[1]
|
Lutsenko, S. (2010) Human Copper Homeostasis: A Network of Interconnected Pathways. Current Opinion in Chemical Biology, 14, 211-217. https://doi.org/10.1016/j.cbpa.2010.01.003
|
[2]
|
Jemal, A., Culp, M.B., Ma, J., Islami, F. and Fedewa, S.A. (2020) Prostate Cancer Incidence 5 Years after US Preventive Services Task Force Recommendations against Screening. JNCI: Journal of the National Cancer Institute, 113, 64-71. https://doi.org/10.1093/jnci/djaa068
|
[3]
|
van Hoogstraten, L.M.C., Vrieling, A., van der Heijden, A.G., Kogevinas, M., Richters, A. and Kiemeney, L.A. (2023) Global Trends in the Epidemiology of Bladder Cancer: Challenges for Public Health and Clinical Practice. Nature Reviews Clinical Oncology, 20, 287-304. https://doi.org/10.1038/s41571-023-00744-3
|
[4]
|
Lawson, A.R.J., Abascal, F., Coorens, T.H.H., Hooks, Y., O’Neill, L., Latimer, C., et al. (2020) Extensive Heterogeneity in Somatic Mutation and Selection in the Human Bladder. Science, 370, 75-82. https://doi.org/10.1126/science.aba8347
|
[5]
|
Robertson, A.G., Groeneveld, C.S., Jordan, B., Lin, X., McLaughlin, K.A., Das, A., et al. (2020) Identification of Differential Tumor Subtypes of T1 Bladder Cancer. European Urology, 78, 533-537. https://doi.org/10.1016/j.eururo.2020.06.048
|
[6]
|
Chakraborty, G., Gupta, K. and Kyprianou, N. (2023) Epigenetic Mechanisms Underlying Subtype Heterogeneity and Tumor Recurrence in Prostate Cancer. Nature Communications, 14, Article No. 567. https://doi.org/10.1038/s41467-023-36253-1
|
[7]
|
Wang, Y., Zhang, L. and Zhou, F. (2022) Cuproptosis: A New Form of Programmed Cell Death. Cellular & Molecular Immunology, 19, 867-868. https://doi.org/10.1038/s41423-022-00866-1
|
[8]
|
Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Research, 32, 417-418. https://doi.org/10.1038/s41422-022-00653-7
|
[9]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. https://doi.org/10.1126/science.abf0529
|
[10]
|
Tsang, T., Davis, C.I. and Brady, D.C. (2021) Copper Biology. Current Biology, 31, R421-R427. https://doi.org/10.1016/j.cub.2021.03.054
|
[11]
|
Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. and Margaritis, I. (2016) Dietary Copper and Human Health: Current Evidence and Unresolved Issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115. https://doi.org/10.1016/j.jtemb.2016.02.006
|
[12]
|
Scheiber, I., Dringen, R. and Mercer, J.F.B. (2013) Copper: Effects of Deficiency and Overload. In: Sigel, A., Sigel, H. and Sigel, R., Eds., Interrelations between Essential Metal Ions and Human Diseases, Springer, 359-387. https://doi.org/10.1007/978-94-007-7500-8_11
|
[13]
|
Wungjiranirun, M. and Sharzehi, K. (2023) Wilson’s Disease. Seminars in Neurology, 43, 626-633. https://doi.org/10.1055/s-0043-1771465
|
[14]
|
Vairo, F.P.e., Chwal, B.C., Perini, S., Ferreira, M.A.P., de Freitas Lopes, A.C. and Saute, J.A.M. (2019) A Systematic Review and Evidence-Based Guideline for Diagnosis and Treatment of Menkes Disease. Molecular Genetics and Metabolism, 126, 6-13. https://doi.org/10.1016/j.ymgme.2018.12.005
|
[15]
|
Wang, W., Wang, X., Luo, J., Chen, X., Ma, K., He, H., et al. (2020) Serum Copper Level and the Copper-To-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutrition and Cancer, 73, 1908-1915. https://doi.org/10.1080/01635581.2020.1817957
|
[16]
|
Pavithra, V. (2015) Serum Levels of Metal Ions in Female Patients with Breast Cancer. Journal of Clinical and Diagnostic Research, 9, BC25-BC27. https://doi.org/10.7860/jcdr/2015/11627.5476
|
[17]
|
Basu, S., Singh, M.K., Singh, T.B., Bhartiya, S.K., Singh, S.P. and Shukla, V.K. (2013) Heavy and Trace Metals in Carcinoma of the Gallbladder. World Journal of Surgery, 37, 2641-2646. https://doi.org/10.1007/s00268-013-2164-9
|
[18]
|
Yaman, M. (2007) Distribution of Trace Metal Concentrations in Paired Cancerous and Non-Cancerous Human Stomach Tissues. World Journal of Gastroenterology, 13, 612-618. https://doi.org/10.3748/wjg.v13.i4.612
|
[19]
|
Kosova, F., Cetin, B., Akinci, M., Aslan, S., Seki, A., Pirhan, Y., et al. (2012) Serum Copper Levels in Benign and Malignant Thyroid Diseases. Bratislava Medical Journal, 113, 718-720. https://doi.org/10.4149/bll_2012_162
|
[20]
|
Jin, L., Mei, W., Liu, X., Sun, X., Xin, S., Zhou, Z., et al. (2022) Identification of Cuproptosis-Related Subtypes, the Development of a Prognosis Model, and Characterization of Tumor Microenvironment Infiltration in Prostate Cancer. Frontiers in Immunology, 13, Article 974034. https://doi.org/10.3389/fimmu.2022.974034
|
[21]
|
Li, H., Zu, X., Hu, J., Xiao, Z., Cai, Z., Gao, N., et al. (2022) Cuproptosis Depicts Tumor Microenvironment Phenotypes and Predicts Precision Immunotherapy and Prognosis in Bladder Carcinoma. Frontiers in Immunology, 13, Article 964393. https://doi.org/10.3389/fimmu.2022.964393
|
[22]
|
Mortada, W.I., Awadalla, A., Khater, S., Ahmed, A., Hamam, E.T., El-zayat, M., et al. (2020) Copper and Zinc Levels in Plasma and Cancerous Tissues and Their Relation with Expression of VEGF and HIF-1 in the Pathogenesis of Muscle Invasive Urothelial Bladder Cancer: A Case-Controlled Clinical Study. Environmental Science and Pollution Research, 27, 15835-15841. https://doi.org/10.1007/s11356-020-08113-8
|
[23]
|
Panaiyadiyan, S., Quadri, J.A., Nayak, B., Pandit, S., Singh, P., Seth, A., et al. (2022) Association of Heavy Metals and Trace Elements in Renal Cell Carcinoma: A Case-Controlled Study. Urologic Oncology: Seminars and Original Investigations, 40, 111.e11-111.e18. https://doi.org/10.1016/j.urolonc.2021.11.017
|
[24]
|
Lönnerdal, B. (2008) Intestinal Regulation of Copper Homeostasis: A Developmental Perspective. The American Journal of Clinical Nutrition, 88, 846S-850S. https://doi.org/10.1093/ajcn/88.3.846s
|
[25]
|
Cabrera, A., Alonzo, E., Sauble, E., Chu, Y.L., Nguyen, D., Linder, M.C., et al. (2008) Copper Binding Components of Blood Plasma and Organs, and Their Responses to Influx of Large Doses of 65Cu, in the Mouse. BioMetals, 21, 525-543. https://doi.org/10.1007/s10534-008-9139-6
|
[26]
|
Kirsipuu, T., Zadorožnaja, A., Smirnova, J., Friedemann, M., Plitz, T., Tõugu, V., et al. (2020) Copper(II)-Binding Equilibria in Human Blood. Scientific Reports, 10, Article No. 5686. https://doi.org/10.1038/s41598-020-62560-4
|
[27]
|
Hernandez, S., Tsuchiya, Y., García-Ruiz, J.P., Lalioti, V., Nielsen, S., Cassio, D., et al. (2008) ATP7B Copper-Regulated Traffic and Association with the Tight Junctions: Copper Excretion into the Bile. Gastroenterology, 134, 1215-1223. https://doi.org/10.1053/j.gastro.2008.01.043
|
[28]
|
Lutsenko, S. (2021) Dynamic and Cell-Specific Transport Networks for Intracellular Copper Ions. Journal of Cell Science, 134, jcs240523. https://doi.org/10.1242/jcs.240523
|
[29]
|
Yu, Z., Zhou, R., Zhao, Y., Pan, Y., Liang, H., Zhang, J., et al. (2019) Blockage of SLC31A1‐Dependent Copper Absorption Increases Pancreatic Cancer Cell Autophagy to Resist Cell Death. Cell Proliferation, 52, e12568. https://doi.org/10.1111/cpr.12568
|
[30]
|
Kar, S., Sen, S., Maji, S., Saraf, D., Ruturaj,, Paul, R., et al. (2022) Copper(II) Import and Reduction Are Dependent on His-Met Clusters in the Extracellular Amino Terminus of Human Copper Transporter-1. Journal of Biological Chemistry, 298, Article ID: 101631. https://doi.org/10.1016/j.jbc.2022.101631
|
[31]
|
Zhu, X., Boulet, A., Buckley, K.M., Phillips, C.B., Gammon, M.G., Oldfather, L.E., et al. (2021) Mitochondrial Copper and Phosphate Transporter Specificity Was Defined Early in the Evolution of Eukaryotes. eLife, 10, e64690. https://doi.org/10.7554/elife.64690
|
[32]
|
van Rensburg, M., van Rooy, M., Bester, M., Serem, J., Venter, C. and Oberholzer, H. (2018) Oxidative and Haemostatic Effects of Copper, Manganese and Mercury, Alone and in Combination at Physiologically Relevant Levels: An Ex Vivo Study. Human & Experimental Toxicology, 38, 419-433. https://doi.org/10.1177/0960327118818236
|
[33]
|
Kim, B., Nevitt, T. and Thiele, D.J. (2008) Mechanisms for Copper Acquisition, Distribution and Regulation. Nature Chemical Biology, 4, 176-185. https://doi.org/10.1038/nchembio.72
|
[34]
|
Casareno, R.L.B., Waggoner, D. and Gitlin, J.D. (1998) The Copper Chaperone CCS Directly Interacts with Copper/zinc Superoxide Dismutase. Journal of Biological Chemistry, 273, 23625-23628. https://doi.org/10.1074/jbc.273.37.23625
|
[35]
|
Dodani, S.C., Leary, S.C., Cobine, P.A., Winge, D.R. and Chang, C.J. (2011) A Targetable Fluorescent Sensor Reveals That Copper-Deficient SCO1 and SCO2 Patient Cells Prioritize Mitochondrial Copper Homeostasis. Journal of the American Chemical Society, 133, 8606-8616. https://doi.org/10.1021/ja2004158
|
[36]
|
Lalonde, E., Ishkanian, A.S., Sykes, J., Fraser, M., Ross-Adams, H., Erho, N., et al. (2014) Tumour Genomic and Microenvironmental Heterogeneity for Integrated Prediction of 5-Year Biochemical Recurrence of Prostate Cancer: A Retrospective Cohort Study. The Lancet Oncology, 15, 1521-1532. https://doi.org/10.1016/s1470-2045(14)71021-6
|
[37]
|
Wang, G., Zhao, D., Spring, D.J. and DePinho, R.A. (2018) Genetics and Biology of Prostate Cancer. Genes & Development, 32, 1105-1140. https://doi.org/10.1101/gad.315739.118
|
[38]
|
Sharifi, N. (2005) Androgen Deprivation Therapy for Prostate Cancer. JAMA, 294, 238-244. https://doi.org/10.1001/jama.294.2.238
|
[39]
|
Li, F. and Mahato, R.I. (2014) MicroRNAs and Drug Resistance in Prostate Cancers. Molecular Pharmaceutics, 11, 2539-2552. https://doi.org/10.1021/mp500099g
|
[40]
|
Hwang, C. (2012) Overcoming Docetaxel Resistance in Prostate Cancer: A Perspective Review. Therapeutic Advances in Medical Oncology, 4, 329-340. https://doi.org/10.1177/1758834012449685
|
[41]
|
Denoyer, D., Clatworthy, S.A.S., Masaldan, S., Meggyesy, P.M. and Cater, M.A. (2015) Heterogeneous Copper Concentrations in Cancerous Human Prostate Tissues. The Prostate, 75, 1510-1517. https://doi.org/10.1002/pros.23022
|
[42]
|
Feng, X., Yang, W., Huang, L., Cheng, H., Ge, X., Zan, G., et al. (2022) Causal Effect of Genetically Determined Blood Copper Concentrations on Multiple Diseases: A Mendelian Randomization and Phenome-Wide Association Study. Phenomics, 2, 242-253. https://doi.org/10.1007/s43657-022-00052-3
|
[43]
|
XIE, F. and PENG, F. (2021) Reduction in Copper Uptake and Inhibition of Prostate Cancer Cell Proliferation by Novel Steroid-Based Compounds. Anticancer Research, 41, 5953-5958. https://doi.org/10.21873/anticanres.15414
|
[44]
|
Wen, H., Qu, C., Wang, Z., Gao, H., Liu, W., Wang, H., et al. (2023) Cuproptosis Enhances Docetaxel Chemosensitivity by Inhibiting Autophagy via the DLAT/mTOR Pathway in Prostate Cancer. The FASEB Journal, 37, e23145. https://doi.org/10.1096/fj.202300980r
|
[45]
|
Li, C., Xiao, Y., Cao, H., Chen, Y., Li, S. and Yin, F. (2023) Cuproptosis Regulates Microenvironment and Affects Prognosis in Prostate Cancer. Biological Trace Element Research, 202, 99-110. https://doi.org/10.1007/s12011-023-03668-2
|
[46]
|
Wu, J., He, J., Liu, Z., Zhu, X., Li, Z., Chen, A., et al. (2024) Cuproptosis: Mechanism, Role, and Advances in Urological Malignancies. Medicinal Research Reviews, 44, 1662-1682. https://doi.org/10.1002/med.22025
|
[47]
|
Young, M., Jackson-Spence, F., Beltran, L., Day, E., Suarez, C., Bex, A., et al. (2024) Renal Cell Carcinoma. The Lancet, 404, 476-491. https://doi.org/10.1016/s0140-6736(24)00917-6
|
[48]
|
Choueiri, T.K. and Motzer, R.J. (2017) Systemic Therapy for Metastatic Renal-Cell Carcinoma. New England Journal of Medicine, 376, 354-366. https://doi.org/10.1056/nejmra1601333
|
[49]
|
Grimm, M., Esteban, E., Barthélémy, P., Schmidinger, M., Busch, J., Valderrama, B.P., et al. (2023) Tailored Immunotherapy Approach with Nivolumab with or without Nivolumab Plus Ipilimumab as Immunotherapeutic Boost in Patients with Metastatic Renal Cell Carcinoma (TITAN-RCC): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 24, 1252-1265. https://doi.org/10.1016/s1470-2045(23)00449-7
|
[50]
|
Zhu, Z., Jin, Y., Zhou, J., Chen, F., Chen, M., Gao, Z., et al. (2024) PD1/PD-L1 Blockade in Clear Cell Renal Cell Carcinoma: Mechanistic Insights, Clinical Efficacy, and Future Perspectives. Molecular Cancer, 23, Article No. 146. https://doi.org/10.1186/s12943-024-02059-y
|
[51]
|
Yang, W., Wu, C., Jiang, C., Jing, T., Lu, M., Xia, D., et al. (2025) FDX1 Overexpression Inhibits the Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Upregulating FMR1 Expression. Cell Death Discovery, 11, Article No. 115. https://doi.org/10.1038/s41420-025-02380-5
|
[52]
|
Qi, Y., Yao, Q., Li, X., Li, X., Zhang, W. and Qu, P. (2023) Cuproptosis-Related Gene SLC31A1: Prognosis Values and Potential Biological Functions in Cancer. Scientific Reports, 13, Article No. 17790. https://doi.org/10.1038/s41598-023-44681-8
|
[53]
|
Huang, S., Cai, C., Zhou, K., Wang, X., Wang, X., Cen, D., et al. (2023) Cuproptosis-Related Gene DLAT Serves as a Prognostic Biomarker for Immunotherapy in Clear Cell Renal Cell Carcinoma: Multi-Database and Experimental Verification. Aging, 15, 12314-12329. https://doi.org/10.18632/aging.205181
|
[54]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[55]
|
Golabek, T., Darewicz, B., Borawska, M., Socha, K., Markiewicz, R. and Kudelski, J. (2012) Copper, Zinc, and Cu/Zn Ratio in Transitional Cell Carcinoma of the Bladder. Urologia Internationalis, 89, 342-347. https://doi.org/10.1159/000341976
|
[56]
|
Feng, Y., Huang, Z., Song, L., Li, N., Li, X., Shi, H., et al. (2024) PDE3B Regulates KRT6B and Increases the Sensitivity of Bladder Cancer Cells to Copper Ionophores. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 4911-4925. https://doi.org/10.1007/s00210-023-02928-1
|
[57]
|
Li, L., Zhou, H. and Zhang, C. (2024) Cuproptosis in Cancer: Biological Implications and Therapeutic Opportunities. Cellular & Molecular Biology Letters, 29, Article No. 91. https://doi.org/10.1186/s11658-024-00608-3
|
[58]
|
da Silva, D.A., De Luca, A., Squitti, R., Rongioletti, M., Rossi, L., Machado, C.M.L., et al. (2022) Copper in Tumors and the Use of Copper-Based Compounds in Cancer Treatment. Journal of Inorganic Biochemistry, 226, Article ID: 111634. https://doi.org/10.1016/j.jinorgbio.2021.111634
|
[59]
|
Chan, N., Willis, A., Kornhauser, N., Ward, M.M., Lee, S.B., Nackos, E., et al. (2017) Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clinical Cancer Research, 23, 666-676. https://doi.org/10.1158/1078-0432.ccr-16-1326
|
[60]
|
Kim, K.K., Lange, T.S., Singh, R.K., Brard, L. and Moore, R.G. (2012) Tetrathiomolybdate Sensitizes Ovarian Cancer Cells to Anticancer Drugs Doxorubicin, Fenretinide, 5-Fluorouracil and Mitomycin C. BMC Cancer, 12, Article No. 147. https://doi.org/10.1186/1471-2407-12-147
|
[61]
|
Redman, B.G., Esper, P., Pan, Q., et al. (2003) Phase II Trial of Tetrathiomolybdate in Patients with Advanced Kidney Cancer. Clinical Cancer Research, 9, 1666-1672.
|
[62]
|
Iljin, K., Ketola, K., Vainio, P., Halonen, P., Kohonen, P., Fey, V., et al. (2009) High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-Like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth. Clinical Cancer Research, 15, 6070-6078. https://doi.org/10.1158/1078-0432.ccr-09-1035
|
[63]
|
Yoshino, H., Yamada, Y., Enokida, H., Osako, Y., Tsuruda, M., Kuroshima, K., et al. (2020) Targeting NPL4 via Drug Repositioning Using Disulfiram for the Treatment of Clear Cell Renal Cell Carcinoma. PLOS ONE, 15, e0236119. https://doi.org/10.1371/journal.pone.0236119
|
[64]
|
Safi, R., Nelson, E.R., Chitneni, S.K., Franz, K.J., George, D.J., Zalutsky, M.R., et al. (2014) Copper Signaling Axis as a Target for Prostate Cancer Therapeutics. Cancer Research, 74, 5819-5831. https://doi.org/10.1158/0008-5472.can-13-3527
|
[65]
|
Kita, Y., Hamada, A., Saito, R., Teramoto, Y., Tanaka, R., Takano, K., et al. (2019) Systematic Chemical Screening Identifies Disulfiram as a Repurposed Drug That Enhances Sensitivity to Cisplatin in Bladder Cancer: A Summary of Preclinical Studies. British Journal of Cancer, 121, 1027-1038. https://doi.org/10.1038/s41416-019-0609-0
|
[66]
|
Zhang, T., Kephart, J., Bronson, E., Anand, M., Daly, C., Spasojevic, I., et al. (2022) Prospective Clinical Trial of Disulfiram Plus Copper in Men with Metastatic Castration‐Resistant Prostate Cancer. The Prostate, 82, 858-866. https://doi.org/10.1002/pros.24329
|
[67]
|
Cheng, Z., Li, M., Dey, R. and Chen, Y. (2021) Nanomaterials for Cancer Therapy: Current Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 85. https://doi.org/10.1186/s13045-021-01096-0
|
[68]
|
Wang, Y., Yang, Q., Yang, Q., Zhou, T., Shi, M., Sun, C., et al. (2017) Cuprous Oxide Nanoparticles Inhibit Prostate Cancer by Attenuating the Stemness of Cancer Cells via Inhibition of the WNT Signaling Pathway. International Journal of Nanomedicine, 12, 2569-2579. https://doi.org/10.2147/ijn.s130537
|
[69]
|
Guo, B., Yang, F., Zhang, L., Zhao, Q., Wang, W., Yin, L., et al. (2023) Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD‐l1 for Enhanced Cancer Immunotherapy. Advanced Materials, 35, Article ID: 2212267. https://doi.org/10.1002/adma.202212267
|