慢性鼻窦炎的发病机制研究进展
Research Progress on the Pathogenesis of Chronic Rhinosinusitis
DOI: 10.12677/acm.2025.1551338, PDF, HTML, XML,   
作者: 李晓露*, 何敬文:暨南大学第一临床医学院,广东 广州;李 辉#, 涂 博:暨南大学附属第一医院耳鼻咽喉头颈外科,广东 广州
关键词: 慢性鼻窦炎病因发病机制Chronic Rhinosinusitis Etiology Pathogenesis
摘要: 慢性鼻窦炎(Chronic Rhinosinusitis, CRS)是一种病程超过12周的鼻窦黏膜慢性炎症性疾病,主要表现为鼻塞、流涕、嗅觉减退及头面部闷胀感,严重影响患者生活质量,并带来沉重的社会经济负担。其确切病因至今尚未完全阐明,本文通过系统梳理国内外最新研究进展,深入探讨CRS的发病机制,以期为临床诊疗策略的优化提供理论依据。
Abstract: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinus mucosa with a duration of more than 12 weeks, which is characterized by nasal congestion, runny nose, decreased sense of smell, and stuffiness in the head and face, which seriously affects the quality of life of patients and brings a heavy socioeconomic burden. Its exact etiology has not been fully elucidated so far. In this paper, the pathogenesis of CRS is explored in depth by systematically combing the latest research progresses at home and abroad, in order to provide theoretical basis for the optimization of clinical diagnosis and treatment strategies.
文章引用:李晓露, 李辉, 涂博, 何敬文. 慢性鼻窦炎的发病机制研究进展[J]. 临床医学进展, 2025, 15(5): 23-31. https://doi.org/10.12677/acm.2025.1551338

1. 引言

CRS根据有无鼻息肉可分为伴息肉的慢性鼻窦炎(Chronic Rhinosinusitis with Nasal Polyps, CRSwNP)和不伴息肉的慢性鼻窦炎(Chronic Rhinosinusitis without Nasal Polyps, CRSsNP),流行病学数据显示,我国CRS患病率为4.8%~9.7% [1],EPOS 2020报告指出,人群中基于症状的CRS的总体患病率在5.5%至28%之间[2]。该疾病不仅发病率高,还造成沉重的经济负担,仅在美国,CRS的管理直接费用每年高达100~130亿美元,人均年支出约2609美元[3],由于85%的患者处于18~65岁的工作年龄段,因疾病导致的缺勤和生产力下降等间接成本甚至超过直接医疗支出,使得CRS已成为一个全球性的重大公共卫生问题。大多数患者在接受规范化治疗后症状得到显著改善,但仍有约30%的患者出现术后复发或治疗抵抗[4],这一临床难题的出现,很大程度上归因于目前对CRS的病因学和发病机制认识仍不够全面,导致现有的治疗策略存在一定的局限性。因此,深入理解CRS的发病机制,对临床诊疗具有重要意义。

2. 发病机制研究进展

2.1. 解剖异常

解剖因素在CRS的发病中起重要作用,尤其是鼻腔和鼻窦的结构异常可能阻塞鼻窦开口,影响黏液引流,导致炎症慢性化。常见的解剖因素包括鼻中隔偏曲(Deviated Nasal Septum, DNS)、鼻甲肥大、鼻息肉、筛窦解剖变异等。

DNS是一种以鼻中隔从中线移位为特征的常见解剖变异,可导致鼻腔对称性破坏。其患病率在不同人群和研究中存在显著差异,受种族、年龄及诊断方法等多种因素影响。全球范围内,DNS的患病率介于20%至92.5%之间[5] [6],约48.8%的慢性或复发性鼻窦炎患者存在DNS [7]。DNS可能引发多种并发症,尤其在严重且未得到治疗的情况下,CRS是最常见的并发症之一,DNS导致CRS主要有三大机制[8]-[11]:1) 鼻窦通气和前鼻腔压力变化理论:鼻中隔后位偏曲引起前鼻腔压力及气流改变,进而影响副鼻窦通气;2) 机械理论:OMC狭窄导致分泌物在副鼻窦内积聚,淤积的粘液分泌物继发感染,最终引发CRS;3) 空气动力学理论:副鼻窦内气压流动改变及粘液纤毛功能破坏是CRS形成的关键因素。然而,也有研究表明鼻中隔在CRS的发展过程中可能并不具有显著作用或促成效应[12]

窦口鼻道复合体(Ostiomeatal Complex, OMC)由中鼻甲、钩突、筛泡、眶下筛窦气房等结构组成,任何一部分的解剖变异都可能影响鼻窦引流,导致CRS的发生[13]。钩突作为OMC的重要组成部分,其附着点变异与额窦炎的发生密切相关,研究表明,钩突附着于眶纸板时,额窦炎的发生率较高[14],钩突的偏曲、气化或肥大等变异可能阻碍鼻窦通气引流,从而引发炎症。中鼻甲气化是鼻外侧壁常见解剖变异,Rahman等人[15]研究发现,中鼻甲气化与上颌窦炎之间存在统计学上的相关性,尤其是中鼻甲前端的气化,这可能归因于OMC阻塞导致上颌窦引流受阻,但未发现中鼻甲气化与慢性额窦炎和筛窦炎之间存在显著关联。而鼻丘气房过度气化或异常发育可能影响额窦引流,是额窦炎的重要解剖因素[16]。眶下筛窦气房又称Haller气房,位于眶下壁下方,靠近上颌窦自然开口和筛漏斗的区域,发生率为3.62%至36% [17],Haller气房若过度发育或气化程度较高,可能压迫上颌窦自然开口、筛漏斗或中鼻道,阻塞OMC,进而导致上颌窦、前组筛窦甚至额窦的黏液潴留,增加感染和炎症的风险,从而诱发或加重CRS。

2.2. 纤毛功能障碍

纤毛上皮细胞的功能在于清除被气道表面液体和粘液捕获的各类病原体及吸入性刺激物,CRS与鼻窦粘膜纤毛清除功能受损密切相关,其受损程度与CRS的严重程度呈正相关[18]。纤毛功能障碍可分为原发性和继发性两类,二者均可导致黏液纤毛清除能力下降,进而引发鼻窦黏膜黏液分泌过多和清除功能障碍。原发性纤毛运动障碍是一种罕见的常染色体隐性遗传疾病,其发病机制主要与纤毛结构或功能异常有关,导致黏液运输延迟和慢性炎症反应。研究表明,编码纤毛运动蛋白的多个基因(如DNAI1、DNAH5、DNAH11和DNAH5)的突变是原发性纤毛运动障碍的重要病因[19]。继发性纤毛功能障碍则由多种因素引起,包括生化、环境和机械刺激等[20] [21],流感嗜血杆菌、肺炎链球菌、金黄色葡萄球菌、烟曲霉菌和铜绿假单胞菌等病原菌释放的多种毒素可显著破坏纤毛上皮细胞的结构与功能[22]。纤毛功能障碍会削弱鼻黏膜的天然防御机制,促进细菌定植、生物膜形成以及黏膜炎症的发生,而黏膜炎症在CRS的发病机制中扮演着不可忽视的角色。

2.3. 上皮屏障破坏

鼻窦上皮在先天免疫和适应性免疫中均发挥关键作用,其功能异常对CRS的发生和发展具有重要影响。上皮细胞是鼻黏膜的第一道防线,其通过黏膜纤毛清除系统和上皮细胞层共同构成了鼻黏膜的机械屏障。研究表明,尘螨能够通过降低紧密连接蛋白的表达,显著破坏上皮屏障功能[23]。此外,香烟烟雾提取物的刺激也被证实会导致上皮连接蛋白的整体结构破坏,并伴随跨上皮电阻水平的下降[24]。人类活动产生的颗粒物(PM)对呼吸道黏膜健康具有潜在危害。体外实验显示,人鼻上皮细胞暴露于直径小于2.5微米的颗粒物(PM2.5)后,多种紧密连接蛋白的表达显著降低,细胞旁通透性增加,跨上皮电阻水平下降,同时促炎细胞因子IL-8和胸腺基质淋巴细胞生成素(Thymic Stromal Lymphopoietin, TSLP)的分泌增加,这些变化严重损害了上皮屏障的完整性和功能[25] [26]。此外,PM2.5暴露还会增加细胞内活性氧水平,促进核因子E2相关因子2 (Nrf2)的核转位,诱导氧化应激和炎症反应,从而进一步加重对鼻上皮屏障的损伤[27]

2.4. 组织重塑

CRS组织重塑主要表现为上皮损伤、基底膜增厚、上皮杯状细胞化生、黏液腺增生、细胞外基质胶原沉积等。黏膜重塑不仅见于CRSwNP,也见于CRSsNP。有证据表明,嗜酸性粒细胞增多和嗜酸性粒细胞活化可能与CRS重塑和黏膜损伤密切相关[28]。体外研究发现,IL-5刺激嗜酸粒细胞产生的嗜酸性粒细胞源性神经毒素可有效诱导鼻上皮分泌基质金属蛋白酶9,从而影响上皮再生和细胞外基质分解,最终导致鼻腔组织重塑[29]。骨膜蛋白是一种细胞外基质蛋白,由IL-4和IL-13诱导,由气道上皮细胞分泌,涉及CRS鼻黏膜活检的研究表明,骨膜蛋白可引起嗜酸性粒细胞浸润并介导纤维化,从而参与黏膜重塑[30]。TGF-β是一种多效、多功能的生长因子,可诱导成纤维细胞增殖、分化和纤维化,它还能刺激组织金属蛋白酶1抑制剂的产生,从而阻止细胞外基质的酶促分解,有文献报道,CRSsNP与CRSwNP中TGF-β含量存在明显差异,CRSsNP中TGF-β含量较高,且细胞外基质胶原纤维较粗,导致组织过度修复,形成纤维化;而CRSwNP中TGF-β缺失,组织修复受阻,表现为严重炎症组织中出现疏松结缔组织和水肿形成[31]

2.5. 病原微生物

2.5.1. 细菌

细菌在CRS发病中暂无定论,CRS患者鼻腔中已发现多种类型的细菌,包括金黄色葡萄球菌、凝固酶阴性葡萄球菌、肺炎链球菌、流感嗜血杆菌和铜绿假单胞菌等[32],假单胞菌属或耐甲氧西林金黄色葡萄球菌在内的耐药病原体引起的感染极难治疗,会导致慢性炎症。细菌生物膜在CRS发病中也可能发挥作用,生物膜是指微生物附着于鼻黏膜表面并嵌入自身分泌的保护性细胞外基质中形成的群落结构[33]。该基质主要由多糖、蛋白质、脂质和核酸等多种生物聚合物组成,这些生物膜成分促进细胞凝聚性和细胞表面附着。由于细胞外基质的保护作用,生物膜中的细菌能够有效抵御抗体、吞噬作用、抗生素渗透以及补体结合等外部威胁,使其对抗生素的抵抗力提升高达1000倍[34]。生物膜不仅可以发挥致病作用,这些细菌不断定植和释放,对鼻黏膜纤毛上皮造成持续损害,从而破坏正常鼻黏膜纤毛运输系统的功能[35],鼻窦腔内的黏液淤滞容易导致进一步的生物膜形成。

2.5.2. 病毒

CRS患者中最常分离出的四种病毒是鼻病毒、副流感病毒、流感病毒和呼吸道合胞病毒[36]。当这些病毒感染鼻黏膜上皮时,它们会触发免疫反应,诱导释放细胞因子和趋化因子,导致感染区域出现炎症,再加上病毒感染本身造成的损伤以及淋巴细胞(如Th1细胞、细胞毒性T细胞)消除病毒造成的损伤,导致上皮损伤[37]。持续的病毒感染和炎症会导致鼻上皮气道重塑以及紧密连接退化,机械屏障被破坏以及先天和获得性免疫系统的缺陷使鼻窦粘膜更容易受到抗原暴露和刺激,这导致上皮对病毒的易感性增加,使病情进一步恶化,并更容易发生细菌感染。随着上皮退化,持续的感染和免疫反应会导致CRS恶化[38]

2.5.3. 真菌

真菌在CRS中的作用仍存在争议,有研究表明,真菌成分可诱导气道上皮屏障功能障碍,导致细胞内活性氧水平升高、上皮通透性增加及连接复合物的结构和功能改变[39] [40]。真菌蛋白酶可干扰先天免疫系统,引发组织损伤和免疫激活,还能通过蛋白质降解、抑制真菌蛋白活性或灭活补体系统,削弱先天粘膜防御功能[41]。TLR广泛表达于各种免疫细胞、非免疫上皮细胞、内皮细胞以及成纤维细胞表面,TLR在病原体识别以及先天性和适应性免疫反应的诱导与调控中发挥关键作用[42]。研究表明,CRS患者的鼻上皮细胞中TLR2和TLR4的mRNA表达水平显著升高,其中,TLR2能够与真菌分生孢子和菌丝中的β-葡聚糖和磷脂甘露聚糖相互作用,而TLR4则通过与O-连接甘露聚糖和树突状细胞相关C型凝集素-1结合而被激活[43] [44]。但是,在随机双盲安慰剂对照研究显示,使用抗真菌药物两性霉素B滴鼻3个月并不能减轻CRS的临床体征或症状[45],这可能与真菌在CRS病因中作用有限、患者群体特性以及研究设计的限制导致治疗效果不显等因素有关。未来仍需进一步优化研究设计,以更深入地探讨真菌在CRS发病机制中的潜在作用。

2.6. 免疫因素

免疫缺陷是CRS的危险因素,研究发现,原发性抗体缺乏症患者更易复发CRS [46],自身免疫病与慢性鼻窦炎具有相关性,尤其是肉芽肿性多血管炎,有证据表明,自身免疫性疾病是CRS症状复发性急性加重的预测因素[47]

鼻黏膜上皮细胞在应对多种环境刺激(如病毒和细菌感染、过敏原、化学刺激物及物理损伤)时,会释放TSLP、IL-25和IL-33等细胞因子[48]。TSLP作为关键的免疫启动因子,触发下游炎症反应[49],不仅参与T2型炎症,还涉及非T2型免疫过程。多种细胞(如嗜酸性粒细胞、肥大细胞和2型固有淋巴细胞)表达TSLP受体[50]。TSLP通过抑制凋亡增强嗜酸性粒细胞活性,并诱导IL-6、CXCL8、CXCL1和CCL2等炎症介质产生[51]。此外,TSLP刺激CD34+祖细胞释放IL-5、IL-13、GM-CSF及趋化因子[52],发挥促炎作用,还驱动嗜酸性粒细胞祖细胞成熟并促进其迁移。TSLP与IL-25、IL-33协同激活2型固有淋巴细胞,促进IL-5、IL-13产生[53],并延长2型固有淋巴细胞存活。临床研究表明,重度哮喘和CRS患者鼻腔组织中2型固有淋巴细胞数量与TSLP水平呈正相关[54],进一步强调了TSLP在炎症性疾病中的重要作用。IL-5和IL-13在息肉形成中具有重要作用,Bachert等人发现,针对IL-5或IL-4/IL-13受体α链的抗体会使息肉缩小[55] [56]

2.7. 遗传因素

CRS的发病与遗传因素存在一定关联。研究表明,有CRS家族史的人群患病风险显著升高。美国犹他州人口数据库的一项研究分析了超过25,000名CRS患者的家庭数据,发现CRSwNP患者的一级亲属患CRS的风险增加了4.1倍,CRSsNP患者的一级亲属风险增加了2.4倍,而CRSwNP和CRSsNP患者的二级亲属患病风险分别增加了3.3倍和1.4倍[57]。某些基因变异可能在CRS的发病机制中起重要作用,囊性纤维化基因CFTR被确定为CRS的风险基因,研究发现,7%的CRS患者携带CFTR突变,而在普通人群中这一比例仅为2%,这一结果在Hutterite人群的连锁研究中得到了进一步验证[58] [59]。此外,Adappa [60]等人发现,苦味受体基因T2R38的多态性对CRS易感性具有显著的遗传影响。两项基于混合样本的全基因组关联研究还揭示了CRS与基质蛋白(如层粘连蛋白α2、层粘连蛋白β)以及AOAH基因的关联[61],在一项我国CRS患者和对照人群的研究中,AOAH的关联性得到了进一步验证[62]。多项研究还表明,CRS与HLA基因、先天免疫基因显著相关[63]

3. 总结与展望

CRS作为一种常见的慢性炎症性疾病,严重影响患者生活质量,给社会带来沉重经济负担。目前临床治疗仍面临不少患者术后复发或疗效不佳的困境,这反映出我们对CRS的发病机制认识仍存在不足。当前研究已从解剖变异、纤毛功能障碍、上皮屏障损伤、组织重塑、微生物感染、免疫异常及遗传易感性等多角度揭示了CRS复杂的发病网络。然而值得注意的是,现有证据多基于欧美人群数据,其结论在中国人群中的适用性亟待验证,例如中国人群与欧美人群在CRS的炎症类型存在差异,CRSsNP在欧美人群中33%~55%表现为T2型炎症,而在中国则以非T2型炎症为主;CRSwNP在欧美人群中T2型炎症占比高达73%~87%,而中国患者则更多表现为混合型炎症[1];且研究方法以横断面调查为主,缺乏高质量的纵向研究证据,难以建立确切的因果关系。因此,直接套用欧美诊疗策略可能难以满足中国患者的实际需求。未来,我们应立足中国人群特点,开展全国多中心、大样本前瞻性队列研究,深入探讨地域性环境暴露、生活方式及遗传背景等因素对CRS发生发展的影响,针对中国人群特有的发病机制开发精准干预手段,如靶向纤毛功能、非T2型炎症、上皮屏障、微生物群及组织重塑等治疗手段。通过优化诊疗策略,有望突破当前CRS诊疗的瓶颈,提高CRS的长期控制率,最终实现改善患者预后和减轻社会疾病负担的双重目标。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 慢性鼻窦炎诊断和治疗指南(2024) [J]. 中华耳鼻咽喉头颈外科杂志, 2025, 60(3): 221-249.
[2] Fokkens, W.J., Lund, V.J., Hopkins, C., Hellings, P.W., Kern, R., Reitsma, S., et al. (2020) European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology Journal, 58, 1-464.
https://doi.org/10.4193/rhin20.600
[3] Wahid, N.W., Smith, R., Clark, A., Salam, M. and Philpott, C.M. (2020) The Socioeconomic Cost of Chronic Rhinosinusitis Study. Rhinology journal, 58, 112-125.
https://doi.org/10.4193/rhin19.424
[4] Algahtani, S., Alhajlah, A., Abuharb, A.I., Alzarroug, A.F., Almughira, A.I., Alsywina, N., et al. (2024) Outcomes of Functional Endoscopic Sinus Surgery in Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis. Cureus, 16, e53952.
https://doi.org/10.7759/cureus.53952
[5] Harugop, A.S., Mudhol, R.S., Hajare, P.S., Nargund, A.I., Metgudmath, V.V. and Chakrabarti, S. (2011) Prevalence of Nasal Septal Deviation in New-Borns and Its Precipitating Factors: A Cross-Sectional Study. Indian Journal of Otolaryngology and Head & Neck Surgery, 64, 248-251.
https://doi.org/10.1007/s12070-011-0247-1
[6] Janovic, N., Janovic, A., Milicic, B. and Djuric, M. (2022) Relationship between Nasal Septum Morphology and Nasal Obstruction Symptom Severity: Computed Tomography Study. Brazilian Journal of Otorhinolaryngology, 88, 663-668.
https://doi.org/10.1016/j.bjorl.2020.09.004
[7] Alsowey, A.M., Abdulmonaem, G., Elsammak, A. and Fouad, Y. (2018) Diagnostic Performance of Multidetector Computed Tomography (MDCT) in Diagnosis of Sinus Variations. Polish Journal of Radiology, 82, 713-725.
https://doi.org/10.12659/pjr.903684
[8] Kapusuz Gencer, Z., Özkırış, M., Okur, A., Karaçavuş, S. and Saydam, L. (2013) The Effect of Nasal Septal Deviation on Maxillary Sinus Volumes and Development of Maxillary Sinusitis. European Archives of Oto-Rhino-Laryngology, 270, 3069-3073.
https://doi.org/10.1007/s00405-013-2435-y
[9] Kennedy, D.W. (1985) Functional Endoscopic Sinus Surgery: Technique. Archives of OtolaryngologyHead and Neck Surgery, 111, 643-649.
https://doi.org/10.1001/archotol.1985.00800120037003
[10] Moorthy, P.N.S., Kolloju, S., Madhira, S. and Jowkar, A.B. (2014) Clinical Study on Deviated Nasal Septum and Its Associated Pathology. International Journal of Otolaryngology and Head & Neck Surgery, 3, 75-81.
https://doi.org/10.4236/ijohns.2014.32016
[11] Rehman, A., Hamid, S., Ahmad, M. and Rashid, A.F. (2012) A Prospective Study of Nasal Septal Deformities in Kashmiri Population Attending a Tertiary Care Hospital. International Journal of Otolaryngology and Head & Neck Surgery, 1, 77-84.
https://doi.org/10.4236/ijohns.2012.13016
[12] Collet, S., Bertrand, B., Cornu, S., Eloy, P. and Rombaux, P. (2001) Is Septal Deviation a Risk Factor for Chronic Sinusitis? Review of Literature. Acta Oto-Rhino-Laryngologica Belgica, 55, 299-304.
[13] Srivastava, M. and Tyagi, S. (2015) Role of Anatomic Variations of Uncinate Process in Frontal Sinusitis. Indian Journal of Otolaryngology and Head & Neck Surgery, 68, 441-444.
https://doi.org/10.1007/s12070-015-0932-6
[14] Netto, B., Piltcher, O.B., Meotti, C.D., Lemieszek, J. and Isolan, G.R. (2015) Computed Tomography Imaging Study of the Superior Attachment of the Uncinate Process. Rhinology Journal, 53, 187-191.
https://doi.org/10.4193/rhino14.174
[15] Dr. Atiur Rahman, D.A.R., Dr. Md. Sazzadul-haq, D.M.S. and Dr. Md. Raqibul Alam, D.M.R.A. (2022) The Role of Concha Bullosa in Chronic Rhinosinusitis: A Single Centre Study. South Asian Research Journal of Applied Medical Sciences, 4, 1-6.
https://doi.org/10.36346/sarjams.2022.v04i01.001
[16] Jacobs, J.B., Shpizner, B.A., Brunner, E., Lebowitz, R.A. and Holliday, R.A. (1996) Role of the Agger Nasi Cell in Chronic Frontal Sinusitis. Annals of Otology, Rhinology & Laryngology, 105, 694-700.
https://doi.org/10.1177/000348949610500905
[17] Mendiratta, V., Baisakhiya, N., Singh, D., Datta, G., Mittal, A. and Mendiratta, P. (2015) Sinonasal Anatomical Variants: CT and Endoscopy Study and Its Correlation with Extent of Disease. Indian Journal of Otolaryngology and Head & Neck Surgery, 68, 352-358.
https://doi.org/10.1007/s12070-015-0920-x
[18] Mall, M.A. (2008) Role of Cilia, Mucus, and Airway Surface Liquid in Mucociliary Dysfunction: Lessons from Mouse Models. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 21, 13-24.
https://doi.org/10.1089/jamp.2007.0659
[19] Zhang, J., Guan, L., Wen, W., Lu, Y., Zhu, Q., Yuan, H., et al. (2013) A Novel Mutation of DNAH5 in Chronic Rhinosinusitis and Primary Ciliary Dyskinesia in a Chinese Family. European Archives of Oto-Rhino-Laryngology, 271, 1589-1594.
https://doi.org/10.1007/s00405-013-2788-2
[20] Joki, S., Toskala, E., Saano, V. and Nuutinen, J. (1998) Correlation between Ciliary Beat Frequency and the Structure of Ciliated Epithelia in Pathologic Human Nasal Mucosa. The Laryngoscope, 108, 426-430.
https://doi.org/10.1097/00005537-199803000-00021
[21] Gudis, D., Zhao, K. and Cohen, N.A. (2012) Acquired Cilia Dysfunction in Chronic Rhinosinusitis. American Journal of Rhinology & Allergy, 26, 1-6.
https://doi.org/10.2500/ajra.2012.26.3716
[22] Kuek, L.E. and Lee, R.J. (2020) First Contact: The Role of Respiratory Cilia in Host-Pathogen Interactions in the Airways. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319, L603-L619.
https://doi.org/10.1152/ajplung.00283.2020
[23] Steelant, B., Farré, R., Wawrzyniak, P., Belmans, J., Dekimpe, E., Vanheel, H., et al. (2016) Impaired Barrier Function in Patients with House Dust Mite-Induced Allergic Rhinitis Is Accompanied by Decreased Occludin and Zonula Occludens-1 Expression. Journal of Allergy and Clinical Immunology, 137, 1043-1053.e5.
https://doi.org/10.1016/j.jaci.2015.10.050
[24] Tharakan, A., Halderman, A.A., Lane, A.P., Biswal, S. and Ramanathan, M. (2016) Reversal of Cigarette Smoke Extract‐induced Sinonasal Epithelial Cell Barrier Dysfunction through NRF2 Activation. International Forum of Allergy & Rhinology, 6, 1145-1150.
https://doi.org/10.1002/alr.21827
[25] Xian, M., Ma, S., Wang, K., Lou, H., Wang, Y., Zhang, L., et al. (2020) Particulate Matter 2.5 Causes Deficiency in Barrier Integrity in Human Nasal Epithelial Cells. Allergy, Asthma & Immunology Research, 12, 56-71.
https://doi.org/10.4168/aair.2020.12.1.56
[26] Zhao, R., Guo, Z., Zhang, R., Deng, C., Xu, J., Dong, W., et al. (2017) Nasal Epithelial Barrier Disruption by Particulate Matter ≤ 2.5μm via Tight Junction Protein Degradation. Journal of Applied Toxicology, 38, 678-687.
https://doi.org/10.1002/jat.3573
[27] Hong, Z., Guo, Z., Zhang, R., Xu, J., Dong, W., Zhuang, G., et al. (2016) Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells. The Tohoku Journal of Experimental Medicine, 239, 117-125.
https://doi.org/10.1620/tjem.239.117
[28] Barham, H.P., Osborn, J.L., Snidvongs, K., Mrad, N., Sacks, R. and Harvey, R.J. (2015) Remodeling Changes of the Upper Airway with Chronic Rhinosinusitis. International Forum of Allergy & Rhinology, 5, 565-572.
https://doi.org/10.1002/alr.21546
[29] Tsuda, T., Maeda, Y., Nishide, M., Koyama, S., Hayama, Y., Nojima, S., et al. (2018) Eosinophil-Derived Neurotoxin Enhances Airway Remodeling in Eosinophilic Chronic Rhinosinusitis and Correlates with Disease Severity. International Immunology, 31, 33-40.
https://doi.org/10.1093/intimm/dxy061
[30] Ebenezer, J.A., Christensen, J.M., Oliver, B.G., Oliver, R.A., Tjin, G., Ho, J., et al. (2017) Periostin as a Marker of Mucosal Remodelling in Chronic Rhinosinusitis. Rhinology Journal, 55, 234-241.
https://doi.org/10.4193/rhin16.215
[31] Van Bruaene, N., Derycke, L., Perez-Novo, C.A., Gevaert, P., Holtappels, G., De Ruyck, N., et al. (2009) TGF-β Signaling and Collagen Deposition in Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 124, 253-259.e2.
https://doi.org/10.1016/j.jaci.2009.04.013
[32] Boase, S., Foreman, A., Cleland, E., Tan, L., Melton-Kreft, R., Pant, H., et al. (2013) The Microbiome of Chronic Rhinosinusitis: Culture, Molecular Diagnostics and Biofilm Detection. BMC Infectious Diseases, 13, Article No. 210.
https://doi.org/10.1186/1471-2334-13-210
[33] Armbruster, C.R. and Parsek, M.R. (2018) New Insight into the Early Stages of Biofilm Formation. Proceedings of the National Academy of Sciences of the United States of America, 115, 4317-4319.
https://doi.org/10.1073/pnas.1804084115
[34] Tajudeen, B.A., Schwartz, J.S. and Palmer, J.N. (2016) Understanding Biofilms in Chronic Sinusitis. Current Allergy and Asthma Reports, 16, Article No. 10.
https://doi.org/10.1007/s11882-015-0591-4
[35] You, H., Zhuge, P., Li, D., Shao, L., Shi, H. and Du, H. (2011) Factors Affecting Bacterial Biofilm Expression in Chronic Rhinosinusitis and the Influences on Prognosis. American Journal of Otolaryngology, 32, 583-590.
https://doi.org/10.1016/j.amjoto.2010.11.017
[36] Lee, H.S., Volpe, S.J. and Chang, E.H. (2022) The Role of Viruses in the Inception of Chronic Rhinosinusitis. Clinical and Experimental Otorhinolaryngology, 15, 310-318.
https://doi.org/10.21053/ceo.2022.01004
[37] Eloy, P., Poirrier, A.L., De Dorlodot, C., Van Zele, T., Watelet, J.B. and Bertrand, B. (2011) Actual Concepts in Rhinosinusitis: A Review of Clinical Presentations, Inflammatory Pathways, Cytokine Profiles, Remodeling, and Management. Current Allergy and Asthma Reports, 11, 146-162.
https://doi.org/10.1007/s11882-011-0180-0
[38] Yan, Y., Gordon, W.M. and Wang, D. (2013) Nasal Epithelial Repair and Remodeling in Physical Injury, Infection, and Inflammatory Diseases. Current Opinion in Otolaryngology & Head and Neck Surgery, 21, 263-270.
https://doi.org/10.1097/moo.0b013e32835f80a0
[39] Leino, M.S., Loxham, M., Blume, C., Swindle, E.J., Jayasekera, N.P., Dennison, P.W., et al. (2013) Barrier Disrupting Effects of Alternaria Alternata Extract on Bronchial Epithelium from Asthmatic Donors. PLOS ONE, 8, e71278.
https://doi.org/10.1371/journal.pone.0071278
[40] Shin, S., Ye, M., Lee, D. and Che, M. (2018) Alternaria‐Induced Barrier Dysfunction of Nasal Epithelial Cells: Role of Serine Protease and Reactive Oxygen Species. International Forum of Allergy & Rhinology, 9, 514-521.
https://doi.org/10.1002/alr.22266
[41] Chotirmall, S.H., Mirkovic, B., Lavelle, G.M. and McElvaney, N.G. (2014) Immunoevasive Aspergillus Virulence Factors. Mycopathologia, 178, 363-370.
https://doi.org/10.1007/s11046-014-9768-y
[42] Delneste, Y., Beauvillain, C. and Jeannin, P. (2007) Immunité naturelle: Structure et Fonction des Toll-Like Receptors. Médecine/Sciences, 23, 67-74.
https://doi.org/10.1051/medsci/200723167
[43] Williams, P.B., Barnes, C.S., Portnoy, J.M., Barnes, C., Baxi, S., Grimes, C., et al. (2016) Innate and Adaptive Immune Response to Fungal Products and Allergens. The Journal of Allergy and Clinical Immunology: In Practice, 4, 386-395.
https://doi.org/10.1016/j.jaip.2015.11.016
[44] Loures, F.V., Araújo, E.F., Feriotti, C., Bazan, S.B. and Calich, V.L.G. (2015) TLR-4 Cooperates with Dectin-1 and Mannose Receptor to Expand Th17 and Tc17 Cells Induced by Paracoccidioides Brasiliensis Stimulated Dendritic Cells. Frontiers in Microbiology, 6, Article 261.
https://doi.org/10.3389/fmicb.2015.00261
[45] Ebbens, F., Scadding, G., Badia, L., Hellings, P., Jorissen, M., Mullol, J., et al. (2006) Amphotericin B Nasal Lavages: Not a Solution for Patients with Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 118, 1149-1156.
https://doi.org/10.1016/j.jaci.2006.07.058
[46] Makary, C.A., Azar, A., Gudis, D., Crawford, A., Hannikainen, P., Kim, J., et al. (2024) Evaluation and Treatment of Rhinosinusitis with Primary Antibody Deficiency in Children: Evidence‐based Review with Recommendations. International Forum of Allergy & Rhinology, 14, 1776-1801.
https://doi.org/10.1002/alr.23468
[47] Kwah, J.H., Somani, S.N., Stevens, W.W., Kern, R.C., Smith, S.S., Welch, K.C., et al. (2020) Clinical Factors Associated with Acute Exacerbations of Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 145, 1598-1605.
https://doi.org/10.1016/j.jaci.2020.01.023
[48] Mitchell, P.D. and O’Byrne, P.M. (2017) Epithelial-Derived Cytokines in Asthma. Chest, 151, 1338-1344.
https://doi.org/10.1016/j.chest.2016.10.042
[49] Gauvreau, G.M., Sehmi, R., Ambrose, C.S. and Griffiths, J.M. (2020) Thymic Stromal Lymphopoietin: Its Role and Potential as a Therapeutic Target in Asthma. Expert Opinion on Therapeutic Targets, 24, 777-792.
https://doi.org/10.1080/14728222.2020.1783242
[50] Zhang, Y. and Zhou, B. (2012) Functions of Thymic Stromal Lymphopoietin in Immunity and Disease. Immunologic Research, 52, 211-223.
https://doi.org/10.1007/s12026-012-8264-z
[51] Cook, E.B., Stahl, J.L., Schwantes, E.A., Fox, K.E. and Mathur, S.K. (2012) IL-3 and TNFα Increase Thymic Stromal Lymphopoietin Receptor (TSLPR) Expression on Eosinophils and Enhance TSLP-Stimulated Degranulation. Clinical and Molecular Allergy, 10, Article No. 8.
https://doi.org/10.1186/1476-7961-10-8
[52] Smith, S.G., Gugilla, A., Mukherjee, M., Merim, K., Irshad, A., Tang, W., et al. (2015) Thymic Stromal Lymphopoietin and IL-33 Modulate Migration of Hematopoietic Progenitor Cells in Patients with Allergic Asthma. Journal of Allergy and Clinical Immunology, 135, 1594-1602.
https://doi.org/10.1016/j.jaci.2014.12.1918
[53] Klose, C.S.N. and Artis, D. (2016) Innate Lymphoid Cells as Regulators of Immunity, Inflammation and Tissue Homeostasis. Nature Immunology, 17, 765-774.
https://doi.org/10.1038/ni.3489
[54] Lee, T., Fu, C., Wang, C., Huang, C., Huang, C., Chang, P., et al. (2017) Impact of Chronic Rhinosinusitis on Severe Asthma Patients. PLOS ONE, 12, e0171047.
https://doi.org/10.1371/journal.pone.0171047
[55] Gevaert, P., Van Bruaene, N., Cattaert, T., Van Steen, K., Van Zele, T., Acke, F., et al. (2011) Mepolizumab, a Humanized Anti-Il-5 Mab, as a Treatment Option for Severe Nasal Polyposis. Journal of Allergy and Clinical Immunology, 128, 989-995.e8.
https://doi.org/10.1016/j.jaci.2011.07.056
[56] Bachert, C., Mannent, L., Naclerio, R.M., Mullol, J., Ferguson, B.J., Gevaert, P., et al. (2016) Effect of Subcutaneous Dupilumab on Nasal Polyp Burden in Patients with Chronic Sinusitis and Nasal Polyposis: A Randomized Clinical Trial. JAMA, 315, 469-479.
https://doi.org/10.1001/jama.2015.19330
[57] Oakley, G.M., Curtin, K., Orb, Q., Schaefer, C., Orlandi, R.R. and Alt, J.A. (2015) Familial Risk of Chronic Rhinosinusitis with and without Nasal Polyposis: Genetics or Environment. International Forum of Allergy & Rhinology, 5, 276-282.
https://doi.org/10.1002/alr.21469
[58] Pinto, J.M., Hayes, M.G., Schneider, D., Naclerio, R.M. and Ober, C. (2008) A Genomewide Screen for Chronic Rhinosinusitis Genes Identifies a Locus on Chromosome 7q. The Laryngoscope, 118, 2067-2072.
https://doi.org/10.1097/mlg.0b013e3181805147
[59] Wang, X. (2000) Mutation in the Gene Responsible for Cystic Fibrosis and Predisposition to Chronic Rhinosinusitis in the General Population. JAMA, 284, 1814-1819.
https://doi.org/10.1001/jama.284.14.1814
[60] Adappa, N.D., Zhang, Z., Palmer, J.N., Kennedy, D.W., Doghramji, L., Lysenko, A., et al. (2013) The Bitter Taste Receptor T2R38 Is an Independent Risk Factor for Chronic Rhinosinusitis Requiring Sinus Surgery. International Forum of Allergy & Rhinology, 4, 3-7.
https://doi.org/10.1002/alr.21253
[61] Bossé, Y., Bacot, F., Montpetit, A., Rung, J., Qu, H., Engert, J.C., et al. (2009) Identification of Susceptibility Genes for Complex Diseases Using Pooling-Based Genome-Wide Association Scans. Human Genetics, 125, 305-318.
https://doi.org/10.1007/s00439-009-0626-9
[62] Zhang, Y., Endam, L.M., Filali-Mouhim, A., Zhao, L., Desrosiers, M., Han, D., et al. (2012) Polymorphisms in RYBP and AOAH Genes Are Associated with Chronic Rhinosinusitis in a Chinese Population: A Replication Study. PLOS ONE, 7, e39247.
https://doi.org/10.1371/journal.pone.0039247
[63] Mfuna-Endam, L., Zhang, Y. and Desrosiers, M.Y. (2011) Genetics of Rhinosinusitis. Current Allergy and Asthma Reports, 11, 236-246.
https://doi.org/10.1007/s11882-011-0189-4