|
[1]
|
Lutsenko, S. (2010) Human Copper Homeostasis: A Network of Interconnected Pathways. Current Opinion in Chemical Biology, 14, 211-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jemal, A., Culp, M.B., Ma, J., Islami, F. and Fedewa, S.A. (2020) Prostate Cancer Incidence 5 Years after US Preventive Services Task Force Recommendations against Screening. JNCI: Journal of the National Cancer Institute, 113, 64-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
van Hoogstraten, L.M.C., Vrieling, A., van der Heijden, A.G., Kogevinas, M., Richters, A. and Kiemeney, L.A. (2023) Global Trends in the Epidemiology of Bladder Cancer: Challenges for Public Health and Clinical Practice. Nature Reviews Clinical Oncology, 20, 287-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lawson, A.R.J., Abascal, F., Coorens, T.H.H., Hooks, Y., O’Neill, L., Latimer, C., et al. (2020) Extensive Heterogeneity in Somatic Mutation and Selection in the Human Bladder. Science, 370, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Robertson, A.G., Groeneveld, C.S., Jordan, B., Lin, X., McLaughlin, K.A., Das, A., et al. (2020) Identification of Differential Tumor Subtypes of T1 Bladder Cancer. European Urology, 78, 533-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chakraborty, G., Gupta, K. and Kyprianou, N. (2023) Epigenetic Mechanisms Underlying Subtype Heterogeneity and Tumor Recurrence in Prostate Cancer. Nature Communications, 14, Article No. 567. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Y., Zhang, L. and Zhou, F. (2022) Cuproptosis: A New Form of Programmed Cell Death. Cellular & Molecular Immunology, 19, 867-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Research, 32, 417-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsang, T., Davis, C.I. and Brady, D.C. (2021) Copper Biology. Current Biology, 31, R421-R427. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. and Margaritis, I. (2016) Dietary Copper and Human Health: Current Evidence and Unresolved Issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Scheiber, I., Dringen, R. and Mercer, J.F.B. (2013) Copper: Effects of Deficiency and Overload. In: Sigel, A., Sigel, H. and Sigel, R., Eds., Interrelations between Essential Metal Ions and Human Diseases, Springer, 359-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wungjiranirun, M. and Sharzehi, K. (2023) Wilson’s Disease. Seminars in Neurology, 43, 626-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vairo, F.P.e., Chwal, B.C., Perini, S., Ferreira, M.A.P., de Freitas Lopes, A.C. and Saute, J.A.M. (2019) A Systematic Review and Evidence-Based Guideline for Diagnosis and Treatment of Menkes Disease. Molecular Genetics and Metabolism, 126, 6-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, W., Wang, X., Luo, J., Chen, X., Ma, K., He, H., et al. (2020) Serum Copper Level and the Copper-To-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutrition and Cancer, 73, 1908-1915. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pavithra, V. (2015) Serum Levels of Metal Ions in Female Patients with Breast Cancer. Journal of Clinical and Diagnostic Research, 9, BC25-BC27. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Basu, S., Singh, M.K., Singh, T.B., Bhartiya, S.K., Singh, S.P. and Shukla, V.K. (2013) Heavy and Trace Metals in Carcinoma of the Gallbladder. World Journal of Surgery, 37, 2641-2646. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yaman, M. (2007) Distribution of Trace Metal Concentrations in Paired Cancerous and Non-Cancerous Human Stomach Tissues. World Journal of Gastroenterology, 13, 612-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kosova, F., Cetin, B., Akinci, M., Aslan, S., Seki, A., Pirhan, Y., et al. (2012) Serum Copper Levels in Benign and Malignant Thyroid Diseases. Bratislava Medical Journal, 113, 718-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jin, L., Mei, W., Liu, X., Sun, X., Xin, S., Zhou, Z., et al. (2022) Identification of Cuproptosis-Related Subtypes, the Development of a Prognosis Model, and Characterization of Tumor Microenvironment Infiltration in Prostate Cancer. Frontiers in Immunology, 13, Article 974034. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, H., Zu, X., Hu, J., Xiao, Z., Cai, Z., Gao, N., et al. (2022) Cuproptosis Depicts Tumor Microenvironment Phenotypes and Predicts Precision Immunotherapy and Prognosis in Bladder Carcinoma. Frontiers in Immunology, 13, Article 964393. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mortada, W.I., Awadalla, A., Khater, S., Ahmed, A., Hamam, E.T., El-zayat, M., et al. (2020) Copper and Zinc Levels in Plasma and Cancerous Tissues and Their Relation with Expression of VEGF and HIF-1 in the Pathogenesis of Muscle Invasive Urothelial Bladder Cancer: A Case-Controlled Clinical Study. Environmental Science and Pollution Research, 27, 15835-15841. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Panaiyadiyan, S., Quadri, J.A., Nayak, B., Pandit, S., Singh, P., Seth, A., et al. (2022) Association of Heavy Metals and Trace Elements in Renal Cell Carcinoma: A Case-Controlled Study. Urologic Oncology: Seminars and Original Investigations, 40, 111.e11-111.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lönnerdal, B. (2008) Intestinal Regulation of Copper Homeostasis: A Developmental Perspective. The American Journal of Clinical Nutrition, 88, 846S-850S. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cabrera, A., Alonzo, E., Sauble, E., Chu, Y.L., Nguyen, D., Linder, M.C., et al. (2008) Copper Binding Components of Blood Plasma and Organs, and Their Responses to Influx of Large Doses of 65Cu, in the Mouse. BioMetals, 21, 525-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kirsipuu, T., Zadorožnaja, A., Smirnova, J., Friedemann, M., Plitz, T., Tõugu, V., et al. (2020) Copper(II)-Binding Equilibria in Human Blood. Scientific Reports, 10, Article No. 5686. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hernandez, S., Tsuchiya, Y., García-Ruiz, J.P., Lalioti, V., Nielsen, S., Cassio, D., et al. (2008) ATP7B Copper-Regulated Traffic and Association with the Tight Junctions: Copper Excretion into the Bile. Gastroenterology, 134, 1215-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lutsenko, S. (2021) Dynamic and Cell-Specific Transport Networks for Intracellular Copper Ions. Journal of Cell Science, 134, jcs240523. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yu, Z., Zhou, R., Zhao, Y., Pan, Y., Liang, H., Zhang, J., et al. (2019) Blockage of SLC31A1‐Dependent Copper Absorption Increases Pancreatic Cancer Cell Autophagy to Resist Cell Death. Cell Proliferation, 52, e12568. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kar, S., Sen, S., Maji, S., Saraf, D., Ruturaj,, Paul, R., et al. (2022) Copper(II) Import and Reduction Are Dependent on His-Met Clusters in the Extracellular Amino Terminus of Human Copper Transporter-1. Journal of Biological Chemistry, 298, Article ID: 101631. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhu, X., Boulet, A., Buckley, K.M., Phillips, C.B., Gammon, M.G., Oldfather, L.E., et al. (2021) Mitochondrial Copper and Phosphate Transporter Specificity Was Defined Early in the Evolution of Eukaryotes. eLife, 10, e64690. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
van Rensburg, M., van Rooy, M., Bester, M., Serem, J., Venter, C. and Oberholzer, H. (2018) Oxidative and Haemostatic Effects of Copper, Manganese and Mercury, Alone and in Combination at Physiologically Relevant Levels: An Ex Vivo Study. Human & Experimental Toxicology, 38, 419-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kim, B., Nevitt, T. and Thiele, D.J. (2008) Mechanisms for Copper Acquisition, Distribution and Regulation. Nature Chemical Biology, 4, 176-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Casareno, R.L.B., Waggoner, D. and Gitlin, J.D. (1998) The Copper Chaperone CCS Directly Interacts with Copper/zinc Superoxide Dismutase. Journal of Biological Chemistry, 273, 23625-23628. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Dodani, S.C., Leary, S.C., Cobine, P.A., Winge, D.R. and Chang, C.J. (2011) A Targetable Fluorescent Sensor Reveals That Copper-Deficient SCO1 and SCO2 Patient Cells Prioritize Mitochondrial Copper Homeostasis. Journal of the American Chemical Society, 133, 8606-8616. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lalonde, E., Ishkanian, A.S., Sykes, J., Fraser, M., Ross-Adams, H., Erho, N., et al. (2014) Tumour Genomic and Microenvironmental Heterogeneity for Integrated Prediction of 5-Year Biochemical Recurrence of Prostate Cancer: A Retrospective Cohort Study. The Lancet Oncology, 15, 1521-1532. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, G., Zhao, D., Spring, D.J. and DePinho, R.A. (2018) Genetics and Biology of Prostate Cancer. Genes & Development, 32, 1105-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sharifi, N. (2005) Androgen Deprivation Therapy for Prostate Cancer. JAMA, 294, 238-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, F. and Mahato, R.I. (2014) MicroRNAs and Drug Resistance in Prostate Cancers. Molecular Pharmaceutics, 11, 2539-2552. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hwang, C. (2012) Overcoming Docetaxel Resistance in Prostate Cancer: A Perspective Review. Therapeutic Advances in Medical Oncology, 4, 329-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Denoyer, D., Clatworthy, S.A.S., Masaldan, S., Meggyesy, P.M. and Cater, M.A. (2015) Heterogeneous Copper Concentrations in Cancerous Human Prostate Tissues. The Prostate, 75, 1510-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Feng, X., Yang, W., Huang, L., Cheng, H., Ge, X., Zan, G., et al. (2022) Causal Effect of Genetically Determined Blood Copper Concentrations on Multiple Diseases: A Mendelian Randomization and Phenome-Wide Association Study. Phenomics, 2, 242-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
XIE, F. and PENG, F. (2021) Reduction in Copper Uptake and Inhibition of Prostate Cancer Cell Proliferation by Novel Steroid-Based Compounds. Anticancer Research, 41, 5953-5958. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wen, H., Qu, C., Wang, Z., Gao, H., Liu, W., Wang, H., et al. (2023) Cuproptosis Enhances Docetaxel Chemosensitivity by Inhibiting Autophagy via the DLAT/mTOR Pathway in Prostate Cancer. The FASEB Journal, 37, e23145. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, C., Xiao, Y., Cao, H., Chen, Y., Li, S. and Yin, F. (2023) Cuproptosis Regulates Microenvironment and Affects Prognosis in Prostate Cancer. Biological Trace Element Research, 202, 99-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wu, J., He, J., Liu, Z., Zhu, X., Li, Z., Chen, A., et al. (2024) Cuproptosis: Mechanism, Role, and Advances in Urological Malignancies. Medicinal Research Reviews, 44, 1662-1682. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Young, M., Jackson-Spence, F., Beltran, L., Day, E., Suarez, C., Bex, A., et al. (2024) Renal Cell Carcinoma. The Lancet, 404, 476-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Choueiri, T.K. and Motzer, R.J. (2017) Systemic Therapy for Metastatic Renal-Cell Carcinoma. New England Journal of Medicine, 376, 354-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Grimm, M., Esteban, E., Barthélémy, P., Schmidinger, M., Busch, J., Valderrama, B.P., et al. (2023) Tailored Immunotherapy Approach with Nivolumab with or without Nivolumab Plus Ipilimumab as Immunotherapeutic Boost in Patients with Metastatic Renal Cell Carcinoma (TITAN-RCC): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 24, 1252-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhu, Z., Jin, Y., Zhou, J., Chen, F., Chen, M., Gao, Z., et al. (2024) PD1/PD-L1 Blockade in Clear Cell Renal Cell Carcinoma: Mechanistic Insights, Clinical Efficacy, and Future Perspectives. Molecular Cancer, 23, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yang, W., Wu, C., Jiang, C., Jing, T., Lu, M., Xia, D., et al. (2025) FDX1 Overexpression Inhibits the Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Upregulating FMR1 Expression. Cell Death Discovery, 11, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Qi, Y., Yao, Q., Li, X., Li, X., Zhang, W. and Qu, P. (2023) Cuproptosis-Related Gene SLC31A1: Prognosis Values and Potential Biological Functions in Cancer. Scientific Reports, 13, Article No. 17790. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Huang, S., Cai, C., Zhou, K., Wang, X., Wang, X., Cen, D., et al. (2023) Cuproptosis-Related Gene DLAT Serves as a Prognostic Biomarker for Immunotherapy in Clear Cell Renal Cell Carcinoma: Multi-Database and Experimental Verification. Aging, 15, 12314-12329. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Golabek, T., Darewicz, B., Borawska, M., Socha, K., Markiewicz, R. and Kudelski, J. (2012) Copper, Zinc, and Cu/Zn Ratio in Transitional Cell Carcinoma of the Bladder. Urologia Internationalis, 89, 342-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Feng, Y., Huang, Z., Song, L., Li, N., Li, X., Shi, H., et al. (2024) PDE3B Regulates KRT6B and Increases the Sensitivity of Bladder Cancer Cells to Copper Ionophores. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 4911-4925. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Li, L., Zhou, H. and Zhang, C. (2024) Cuproptosis in Cancer: Biological Implications and Therapeutic Opportunities. Cellular & Molecular Biology Letters, 29, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
da Silva, D.A., De Luca, A., Squitti, R., Rongioletti, M., Rossi, L., Machado, C.M.L., et al. (2022) Copper in Tumors and the Use of Copper-Based Compounds in Cancer Treatment. Journal of Inorganic Biochemistry, 226, Article ID: 111634. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chan, N., Willis, A., Kornhauser, N., Ward, M.M., Lee, S.B., Nackos, E., et al. (2017) Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clinical Cancer Research, 23, 666-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Kim, K.K., Lange, T.S., Singh, R.K., Brard, L. and Moore, R.G. (2012) Tetrathiomolybdate Sensitizes Ovarian Cancer Cells to Anticancer Drugs Doxorubicin, Fenretinide, 5-Fluorouracil and Mitomycin C. BMC Cancer, 12, Article No. 147. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Redman, B.G., Esper, P., Pan, Q., et al. (2003) Phase II Trial of Tetrathiomolybdate in Patients with Advanced Kidney Cancer. Clinical Cancer Research, 9, 1666-1672.
|
|
[62]
|
Iljin, K., Ketola, K., Vainio, P., Halonen, P., Kohonen, P., Fey, V., et al. (2009) High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-Like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth. Clinical Cancer Research, 15, 6070-6078. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yoshino, H., Yamada, Y., Enokida, H., Osako, Y., Tsuruda, M., Kuroshima, K., et al. (2020) Targeting NPL4 via Drug Repositioning Using Disulfiram for the Treatment of Clear Cell Renal Cell Carcinoma. PLOS ONE, 15, e0236119. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Safi, R., Nelson, E.R., Chitneni, S.K., Franz, K.J., George, D.J., Zalutsky, M.R., et al. (2014) Copper Signaling Axis as a Target for Prostate Cancer Therapeutics. Cancer Research, 74, 5819-5831. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Kita, Y., Hamada, A., Saito, R., Teramoto, Y., Tanaka, R., Takano, K., et al. (2019) Systematic Chemical Screening Identifies Disulfiram as a Repurposed Drug That Enhances Sensitivity to Cisplatin in Bladder Cancer: A Summary of Preclinical Studies. British Journal of Cancer, 121, 1027-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zhang, T., Kephart, J., Bronson, E., Anand, M., Daly, C., Spasojevic, I., et al. (2022) Prospective Clinical Trial of Disulfiram Plus Copper in Men with Metastatic Castration‐Resistant Prostate Cancer. The Prostate, 82, 858-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Cheng, Z., Li, M., Dey, R. and Chen, Y. (2021) Nanomaterials for Cancer Therapy: Current Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Wang, Y., Yang, Q., Yang, Q., Zhou, T., Shi, M., Sun, C., et al. (2017) Cuprous Oxide Nanoparticles Inhibit Prostate Cancer by Attenuating the Stemness of Cancer Cells via Inhibition of the WNT Signaling Pathway. International Journal of Nanomedicine, 12, 2569-2579. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Guo, B., Yang, F., Zhang, L., Zhao, Q., Wang, W., Yin, L., et al. (2023) Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD‐l1 for Enhanced Cancer Immunotherapy. Advanced Materials, 35, Article ID: 2212267. [Google Scholar] [CrossRef] [PubMed]
|