, 2022.
|
[12]
|
李英杰, 庞立健, 吕晓东, 等. 基于络病理论探究lncRNA-miRNA-mRNA调控网络中医药防治特发性肺纤维化[J]. 辽宁中医药大学学报, 2024, 26(4): 148-152.
|
[13]
|
宋鹏, 张猛, 姜淑娟, 等. 特发性肺纤维化相关的微阵列鉴定基因和microRNA分析[J]. 河北医科大学学报, 2022, 43(3): 258-264.
|
[14]
|
Gavhane, S., Gawli, C., Kumar, S., Das, B., Marathe, G., Patil, V.S., et al. (2024) Trigonelline Mitigates Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Mice. Asian Pacific Journal of Tropical Biomedicine, 14, 391-400. https://doi.org/10.4103/apjtb.apjtb_414_24
|
[15]
|
吴易. 靶向细胞凋亡抑制蛋白通过增加中性粒细胞来源的MMP9表达减轻CCl4诱导的肝纤维化[D]: [博士学位论文]. 广州: 南方医科大学, 2022.
|
[16]
|
Gregory, A.D., Kliment, C.R., Metz, H.E., Kim, K., Kargl, J., Agostini, B.A., et al. (2015) Neutrophil Elastase Promotes Myofibroblast Differentiation in Lung Fibrosis. Journal of Leukocyte Biology, 98, 143-152. https://doi.org/10.1189/jlb.3hi1014-493r
|
[17]
|
何映. 烟酰胺N-甲基转移酶(NNMT)通过激活成纤维细胞参与肺纤维化的作用研究[D]: [硕士学位论文]. 广州: 广州医科大学, 2023.
|
[18]
|
Wakwaya, Y., Ramdurai, D. and Swigris, J.J. (2021) Managing Cough in Idiopathic Pulmonary Fibrosis. Chest, 160, 1774-1782. https://doi.org/10.1016/j.chest.2021.05.071
|
[19]
|
Qi, D., Jia, B., Peng, H., He, J., Pi, J., Guo, P., et al. (2023) Baicalin/Ambroxol Hydrochloride Combined Dry Powder Inhalation Formulation Targeting Lung Delivery for Treatment of Idiopathic Pulmonary Fibrosis: Fabrication, Characterization, Pharmacokinetics, and Pharmacodynamics. European Journal of Pharmaceutics and Biopharmaceutics, 188, 243-253. https://doi.org/10.1016/j.ejpb.2023.05.017
|
[20]
|
邱凌霄. LTBP2通过PI3K/AKT信号通路参与特发性肺纤维化的发生机制[D]: [博士学位论文]. 郑州: 郑州大学, 2022.
|
[21]
|
Dimakopoulou, K., Tomos, I., Manali, E.D., Papiris, S.A. and Karakatsani, A. (2023) Effects of Short-Term Air Pollution Exposure on Symptoms Development in the Course of Idiopathic Pulmonary Fibrosis. Expert Review of Respiratory Medicine, 17, 1069-1078. https://doi.org/10.1080/17476348.2023.2281992
|
[22]
|
韩晓静, 韩齐齐, 钱峰. 特发性肺纤维化的炎症机制与潜在药物靶标[J]. 中国药理学通报, 2024, 40(5): 828-832.
|
[23]
|
李斯宇, 庞立健, 吕晓东, 等. 特发性肺纤维化复杂网络发病机制与络病理论[J]. 中华中医药杂志, 2022, 37(2): 640-645.
|