二手烟暴露与缺血性脑血管病的相关研究进展
Research Progress on Secondhand Smoke and Ischemic Cerebrovascular Disease
摘要: 二手烟(Secondhand smoke, SHS)暴露是威胁全球公众健康的重要环境风险因素,其与脑血管疾病的关联及机制研究对疾病防控意义重大。目前,吸烟在动脉粥样硬化疾病中的危害性已得到广泛的证实,而SHS的危害性被忽视了。SHS暴露与缺血性脑血管病发生发展的相关性以及具体作用机制仍需深入研究。本文对SHS的理化特性、流行病学特征及其促动脉粥样硬化与血栓形成的分子机制进行综述,整合临床证据,以期为缺血性脑血管病防治提供理论依据。
Abstract: Secondhand smoke (SHS) exposure is a critical environmental risk factor threatening global public health, and elucidating its association with cerebrovascular diseases and underlying mechanisms holds significant implications for disease prevention and control. While the detrimental effects of active smoking on atherosclerotic diseases have been widely established, the hazards of SHS remain underrecognized. The correlation between SHS exposure and the development of ischemic cerebrovascular diseases, as well as its specific pathogenic mechanisms, require further investigation. This review synthesizes current knowledge on the physicochemical properties of SHS, its epidemiological characteristics, and molecular mechanisms promoting atherosclerosis and thrombosis. By integrating clinical evidence, we aim to provide a theoretical foundation for advancing strategies in ischemic cerebrovascular disease prevention and management.
文章引用:宋士青. 二手烟暴露与缺血性脑血管病的相关研究进展[J]. 临床医学进展, 2025, 15(5): 7-15. https://doi.org/10.12677/acm.2025.1551336

1. 绪论

根据世界卫生组织(World Health Organization, WHO)的定义,二手烟(secondhand smoke, SHS)是指非吸烟者吸入燃烧端释放的侧流烟雾与吸烟者呼出的主流烟雾混合形成的复合污染物[1]。全球约33%的非吸烟者长期暴露于SHS环境,发展中国家部分地区的暴露率甚至超过50%,这种广泛暴露导致全球1%的总死亡率,已成为重大公共卫生问题[2]。随着我国人口老龄化的加剧,脑血管疾病的发病率持续上升,已成为威胁公众健康的主要问题。研究表明,如果不及时采取预防措施,预计脑血管病的医疗总费用将增加一倍[3]。鉴于SHS暴露的广泛性及其毒性组分的致病特性,深入解析其与脑血管疾病的相关性及其机制对完善疾病防控体系具有重要价值。在本综述中,我们旨在阐述SHS的定义及其化学成分,回顾现有文献中有关SHS对动脉粥样硬化和血栓形成影响的研究、SHS暴露与缺血性脑血管病相关性的人群研究,探讨当前有关SHS暴露与脑血管疾病关联及其在发病机制中的作用。

2. SHS的理化特性及流行病学特征

2.1. SHS的化学组成及危害

吸烟者吸入的烟雾被称为主流烟雾。SHS是吸烟者呼出的少量主流烟雾(15%)和侧流烟雾(85%)的混合物[4]。SHS烟雾中已发现5300余种化学成分,其中包括一氧化碳、氢氰酸、苯系物等250种毒性气体,以及铅、砷、镉等多种致癌性金属颗粒[5] [6]。值得关注的是,侧流烟雾中含有的有毒气态化学物质(如多环烃和挥发性亚硝胺)浓度显著高于主流烟雾[7]。SHS包含气溶胶化的化学成分,这些成分存在于亲水或疏水的蒸汽相中。其亲水蒸汽相的成分易被上呼吸道吸收,而疏水成分则更可能进入肺部[8]。小于2.5微米的颗粒被称为可吸入悬浮颗粒,它们能够被吸入肺实质深处。根据侧流烟的空气稀释程度,SHS中颗粒的浓度可从几微克到每立方米300~500毫克不等。有研究认为,SHS的短期暴露(数分钟至数小时)即可产生与长期主动吸烟相当的生物学效应[9] [10]

2.2. SHS暴露评估方法

SHS暴露的量化主要通过两类方法,一类是通过问卷调查收集参与者自我报告的暴露,另一类为对烟草代谢标志物进行检测。通过问卷采集暴露强度的各项数据,包括暴露源的吸烟强度(如同住吸烟者的日吸烟量)、吸烟者吸烟状态(如室内通风条件、家庭内是否允许吸烟)。儿童群体的研究常以父母吸烟状态作为暴露评估指标[11]。另外,一些研究选择采集被动吸烟者的每日暴露时长、累积暴露年数等来构建剂量–效应模型[12]。在目前的研究中,暴露场所一般分为家庭内暴露及家庭外暴露,家庭外暴露又分为工作场所的暴露和其他公共场所的暴露[13]。另外,SHS暴露还可通过生物标志物进行评估。可替宁是尼古丁的代谢产物,检测其在尿液、唾液或血液样本中的浓度水平可客观反映SHS的暴露程度[14]。该方法准确性较高,但因检测成本及操作复杂性限制,大规模流行病学研究仍以采集自我报告的SHS暴露为主。已有多项研究对使用自我报告评估与可替宁测量结果进行比较,结果表明其可靠性与有效性中等至良好[15] [16]。然而,也有研究表明,基于问卷的SHS暴露评估可能会错误分类或低估暴露量[16]

2.3. SHS的流行病学特点及疾病负担

WHO在中国的调查显示,在非吸烟者中,68.1%的人暴露于SHS。在空间分布特征方面,家庭环境(44.9%的非吸烟者报告)及公共场所(如网吧89.3%、餐厅73.3%)是主要暴露源,工作场所暴露率亦达50.9% [1]。全球疾病负担研究证实,SHS每年造成约88万非吸烟者死亡[17],1990~2019年期间,SHS暴露导致的主要疾病有缺血性心脏病、慢性阻塞性肺疾病和卒中[18]。经济负担分析表明,2000~2010年间中国因家庭SHS暴露产生的直接医疗成本累计达86亿美元[19]

自2007年WHO颁布的《烟草控制框架公约》第8条建议实施无烟政策以来,全球范围内的公共场所、工作场所和交通工具中的吸烟禁令逐渐普及[1]。然而1990~2019年全球疾病负担数据显示,尽管无烟立法覆盖率逐步提升,仍有79%的全球人口未受到无烟立法的保护[20] [21],且不足50%的国家制定了全面无烟立法[22] [23]。在中国,尽管公众对吸烟危害的认知度有所提升,但其知晓率仍处于较低水平:仅36.4%的受访者知晓吸烟与卒中、心脏病及肺癌的关联性,而了解SHS导致成人心脏病、肺癌及儿童肺部疾病的比例仅为36.1%。值得关注的是,超过90%的公众支持公共场所全面禁烟政策,支持在不同公众地方禁烟的比率略有不同,吸烟者的支持度略低于非吸烟者[1]

3. SHS与脑血管疾病的临床证据

3.1. SHS与卒中

在多个种族的男性和女性中进行的多项研究已经证明了卒中与SHS之间的相关性[24]-[27]。一项Meta分析显示,SHS暴露使总体卒中风险增加35% (RR = 1.35, 95% CI: 1.22~1.50) [28],这一结果在多项剂量反应研究中得到进一步支持。何等人对从不吸烟的女性进行分析,发现了类似的剂量反应关系,即暴露量增加(以每天吸烟数量和分钟数衡量),与缺血性卒中的患病率增加相关[29]。Oono团队通过荟萃分析证实SHS与卒中之间存在非线性剂量反应关系,每日接触40支烟等效暴露者的卒中风险达峰值(HR = 1.56, 95% CI: 1.25~1.96),即使每日仅暴露于5支烟等效剂量仍存在显著关联;两者之间存在因果关系[30],其剂量反应曲线与心血管疾病研究中的拐点特征一致,可能与白细胞DNA加合物饱和度相关[31] [32]。在对于性别的亚组分析表明,无论男女,暴露于SHS的人群中卒中风险显著增加,女性风险高于男性(RR = 1.43 vs RR = 1.40),但无统计学差异[28]。在李和福雷的系统综述对性别进行的亚组分析与上述研究得出了一致的结论[33]。尽管多数证据支持SHS与卒中的关联,仍有部分研究未观察到显著相关性[34]。另外,仅有部分研究对不同卒中亚型进行了分析,未来还需要更多的研究进一步明确SHS与不同卒中亚型的相关性。

3.2. SHS与颈动脉斑块或颈动脉内中膜厚度

SHS暴露与颈动脉粥样硬化发展的相关性已通过多维度研究得到证实。颈动脉内膜中层厚度(carotid intima-media thickness, cIMT)增厚一直是动脉粥样硬化发展的有效预测指标[35] [36]。Yang和Kallio团队通过血液可替宁浓度检测,证实高暴露组儿童cIMT值显著高于低暴露组[37] [38]。芬兰心血管风险的前瞻性研究显示,父母均吸烟的青少年成年后的cIMT高于父母均不吸烟的成年期cIMT,且该关联独立于血脂、血压等传统危险因素[39]。成人暴露研究中,此关联显示出剂量–效应关系。队列研究对cIMT的变化进行评估,发现中年群体每周10小时,SHS暴露持续3年,动脉粥样硬化进展加速20% [40];Gac等人使用计算机断层扫描血管造影术对高血压且从不吸烟的患者进行了研究,他们发现,对于接受药物治疗的原发性高血压患者,与不暴露者相比,SHS暴露与更严重的颅外动脉粥样硬化有关,表现为出现非钙化斑块和混合斑块的动脉段数量增加[41]。尽管存在个别负相关报道[42],但多方法学证据一致表明,SHS暴露通过促进cIMT增厚对心脑血管系统造成不可逆损害。这些发现跨越儿童期到成年期的暴露窗口,凸显了SHS防控在动脉粥样硬化一级预防中的关键作用。

4. SHS促进动脉粥样硬化与血栓形成的分子机制

动脉粥样硬化和血栓形成是动脉闭塞的前兆事件,而动脉闭塞是缺血性卒中发生的机制。动脉粥样硬化是动脉壁内斑块形成以及随后动脉硬化开始发展的过程。其起始于分子层面的变化,主要发生在动脉壁最内层的内膜层。内膜层由一层内皮细胞构成,将动脉管腔与内膜下层(包括中膜和外膜)分隔开。内皮损伤及其随后的功能障碍导致脂蛋白渗入内膜下层。氧化修饰的脂蛋白触发单核细胞趋化形成泡沫细胞,伴随平滑肌增殖及炎症介质浸润,最终形成纤维斑块[43] [44]。血栓形成是血栓形成并导致其所在血管阻塞的过程。止血功能紊乱可通过多种机制发生,包括内皮细胞损伤、血流停滞或紊乱以及血液高凝状态。斑块破裂暴露促凝物质引发以下两个过程:初级止血过程是指血小板黏附于内皮损伤部位并聚集形成血小板栓子;次级止血是指通过凝血级联激活生成纤维蛋白网。上述过程导致血管闭塞,构成心脑血管事件的核心机制[44]。目前的研究表明,SHS主要通过以下途径促进动脉粥样硬化和血栓形成过程。

4.1. SHS诱导内皮细胞血管舒张功能障碍

内皮依赖性血管舒张(endothelium-dependent vasodilation, EDV)功能障碍是动脉粥样硬化发生的早期关键事件,其与一氧化氮(NO)介导的血管舒张功能失调密切相关。生理状态下,内皮细胞通过合成释放NO维持血管稳态[45],而SHS暴露可显著破坏这一过程。临床研究证实,健康非吸烟男性暴露于SHS后,冠状动脉血流储备(充血与基础血流速度比值)从基线4.4 ± 0.91急剧下降至3.4 ± 0.73,提示EDV功能严重受损[46]。值得注意的是,被动吸烟者与主动吸烟者表现出相似的EDV损伤程度[46] [47]。而部分研究观察到被动吸烟者的EDV损伤可能更为显著[47],提示SHS可能具有独特的致病特征。

分子机制研究表明SHS通过多途径损害内皮稳态:1) 酶活性异常:年轻被动吸烟者的内皮细胞中,内皮型一氧化氮合酶(eNOS)表达量降低37% (P = 0.04),其磷酸化激活水平下降65% (P = 0.02) [48]。Barua团队创新性采用吸烟者血清培养模型,发现该处理可显著降低人脐静脉和冠状动脉内皮细胞的NO生成(分别减少43%和51%),此效应与eNOS表达及活性调控直接相关[49] [50];2) 结构完整性破坏:暴露于SHS 20分钟即可升高循环内皮细胞残骸水平[51],引发血管通透性异常升高,这一病理改变与动脉粥样硬化发生发展密切相关[10]。需要特别指出的是,NO作为多功能信号分子,不仅调控血管张力,同时参与抑制炎症反应、调节白细胞黏附等关键生理过程[52]。因此,SHS导致的NO合成紊乱可能通过多机制协同作用,在损害血管舒张功能的同时,加速动脉粥样硬化进程并增加血栓形成风险。

4.2. SHS与炎症激活

炎症反应是动脉粥样硬化开始和发展的关键因素[43]。动脉粥样硬化多种族研究(MESA)对5000多名不吸烟且接触SHS的成年人进行分析,结果表明,每周SHS暴露 > 12小时的参与者高敏C反应蛋白升高13% (95% CI: 1.02~1.26) [53],进一步佐证了SHS的全身性促炎作用。亚当斯等通过静脉内皮细胞检测发现,与未暴露者相比,SHS暴露人群的核因子-κB (nuclear factor kappaB, NF-κB)活性显著升高(P = 0.007),且被动吸烟者与主动吸烟者的NF-κB水平无统计学差异[48]。动物实验表明,与未暴露的对照组、每天暴露60分钟的对照组相比,每天暴露120分钟的SHS引发IL-6、随后肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)等促炎因子上升(P < 0.05) [54]。袁等研究发现,SHS暴露诱导白细胞介素-12水平升高,随后TNF-α表达增加。TNF-α表达及SHS暴露均可进一步刺激单核细胞趋化蛋白-1分泌,募集单核细胞至血管壁并促进氧化脂质沉积,从而形成动脉粥样硬化斑块的前体[55]。上述证据共同表明,SHS通过多途径激活并放大炎症级联反应,推动动脉粥样硬化进程。

4.3. SHS与血脂代谢紊乱

SHS可通过对血脂谱的影响促进动脉粥样硬化。在一项针对约3000名健康女性的研究中,SHS暴露与血糖和血脂状况的不良影响相关[56]。女性长期高剂量SHS暴露者(连续6个月、每周4天、每天至少6小时)的高密度脂蛋白胆固醇(HDL-C)、HDL2亚型及载脂蛋白A-I水平显著低于未暴露者(P < 0.05),而HDL-C每降低1 mg/dL可使冠心病风险增加2%~3% [57]。纽菲尔德等人对由于遗传性血脂异常早发性心脏病高风险的儿童进行的研究有类似的发现,这些儿童在接受家庭SHS暴露后HDL-C水平显著降低,与家庭成员戒烟后血流介导的舒张功能的可逆性不同,这种影响并不会出现逆转[58]。一项对SHS急性暴露的研究显示,非吸烟者接触SHS仅30分钟即可引发脂质过氧化加速、血清抗氧化能力下降及巨噬细胞低密度脂蛋白胆固醇蓄积[59]。而在长期暴露的动物实验中,载脂蛋白E缺陷小鼠经14周SHS暴露后,主动脉病变面积增加3.3倍(P < 0.001) [60]

4.4. 血小板功能与凝血级联激活

被动吸烟与急性血栓形成之间的相关性已得到证实。有研究表明,SHS暴露20分钟即显著升高血小板活化水平,活化程度与主动吸烟1~2支相当[61]。纤维蛋白原是一种已知血栓形成的危险因素。一项来自日本的人群研究显示,校正混杂因素后,被动吸烟者的纤维蛋白原水平显著高于非暴露者[62],这一趋势在暴露于家庭吸烟环境的青少年群体中同样存在[63]。巴鲁阿团队通过体外实验评估了吸烟者吸入烟草对凝血系统的影响,采用血栓弹力图分析凝血动力学,结合GP IIb/IIIa受体抑制法和电子显微镜观察,发现急性香烟烟雾暴露可显著缩短纤维蛋白形成时间(凝血启动加速)并增强凝血块结构强度(机械稳定性提升),为解释吸烟者动脉粥样硬化斑块血栓形成倾向增加提供了直接机制证据[64],这种倾向在SHS暴露的影响中可能也发挥着一定的作用,需要进一步证实。上述效应与斑块破裂协同作用,最终导致急性血管事件[65]

5. 小结与展望

现有证据表明,SHS通过内皮损伤、氧化应激、炎症激活及凝血紊乱等多通路协同促进动脉粥样硬化血栓形成。其致病效应无安全阈值,即使低水平暴露仍可产生显著风险。尽管全球无烟政策覆盖率逐步提升,但立法执行力与公众认知度仍存差距。未来研究对于阐明SHS与出血性卒中、颅内动脉粥样硬化之间的关联性还有待进一步验证。另外,制定基于生物标志物及自我报告的个体化暴露风险评估标准、探索内皮保护或抗炎通路的干预策略需要进一步的研究探索。实现“零SHS暴露”的终极目标,需要政府、医疗机构与公众的协同努力,包括强化公共场所禁烟立法、推广家庭无烟环境建设及开展针对性健康宣教等。

利益冲突

所有作者均声明不存在利益冲突。

参考文献

[1] WHO (2018) 2018 China Adult Tobacco Survey Report.
[2] Öberg, M., Jaakkola, M.S., Woodward, A., Peruga, A. and Prüss-Ustün, A. (2011) Worldwide Burden of Disease from Exposure to Second-Hand Smoke: A Retrospective Analysis of Data from 192 Countries. The Lancet, 377, 139-146.
https://doi.org/10.1016/s0140-6736(10)61388-8
[3] Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., et al. (2011) Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement from the American Heart Association. Circulation, 123, 933-944.
https://doi.org/10.1161/cir.0b013e31820a55f5
[4] Fielding, J.E. and Phenow, K.J. (1988) Health Effects of Involuntary Smoking. New England Journal of Medicine, 319, 1452-1460.
https://doi.org/10.1056/nejm198812013192205
[5] Talhout, R., Schulz, T., Florek, E., Van Benthem, J., Wester, P. and Opperhuizen, A. (2011) Hazardous Compounds in Tobacco Smoke. International Journal of Environmental Research and Public Health, 8, 613-628.
https://doi.org/10.3390/ijerph8020613
[6] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Personal Habits and Indoor Combustions. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100E. International Agency for Research on Cancer.
[7] Flouris, A.D., Vardavas, C.I., Metsios, G.S., Tsatsakis, A.M. and Koutedakis, Y. (2010) Biological Evidence for the Acute Health Effects of Secondhand Smoke Exposure. American Journal of Physiology-Lung Cellular and Molecular Physiology, 298, L3-L12.
https://doi.org/10.1152/ajplung.00215.2009
[8] National Research Council (US) Committee on Passive Smoking (1986) Environmental Tobacco Smoke: Measuring Exposures and Assessing Health Effects. National Academies Press (US).
[9] Argacha, J., Adamopoulos, D., Gujic, M., Fontaine, D., Amyai, N., Berkenboom, G., et al. (2008) Acute Effects of Passive Smoking on Peripheral Vascular Function. Hypertension, 51, 1506-1511.
https://doi.org/10.1161/hypertensionaha.107.104059
[10] Barnoya, J. and Glantz, S.A. (2005) Cardiovascular Effects of Secondhand Smoke: Nearly as Large as Smoking. Circulation, 111, 2684-2698.
https://doi.org/10.1161/circulationaha.104.492215
[11] Juonala, M., Magnussen, C.G., Venn, A., Gall, S., Kähönen, M., Laitinen, T., et al. (2012) Parental Smoking in Childhood and Brachial Artery Flow-Mediated Dilatation in Young Adults. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1024-1031.
https://doi.org/10.1161/atvbaha.111.243261
[12] Yankelevitz, D.F., Henschke, C.I., Yip, R., Boffetta, P., Shemesh, J., Cham, M.D., et al. (2013) Second-Hand Tobacco Smoke in Never Smokers Is a Significant Risk Factor for Coronary Artery Calcification. JACC: Cardiovascular Imaging, 6, 651-657.
https://doi.org/10.1016/j.jcmg.2013.02.004
[13] Zhang, D., Liu, Y., Cheng, C., Wang, Y., Xue, Y., Li, W., et al. (2020) Dose-Related Effect of Secondhand Smoke on Cardiovascular Disease in Nonsmokers: Systematic Review and Meta-Analysis. International Journal of Hygiene and Environmental Health, 228, Article ID: 113546.
https://doi.org/10.1016/j.ijheh.2020.113546
[14] Benowitz, N.L., Zevin, S. and Jacob, P. (1997) Sources of Variability in Nicotine and Cotinine Levels with Use of Nicotine Nasal Spray, Transdermal Nicotine, and Cigarette Smoking. British Journal of Clinical Pharmacology, 43, 259-267.
https://doi.org/10.1111/j.1365-2125.1997.00566.x
[15] Avila-Tang, E., Elf, J.L., Cummings, K.M., Fong, G.T., Hovell, M.F., Klein, J.D., et al. (2012) Assessing Secondhand Smoke Exposure with Reported Measures. Tobacco Control, 22, 156-163.
https://doi.org/10.1136/tobaccocontrol-2011-050296
[16] Prochaska, J.J., Grossman, W., Young-Wolff, K.C. and Benowitz, N.L. (2013) Validity of Self-Reported Adult Secondhand Smoke Exposure. Tobacco Control, 24, 48-53.
https://doi.org/10.1136/tobaccocontrol-2013-051174
[17] Yousuf, H., Hofstra, M., Tijssen, J., Leenen, B., Lindemans, J.W., van Rossum, A., et al. (2020) Estimated Worldwide Mortality Attributed to Secondhand Tobacco Smoke Exposure, 1990-2016. JAMA Network Open, 3, e201177.
https://doi.org/10.1001/jamanetworkopen.2020.1177
[18] Zhai, C., Hu, D., Yu, G., Hu, W., Zong, Q., Yan, Z., et al. (2023) Global, Regional, and National Deaths, Disability-Adjusted Life Years, Years Lived with Disability, and Years of Life Lost for the Global Disease Burden Attributable to Second-Hand Smoke, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study. Science of the Total Environment, 862, Article ID: 160677.
https://doi.org/10.1016/j.scitotenv.2022.160677
[19] Yao, T., Sung, H., Wang, Y., Lightwood, J. and Max, W. (2018) Healthcare Costs Attributable to Secondhand Smoke Exposure at Home for U.S. Adults. Preventive Medicine, 108, 41-46.
https://doi.org/10.1016/j.ypmed.2017.12.028
[20] Reitsma, M.B., Kendrick, P.J., Ababneh, E., Abbafati, C., Abbasi-Kangevari, M., Abdoli, A., et al. (2021) Spatial, Temporal, and Demographic Patterns in Prevalence of Smoking Tobacco Use and Attributable Disease Burden in 204 Countries and Territories, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. The Lancet, 397, 2337-2360.
https://doi.org/10.1016/s0140-6736(21)01169-7
[21] Peruga, A., López, M.J., Martinez, C. and Fernández, E. (2021) Tobacco Control Policies in the 21st Century: Achievements and Open Challenges. Molecular Oncology, 15, 744-752.
https://doi.org/10.1002/1878-0261.12918
[22] Semple, S., Dobson, R., O’Donnell, R., Zainal Abidin, E., Tigova, O., Okello, G., et al. (2022) Smoke-Free Spaces: A Decade of Progress, a Need for More? Tobacco Control, 31, 250-256.
https://doi.org/10.1136/tobaccocontrol-2021-056556
[23] Lotrean, L.M. (2008) Effects of Comprehensive Smoke-Free Legislation in Europe. Salud Pública de México, 50, s292-s298.
https://doi.org/10.1590/s0036-36342008000900005
[24] Nishino, Y., Tsuji, I., Tanaka, H., Nakayama, T., Nakatsuka, H., Ito, H., et al. (2014) Stroke Mortality Associated with Environmental Tobacco Smoke among Never-Smoking Japanese Women: A Prospective Cohort Study. Preventive Medicine, 67, 41-45.
https://doi.org/10.1016/j.ypmed.2014.06.029
[25] Malek, A.M., Cushman, M., Lackland, D.T., Howard, G. and McClure, L.A. (2015) Secondhand Smoke Exposure and Stroke: The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. American Journal of Preventive Medicine, 49, e89-e97.
https://doi.org/10.1016/j.amepre.2015.04.014
[26] Zhang, X. (2005) Association of Passive Smoking by Husbands with Prevalence of Stroke among Chinese Women Nonsmokers. American Journal of Epidemiology, 161, 213-218.
https://doi.org/10.1093/aje/kwi028
[27] Qureshi, A.I., Fareed, M., Suri, K., Kirmani, J.F. and Divani, A.A. (2005) Cigarette Smoking among Spouses: Another Risk Factor for Stroke in Women. Stroke, 36, e74-e76.
https://doi.org/10.1161/01.str.0000177475.30281.7f
[28] Fischer, F. and Kraemer, A. (2015) Meta-Analysis of the Association between Second-Hand Smoke Exposure and Ischaemic Heart Diseases, COPD and Stroke. BMC Public Health, 15, Article No. 1202.
https://doi.org/10.1186/s12889-015-2489-4
[29] He, Y., Lam, T.H., Jiang, B., Wang, J., Sai, X., Fan, L., et al. (2008) Passive Smoking and Risk of Peripheral Arterial Disease and Ischemic Stroke in Chinese Women Who Never Smoked. Circulation, 118, 1535-1540.
https://doi.org/10.1161/circulationaha.108.784801
[30] Oono, I.P., Mackay, D.F. and Pell, J.P. (2011) Meta-Analysis of the Association between Secondhand Smoke Exposure and Stroke. Journal of Public Health, 33, 496-502.
https://doi.org/10.1093/pubmed/fdr025
[31] Dallinga, J.W., Pachen, D.M., Wijnhoven, S.W., et al. (1998) The Use of 4-Aminobiphenyl Hemoglobin Adducts and Aromatic DNA Adducts in Lymphocytes of Smokers as Biomarkers of Exposure. Cancer Epidemiology, Biomarkers & Prevention, 7, 571-577.
[32] Godschalk, R.W.L., Van Schooten, F. and Bartsch, H. (2003) A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds. BMB Reports, 36, 1-11.
https://doi.org/10.5483/bmbrep.2003.36.1.001
[33] Lee, P.N. and Forey, B.A. (2006) Environmental Tobacco Smoke Exposure and Risk of Stroke in Nonsmokers: A Review with Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 15, 190-201.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.05.002
[34] Whincup, P.H., Gilg, J.A., Emberson, J.R., Jarvis, M.J., Feyerabend, C., Bryant, A., et al. (2004) Passive Smoking and Risk of Coronary Heart Disease and Stroke: Prospective Study with Cotinine Measurement. BMJ, 329, 200-205.
https://doi.org/10.1136/bmj.38146.427188.55
[35] Feinstein, S.B., Voci, P. and Pizzuto, F. (2002) Noninvasive Surrogate Markers of Atherosclerosis. The American Journal of Cardiology, 89, 31-43.
https://doi.org/10.1016/s0002-9149(02)02226-9
[36] Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., et al. (2011) Heart Disease and Stroke Statistics—2011 Update: A Report from the American Heart Association. Circulation, 123, e18-e209.
https://doi.org/10.1161/cir.0b013e3182009701
[37] Yang, B., Li, M., Chen, B., Xu, Y. and Li, T. (2012) Deterioration of Endothelial Function and Carotid Intima-Media Thickness in Tibetan Male Adolescents Exposed to Second-Hand Smoke. Journal of the Renin-Angiotensin-Aldosterone System, 13, 413-419.
https://doi.org/10.1177/1470320312440901
[38] Kallio, K., Jokinen, E., Saarinen, M., Hämäläinen, M., Volanen, I., Kaitosaari, T., et al. (2010) Arterial Intima-Media Thickness, Endothelial Function, and Apolipoproteins in Adolescents Frequently Exposed to Tobacco Smoke. Circulation: Cardiovascular Quality and Outcomes, 3, 196-203.
https://doi.org/10.1161/circoutcomes.109.857771
[39] Gall, S., Huynh, Q.L., Magnussen, C.G., Juonala, M., Viikari, J.S.A., Kähönen, M., et al. (2014) Exposure to Parental Smoking in Childhood or Adolescence Is Associated with Increased Carotid Intima-Media Thickness in Young Adults: Evidence from the Cardiovascular Risk in Young Finns Study and the Childhood Determinants of Adult Health Study. European Heart Journal, 35, 2484-2491.
https://doi.org/10.1093/eurheartj/ehu049
[40] Howard, G. (1998) Cigarette Smoking and Progression of Atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA, 279, 119-124.
https://doi.org/10.1001/jama.279.2.119
[41] Gać, P., Jaźwiec, P., Mazur, G. and Poręba, R. (2015) Exposure to Cigarette Smoke and the Morphology of Atherosclerotic Plaques in the Extracranial Arteries Assessed by Computed Tomography Angiography in Patients with Essential Hypertension. Cardiovascular Toxicology, 17, 67-78.
https://doi.org/10.1007/s12012-015-9357-4
[42] Ayer, J.G., Belousova, E., Harmer, J.A., David, C., Marks, G.B. and Celermajer, D.S. (2011) Maternal Cigarette Smoking Is Associated with Reduced High-Density Lipoprotein Cholesterol in Healthy 8-Year-Old Children. European Heart Journal, 32, 2446-2453.
https://doi.org/10.1093/eurheartj/ehr174
[43] Ross, R. (1999) Atherosclerosis—An Inflammatory Disease. New England Journal of Medicine, 340, 115-126.
https://doi.org/10.1056/nejm199901143400207
[44] Tseung, J. (2005) Robbins and Cotran Pathologic Basis of Disease: 7th Edition. Pathology, 37, 190.
https://doi.org/10.1080/00313020500059191
[45] Ambrose, J.A. and Barua, R.S. (2004) The Pathophysiology of Cigarette Smoking and Cardiovascular Disease. Journal of the American College of Cardiology, 43, 1731-1737.
https://doi.org/10.1016/j.jacc.2003.12.047
[46] Otsuka, R. (2001) Acute Effects of Passive Smoking on the Coronary Circulation in Healthy Young Adults. JAMA, 286, 436-441.
https://doi.org/10.1001/jama.286.4.436
[47] Celermajer, D.S., Adams, M.R., Clarkson, P., Robinson, J., McCredie, R., Donald, A., et al. (1996) Passive Smoking and Impaired Endothelium-Dependent Arterial Dilatation in Healthy Young Adults. New England Journal of Medicine, 334, 150-155.
https://doi.org/10.1056/nejm199601183340303
[48] Adams, T., Wan, E., Wei, Y., Wahab, R., Castagna, F., Wang, G., et al. (2015) Secondhand Smoking Is Associated with Vascular Inflammation. Chest, 148, 112-119.
https://doi.org/10.1378/chest.14-2045
[49] Barua, R.S., Ambrose, J.A., Eales-Reynolds, L., DeVoe, M.C., Zervas, J.G. and Saha, D.C. (2001) Dysfunctional Endothelial Nitric Oxide Biosynthesis in Healthy Smokers with Impaired Endothelium-Dependent Vasodilatation. Circulation, 104, 1905-1910.
https://doi.org/10.1161/hc4101.097525
[50] Barua, R.S., Ambrose, J.A., Srivastava, S., DeVoe, M.C. and Eales-Reynolds, L. (2003) Reactive Oxygen Species Are Involved in Smoking-Induced Dysfunction of Nitric Oxide Biosynthesis and Upregulation of Endothelial Nitric Oxide Synthase: An in Vitro Demonstration in Human Coronary Artery Endothelial Cells. Circulation, 107, 2342-2347.
https://doi.org/10.1161/01.cir.0000066691.52789.be
[51] Wells, A.J. (1994) Passive Smoking as a Cause of Heart Disease. Journal of the American College of Cardiology, 24, 546-554.
https://doi.org/10.1016/0735-1097(94)90315-8
[52] Carlström, M., Weitzberg, E. and Lundberg, J.O. (2024) Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacological Reviews, 76, 1038-1062.
https://doi.org/10.1124/pharmrev.124.001060
[53] Jones, M.R., Magid, H.S., Al‐Rifai, M., McEvoy, J.W., Kaufman, J.D., Hinckley Stukovsky, K.D., et al. (2016) Secondhand Smoke Exposure and Subclinical Cardiovascular Disease: The Multi‐Ethnic Study of Atherosclerosis. Journal of the American Heart Association, 5, e002965.
https://doi.org/10.1161/jaha.115.002965
[54] Zhang, J., Liu, Y., Shi, J., Larson, D.F. and Watson, R.R. (2002) Side-Stream Cigarette Smoke Induces Dose-Response in Systemic Inflammatory Cytokine Production and Oxidative Stress. Experimental Biology and Medicine, 227, 823-829.
https://doi.org/10.1177/153537020222700916
[55] Yuan, H., Wong, L.S., Bhattacharya, M., Ma, C., Zafarani, M., Yao, M., et al. (2007) The Effects of Second-Hand Smoke on Biological Processes Important in Atherogenesis. BMC Cardiovascular Disorders, 7, Article No. 1.
https://doi.org/10.1186/1471-2261-7-1
[56] Gu, L., Li, J., Pan, G., Zhou, X., Zhang, J., Lai, X., et al. (2017) Effects of Passive Smoking on Glycemic Parameters and Lipid Profiles in a Chinese Female Population. Clinical Laboratory, 63, 1147-1152.
https://doi.org/10.7754/clin.lab.2017.170102
[57] Moffatt, R.J., Stamford, B.A. and Biggerstaff, K.D. (1995) Influence of Worksite Environmental Tobacco Smoke on Serum Lipoprotein Profiles of Female Nonsmokers. Metabolism, 44, 1536-1539.
https://doi.org/10.1016/0026-0495(95)90071-3
[58] Neufeld, E.J., Mietus-Snyder, M., Beiser, A.S., Baker, A.L. and Newburger, J.W. (1997) Passive Cigarette Smoking and Reduced HDL Cholesterol Levels in Children with High-Risk Lipid Profiles. Circulation, 96, 1403-1407.
https://doi.org/10.1161/01.cir.96.5.1403
[59] Valkonen, M. and Kuusi, T. (1998) Passive Smoking Induces Atherogenic Changes in Low-Density Lipoprotein. Circulation, 97, 2012-2016.
https://doi.org/10.1161/01.cir.97.20.2012
[60] Gairola, C.G., Drawdy, M.L., Block, A.E. and Daugherty, A. (2001) Sidestream Cigarette Smoke Accelerates Atherogenesis in Apolipoprotein E−/− Mice. Atherosclerosis, 156, 49-55.
https://doi.org/10.1016/s0021-9150(00)00621-3
[61] Davis, J.W. (1989) Passive Smoking Affects Endothelium and Platelets. Archives of Internal Medicine, 149, 386-389.
https://doi.org/10.1001/archinte.1989.00390020096020
[62] Iso, H., Shimamoto, T., Sato, S., Koike, K., Iida, M. and Komachi, Y. (1996) Passive Smoking and Plasma Fibrinogen Concentrations. American Journal of Epidemiology, 144, 1151-1154.
https://doi.org/10.1093/oxfordjournals.aje.a008893
[63] Stavroulakis, G., Hatzizacha-rias, A., Tsoukala, C., Kyriakidis, M. and Makris, T. (2000) Passive Smoking Adversely Affects the Haemostasis/Fibrinolytic Parameters in Healthy Non-Smoker Offspring of Healthy Smokers. Thrombosis and Haemostasis, 84, 923-924.
https://doi.org/10.1055/s-0037-1614138
[64] Barua, R.S., Sy, F., Srikanth, S., Huang, G., Javed, U., Buhari, C., et al. (2010) Effects of Cigarette Smoke Exposure on Clot Dynamics and Fibrin Structure: An ex Vivo Investigation. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 75-79.
https://doi.org/10.1161/atvbaha.109.195024
[65] Smith, S.A., Travers, R.J. and Morrissey, J.H. (2015) How It All Starts: Initiation of the Clotting Cascade. Critical Reviews in Biochemistry and Molecular Biology, 50, 326-336.
https://doi.org/10.3109/10409238.2015.1050550